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Zvika Ben-Haim and Yonina C. Eldar, Member, IEEE

Abstract—We consider the linear regression problem of esti-
mating an unknown, deterministic parameter vector based on
measurements corrupted by colored Gaussian noise. We present
and analyze blind minimax estimators (BMEs), which consist of
a bounded parameter set minimax estimator, whose parameter
set is itself estimated from measurements. Thus, our approach
does not require any prior assumption or knowledge, and the pro-
posed estimator can be applied to any linear regression problem.
We demonstrate analytically that the BMEs strictly dominate the
least-squares (LS) estimator, i.e., they achieve lower mean-squared
error (MSE) for any value of the parameter vector. Both Stein’s
estimator and its positive-part correction can be derived within
the blind minimax framework. Furthermore, our approach can
be readily extended to a wider class of estimation problems than
Stein’s estimator, which is defined only for white noise and non-
transformed measurements. We show through simulations that
the BMEs generally outperform previous extensions of Stein’s
technique.

Index Terms—Biased estimation, James–Stein estimation, min-
imax estimation, linear regression model.

I. INTRODUCTION

THE problem of estimating a parameter vector from noisy
measurements has countless applications in science and

engineering. Such estimation problems are typically modeled
either in a Bayesian setting, in which a prior distribution on the
parameter is assumed, or in a deterministic setting, in which
such a prior is not assumed [1]. This paper examines the de-
terministic estimation problem. We further assume that the mea-
surements are linear combinations of the parameter
vector , to which Gaussian noise is added. Here the trans-
formation matrix and the noise covariance are assumed to
be known. We seek an estimate which approximates in the
sense of minimal mean-squared error (MSE).

This ubiquitous problem was first addressed by Gauss [2] and
Legendre [3], who proposed the classical least-squares (LS) es-
timator. Several lines of reasoning can be used to support the LS
approach. One argument is that the LS estimator minimizes the
squared error between the measurements and the transformed
estimate . The LS estimator is also the maximum-like-
lihood solution for Gaussian noise. However, neither of these
criteria are directly related to the MSE, or to any other mea-
sure of the distance between and . Another property of the
LS solution is that it is the unbiased estimator achieving min-
imal MSE. Yet by removing the requirement of unbiasedness,

Manuscript received April 23, 2006; revised May 22, 2007. This work was
supported by the Israel Science Foundation under Grant 536/04.

The authors are with the Department of Electrical Engineering, Tech-
nion–Israel Institute of Technology, Technion City, Haifa 32000, Israel (e-mail:
zvikabh@technion.ac.il; yonina@ee.technion.ac.il).

Communicated by X. Wang, Associate Editor for Detection and Estimation.
Digital Object Identifier 10.1109/TIT.2007.903118

estimators yielding lower MSE can be constructed. While lin-
earity and unbiasedness may be intuitively appealing properties,
they are not directly related to the primary goal at hand, namely,
achieving low estimation error. Indeed, there are many exam-
ples in which the requirement of unbiasedness results in absurd
estimators [4].

Because the parameter vector is deterministic, the MSE
is generally a function of . In other words, one

method may be better than another for some values of , and
worse for other values. For instance, the trivial estimator
achieves optimal MSE when , but its performance is oth-
erwise poor. Nonetheless, it is possible to impose a partial order
among estimation techniques [5], as follows. An estimator is
said to strictly dominate a different estimator if the MSE of

is lower than that of , for all values of . If the MSE of is
never higher than that of , and is strictly lower for at least one
parameter value, then is said to dominate . An estimator
is said to be admissible if it is not dominated by any other es-
timator. Surprisingly, when the parameter vector contains three
or more elements, the LS method turns out to be inadmissible,
i.e., some techniques always achieve lower MSE [6]. Thus, it
is of interest to characterize the class of admissible estimators,
and to find techniques which dominate LS.

The study of admissibility is sometimes restricted to linear
methods . A linear admissible estimator is one which is
not dominated by any other linear strategy. A simple rule char-
acterizes the class of linear admissible techniques [7], and, given
any linear inadmissible estimator, it is possible to construct a
linear admissible alternative which dominates it [8]. However,
the problem of admissibility is considerably more intricate when
the linearity restriction is removed; generally, admissible esti-
mators are either trivial (e.g., ) or exceedingly complex
[9], [10]. As a result, much research has focused on finding
simple nonlinear techniques which dominate LS.

Early work on LS-dominating strategies considered the in-
dependent and identically distribution (i.i.d.) case, for which

and the noise is white. Among these, the James–Stein
estimator [5], [11] is the best known example; other approaches
include the works of Stein [6] and Thompson [12]. Various “ex-
tended” James–Stein methods were later constructed for the
general (non-i.i.d.) case [13]–[16]. Of these, Bock’s technique
[13] is quoted most often [16], [17]. However, none of these ap-
proaches has become a standard alternative to the LS estimator,
and they are rarely used in practice in engineering applications
[16]. Perhaps one reason for this is that some of the estimators
are poorly justified and seem counterintuitive, and as such they
are sometimes regarded with skepticism (see discussion fol-
lowing [18]). Another reason is that many of these approaches
(including Bock’s method) result in shrinkage estimators, con-
sisting of a gain factor multiplying the LS estimate. Shrinkage
techniques can certainly be used to reduce MSE; however, in the
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non-i.i.d. case, some measurements are noisier than others, and
thus a single shrinkage factor for all measurements can be con-
sidered suboptimal. Furthermore, in some applications, a gain
factor has no effect on final system performance: for example, in
an image reconstruction problem, multiplying the entire image
by a constant does not improve quality.

In this paper, we provide a framework for generating a wide
class of low-complexity, LS-dominating estimators, which are
constructed from a simple, intuitive principle, called the blind
minimax approach [19], [20]. This method is used as a basis for
selecting and generating techniques tailored for given problems.
Many blind minimax estimators (BMEs) reduce to Stein-type
methods in the i.i.d. case, and they continue to dominate the LS
solution in the general, non-i.i.d. case as well. Thus, we show an-
alytically that the proposed technique achieves lower MSE than
LS, when an appropriate condition on the problem setting is sat-
isfied. Unlike Bock’s approach, BMEs may be constructed so
that they are nonshrinkage, which improves their performance.
Furthermore, extensive simulations show that BMEs consider-
ably outperform Bock’s method.

BMEs are based on linear minimax estimators over a bounded
parameter set [21], [22]. These are linear methods designed for
a slightly different problem, in which the parameter is known
to belong to a given set. The minimax approach has been thor-
oughly studied in this setting, and closed-form solutions are
known for many types of sets [8], [22]. In our case, however,
no prior information about the parameter set is assumed. In-
stead, the blind minimax approach makes use of a two-stage
process (Section II): first, a set is estimated from the measure-
ments; next, a minimax method for this set is used to estimate
the parameter itself. The result may be viewed as a simple de-
cision rule, independent of this two-stage construction process.
Indeed, our LS-dominance proofs do not rely on the method by
which the techniques are generated. In particular, the dominance
results do not depend on the parameter actually lying within
the estimated set. Thus, the blind minimax technique provides
a framework whereby many different estimators can be gener-
ated, and provides insight into the mechanism by which these
techniques outperform the LS approach.

BMEs differ in the method by which the parameter set is es-
timated. In Section III, we study the case in which the estimated
set is a sphere; Section IV derives estimators based on an el-
lipsoidal parameter set. Section V demonstrates that several ex-
isting Stein-type methods can also be derived in the blind min-
imax framework. Section VI compares the blind minimax ap-
proach with LS regularization techniques, while in Section VII,
the BMEs are compared with other Stein-type decision rules.
The paper concludes with a discussion in Section VIII.

Throughout this paper, vectors are denoted by lowercase
boldface letters, and matrices by uppercase boldface letters.
The th component of a vector is written as . indicates
the (unique) positive semidefinite square root of a positive
semidefinite matrix . The notation signifies
that is a random vector of length , distributed normally with
mean and covariance . is the Euclidean norm ,
and is the -norm , where is a positive definite
matrix. Finally, refers to the diagonal
matrix whose diagonal elements are .

II. BLIND MINIMAX ESTIMATION

Consider the problem of estimating an unknown deterministic
parameter vector from measurements given by

(1)

where is a known matrix and is a Gaussian
random vector with zero mean and covariance . For sim-
plicity, we assume that is full-rank and that is positive
definite.

The standard solution to this regression problem is the LS
approach

(2)

The MSE of does not depend on the value of , and is given
by

(3)

where

(4)

Despite the popularity of the LS method, other estimators
are known to achieve lower MSE. We propose a novel strategy
leading to such LS-dominating techniques, namely, the blind
minimax approach. To illustrate this concept, suppose for a mo-
ment that is known to lie within a compact parameter set .
In this case, a linear minimax estimator over the set may be
constructed [8], [21], [22]. This is the linear estimator
minimizing the worst case MSE among all possible values of
in

(5)

A closed-form solution of (5) has been previously derived for
many cases of interest. Furthermore, it has been shown that any
linear minimax estimator achieves lower MSE than that of the
LS method, for all values of in [8], [19]. Thus, as long as
some bounded set is known to contain , minimax techniques
outperform the LS estimator.

BMEs utilize minimax estimators when no parameter set is
known. This is done in a two-stage process:

1) A parameter set is estimated from the measurements.
2) A minimax estimator designed for is used to estimate the

parameter vector .
Various methods for estimating the parameter set can be

used, resulting in a variety of BMEs. In this paper, we consider
sets of the form . In the next section, we ex-
amine the case , in which the parameter set is spherical,
resulting in a shrinkage estimator. Subsequently, in Section IV,
we discuss the more general case in which
for some real number . In both cases, closed forms are pro-
vided, and dominance over the LS method is demonstrated.

III. THE SPHERICAL BLIND MINIMAX ESTIMATOR

In this section, we apply the blind minimax technique using a
spherical parameter set whose radius will be estimated from
measurements. We assume for now that the sphere is centered
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on the origin, . For a given value of ,
the linear minimax estimator is [22]

(6)

where is the LS estimator (2) and is the MSE (3) of .
The resulting spherical BME (SBME) will have the form (6),
where is estimated from the measurements.

As an estimate of , we seek a value as close as possible to
: a smaller value would exclude the true vector from the

parameter set, while a larger value would yield an overly con-
servative estimator. Since is unknown, a natural alternative is
to use instead. Thus, we propose to estimate as .
Substituting into (6), the SBME is then given by

(7)

In the i.i.d. case, the SBME reduces to the well-known
Thompson estimator [12]. Under suitable conditions,
Thompson’s technique is known to strictly dominate the
LS estimator, meaning that it achieves lower MSE for all
values of [23]. However, the SBME is equally well-defined
for the non-i.i.d. case. As we shall see, the SBME strictly
dominates LS in the non-i.i.d. case, and can thus be viewed
as a generalization of Thompson’s results. In Section V, we
will demonstrate that the blind minimax approach can be used
to derive generalizations of additional well-known methods,
including Stein’s estimator.

Up to this point, we have arbitrarily chosen the parameter set
to be centered on the origin. The result was a weighted average
between the LS estimate and . Averaging with a constant value

may be viewed as a restraint, which lessens the effect of mea-
surement noise. As we shall see, the proposed BMEs outperform
the LS estimator. This result demonstrates the fact that the LS
approach results in an overestimate: reducing the norm of
improves its performance. However, the choice of a parameter
set centered on the origin is completely arbitrary; BMEs may be
constructed around any constant center point [17]. This will
result in a weighted average between and , which may be
useful if the parameter vector is expected to lie near a particular
point. Thus, the “off-center” SBME is given by

(8)

All dominance results continue to hold for the off-center tech-
niques as well. In the sequel, we assume merely for the
sake of notational simplicity.

The following theorem demonstrates that the SBME is guar-
anteed to outperform LS in terms of MSE.

Theorem 1: Suppose , where is given by (3),
is the largest eigenvalue of , and .

Then, the SBME (7) strictly dominates the LS estimator.

The value is known as the effective dimension [16],
and may be roughly described as the number of independently

measured parameters in the system. In the i.i.d. case, for ex-
ample, the effective dimension simply equals the length of the
vector . Thus, the condition of Theorem 1 can be roughly stated
as a requirement for a sufficient number of independent param-
eters. This requirement is a result of the fact that the LS esti-
mator is admissible when up to two parameters are estimated
[6]. However, since many estimation problems contain dozens
or hundreds of parameters and measurements, the requirement
on the effective dimension holds for a variety of applications.

Note that the SBME is a special case of the estimator

(9)

in which . Thus, rather than proving Theorem 1, we prove
the following, more general proposition, which will also be used
in Section V.

Proposition 1: Under the conditions of Theorem 1, the esti-
mator given by (9) strictly dominates the LS estimator, for
any .

The proof of Proposition 1 makes use of the following lemma,
which is due to Stein [5, Theorem 1.5.15].

Lemma 1 (Stein): Let , and let be a differ-
entiable function such that for all . Then

(10)

Proof of Proposition 1: To prove the proposition, first note
that the MSE of is given by

(11)

Let be the eigenvalue decomposition of , such that
is unitary and . Define
and . With these definitions, we have

(12)

Using these properties, the third term in (11) becomes

(13)

To evaluate (13), let

(14)
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and note that is distributed normally with mean and covari-
ance . We can thus apply Lemma 1 to obtain

(15)

Substituting this result back into (11), we have

(16)

Since

(17)

If , then the expectation is taken over a strictly neg-
ative range, and hence, is always lower than , so that

strictly dominates .

As we have shown, in terms of MSE, the SBME outperforms
LS, providing us with a first example of the power of blind min-
imax estimation. The SBME is a shrinkage estimator, i.e., it con-
sists of the LS estimator multiplied by a gain factor smaller than
one. The SBME thus illustrates the fact that the LS technique
tends to be an overestimate, and shrinkage can improve its per-
formance.

IV. THE ELLIPSOIDAL BLIND MINIMAX ESTIMATOR

A. Motivation

Not all elements of the LS estimate are equally trustworthy.
Rather, is a Gaussian random vector with mean and co-
variance . Thus, some components of

have lower variance than others. In this sense, the scalar
shrinkage factor of the SBME (7) and other extended Stein es-
timators [13] seems inadequate.

Indeed, several researchers have proposed shrinking each
measurement according to its variance. Efron and Morris [14]
propose an empirical Bayes technique, in which high-variance
components are shrunk more than low-variance ones. However,
no closed form is available for this estimator, and obtaining
an estimate requires iteratively solving a set of nonlinear
equations. Furthermore, it is not known whether this method
dominates LS. By contrast, Berger [15] provides an estimator
in which more shrinkage is applied to low-variance measure-
ments, despite the fact that low-noise components are those for
which the LS approach is most accurate. Berger’s technique is

Fig. 1. Illustration of the adaptive shrinkage of the minimax estimator x̂xx for
the parameter set xxx TTTxxx � L . Low shrinkage is applied to components of
x̂xx corresponding to small eigenvalues of TTT , while components in directions
of large eigenvalues obtain higher shrinkage.

constructed such that the shrinkage of all components is neg-
ligible whenever there is a substantial difference between the
variances of different components. As a result, dominance over
the LS method is guaranteed, but the MSE gain is insubstantial
unless all noise components have similar variances.

Minimax estimators can easily be adapted for nonscalar
shrinkage. Specifically, consider an ellipsoidal parameter set
of the form , for some positive definite
matrix (see Fig. 1). Let represent the linear minimax
estimator for this set. It can be shown that is a linear func-
tion of , and one can therefore examine its effect on each
component of . Consider first components of in the
direction of narrow axes of the ellipsoid . These components
correspond to large eigenvalues of , and are denoted
in Fig. 1. The parameter set imposes a tight constraint in these
directions, and there will thus be considerable shrinkage of
these elements. By contrast, components in the direction of
wide axes of (small eigenvalues of ) are not constrained as
tightly. Less shrinkage will be applied in this case, since the LS
method is the linear minimax estimator for an unbounded set. In
Fig. 1, the shrinkage of wide-axis and narrow-axis components
is illustrated schematically for a particular value of .

Typically, one would want to obtain higher shrinkage for
high-variance components. Since the covariance of is ,
we propose a BME based on a parameter set of the form

(18)

for some constant . The bound is estimated as
. We refer to the resulting technique as the ellipsoidal

BME (EBME). Note that highly negative values of yield an
eccentric ellipsoid, and hence result in a larger disparity between
the shrinkage of different measurements. Contrariwise, a choice
of yields scalar shrinkage, and the resulting estimator
is identical to the SBME. As we will demonstrate, the EBME
dominates the LS method under a condition similar to that of
the SBME. However, the dominance condition of the EBME
becomes stricter as becomes more negative. Thus, there exists
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Fig. 2. Estimation of a signal from measurements of its DCT. In this example, high-frequency components have a much higher noise variance than low-frequency
components. Dashed line indicates original signal; solid line indicates estimate. (a) LS estimate; (b) spherical BME, resulting in a shrinkage factor of 0:79; (c)
ellipsoidal BME, with shrinkage in the range 0:44–0:98.

a tradeoff between selective shrinkage and a broad dominance
condition. In the numerical examples below we will choose a
value of as a compromise.

As an additional motivation for the use of the EBME, con-
sider the following application example (Fig. 2). Here, a 100-
sample signal is to be estimated from measurements of its dis-
crete cosine transform (DCT). Each component of the DCT is
corrupted by Gaussian noise: high-variance noise is added to the
ten highest frequency components, while the remaining compo-
nents contain much lower noise levels. Thus, is diagonal,
and is the DCT matrix. The condition number of
is .

Since is diagonal, the LS estimator is equivalent to an in-
verse DCT transform, and thus ignores the differences in noise
level between measurements. This causes substantial estima-
tion error, as observed in Fig. 2(a). The error is reduced by the
SBME (Fig. 2(b)), which multiplies the LS estimate by an ap-
propriately chosen scalar; in the example above, the squared
error was reduced by 20% compared with that of the LS esti-
mate. Hence, merely multiplying the result of the LS technique
by an appropriately chosen scalar can significantly reduce es-
timation error. However, the most significant advantage is ob-
tained by the EBME (Fig. 2(c)), which shrinks the high-noise
coefficients. Specifically, in this example, the choice
resulted in shrinkage of for the high-noise coefficients, and
shrinkage of only for low-noise coefficients. The resulting
squared error was 83% lower than that of the LS estimate.

Thus, our preliminary example demonstrates that it is pos-
sible to achieve substantial improvements over the LS technique
by using nonscalar shrinkage. As we will demonstrate presently,
this empirical finding is only an example of the wide range of
cases in which the EBME is guaranteed to improve on the LS
approach.

B. Dominance

We begin our analysis by obtaining an expression for the
EBMEs. A closed-form solution for minimax estimators of an
ellipsoidal parameter set was developed in [22]. By substituting
the value of into this closed form, we obtain the following
result.

Proposition 2 (Closed-Form EBME): Let be the
eigenvalue decomposition of , where is
orthonormal and . Let be any
constant, and suppose the eigenvalues are ordered such that

. Then, the EBME for the parameter
set with is given by

(19)

when , and by when . Here

(20)

and is chosen as the smallest index such that

(21)

Proof: In the case , we need to find the linear
minimax estimator for the set . Clearly, the solution
in this case is . For all other values of , we seek the
linear minimax estimator for the set ,
where . Substituting this value of into
Proposition 1 of [22] yields

(22)

From (21), it follows that for all , and
therefore (22) can be written as (19).
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We note that, as long as , it is always possible to
find a value which satisfies (21). In particular, for ,
we have

(23)

which satisfies the requirement (21).
While the closed form of the EBME appears somewhat more

intimidating than that of the SBME, the computational complex-
ities of the two estimators are comparable. The major difference
is the calculation of the value , for which divisions are re-
quired. Like the SBME, the EBME also dominates the LS esti-
mator under suitable conditions, as shown in the following the-
orem.

Theorem 2: Let be the EBME (19) and suppose that

(24)

where is the largest eigenvalue of and
. Then, strictly dominates the LS esti-

mator.

Note that by substituting , this result can be used to
demonstrate the dominance of the SBME over LS estimation
(Theorem 1). However, the method of proof here is different,
and the proof of Theorem 1 will also be used in Section V.

Also note that the dominance condition (24) is satisfied by
many reasonable estimation problems. Assuming a sufficient
number of parameters, the only case in which this condition does
not hold is the situation in which a small number of parameters
(less than four) have much higher variance than all other param-
eters; in this case, the LS method is admissible or nearly so.

In order to prove Theorem 2, we observe that the form (19) of
the EBME is similar to Baranchik’s positive-part modification
[5], [24] of the James–Stein estimator. Baranchik proposed
using a shrinkage factor of whenever the James–Stein tech-
nique contains negative shrinkage, and showed that the resulting
method dominates the James–Stein estimator. Although the
EBME is not a shrinkage technique, it resembles Baranchik’s
modification, since each negative diagonal component in (19)
is replaced with zero. The following proposition shows that the
MSE can be reduced by eliminating this negative shrinkage.

Proposition 3: Let be the eigenvalue decomposition
of , and let be a constant. Suppose is an
estimator of the form , where is a diagonal
matrix, whose diagonal elements are functions of the random
variable . Suppose at least one of the elements is
negative with nonzero probability. Then, is dominated by the
(generalized) positive-part estimator

(25)

where is a diagonal matrix with diagonal elements
.

Proof: Our proof follows that of Baranchik [24]. We will
show that MSE MSE is nonnegative for all , and
positive for any value of whose elements are all nonzero.

MSE MSE

(26)

Since for all , the first term in (26) is nonneg-
ative. Hence, to prove the proposition, it suffices to show that

is nonpositive for all , and negative
for values with nonzero elements.

To this end, define and . We note that
, so that the elements of are statistically in-

dependent. To calculate , we condition
on , obtaining

(27)

where we used the fact that , and that and
are deterministic when conditioned on . For each

, we further condition on , to obtain

(28)

Given , we have that either or that
. It is evident from the probability density function

(pdf) of that the latter option has lower probability, i.e.,

(29)

It follows that , with strict in-
equality for . Therefore, all terms in (28) are nonnega-
tive, except for , which is nonpositive. As a result,
(28) (and hence (26)) is nonpositive for all , so that the MSE
of is never higher than that of .

We must also show that, for some , (28) is strictly negative.
To this end, we choose for which all elements are nonzero;
as a result, all terms in (28) are strictly positive with proba-
bility , except for . The latter term is negative when

and zero otherwise. Since is negative with nonzero
probability for at least one value of , we conclude that for the
chosen value of , (28) is strictly negative, completing the proof
of Proposition 3.

This generalization of the concept of a positive part estimator
is now used to prove Theorem 2.

Proof of Theorem 2: Clearly, the EBME (19) is the positive
part of the estimator

(30)
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Therefore, it suffices to show that dominates the LS esti-
mator, and the theorem follows using Proposition 3.

The MSE of is given by

(31)

To analyze this expression, we define

(32)

Using this notation, the third term in (31) becomes

(33)

Next, define

(34)

Note that and are implicitly dependent on , which in turn
depends on . Thus, is discontinuous for some values of

, namely, those values for which . However, these
values of occur with probability zero; for all other values,
(and hence and ) are constant for sufficiently small changes
in . Thus

w.p. (35)

and for all . Furthermore, observe that
. We can therefore apply Lemma 1 to . This

yields

(36)

Substituting into (33), we obtain

(37)

Using the definition (32) of , may be written as

(38)
Note that

(39)

Thus

(40)
Substituting back into (31), we have

MSE

(41)

and using the fact that , we
conclude that the MSE is bounded by

(42)
Thus, if , then MSE , proving
that the EBME dominates the LS estimator.

Thus far, we have presented two examples of BMEs which
dominate the LS method under suitable conditions. Both
approaches are extensions of Thompson’s technique to the
non-i.i.d. case. In the next section, we demonstrate that other
BMEs extend different LS-dominating techniques, namely
Stein’s estimator and Baranchik’s positive-part improvement.

V. RELATION TO STEIN-TYPE ESTIMATION

In Section III, the SBME (7) was constructed by using
as an estimate of . However, the fact that shrinkage

techniques such as the SBME dominate LS indicates that is
in fact an overestimate of . It is arguably more accurate to use
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Fig. 3. Comparison between the positive part approach and the SBME. The positive part method results in stronger shrinkage, which improves performance for
low SNR at the expense of high SNR.

a smaller value than to estimate . In particular, it is
readily shown that

(43)

Hence, one may opt to use

(44)

as an estimate of . It is important to note that such a value of
cannot be used with the linear minimax method, since is

negative with nonzero probability; a parameter set with negative
radius is undefined. However, substituting (44) into a minimax
technique, as per the blind minimax approach, can still lead to
well-defined estimators. In particular, substituting (44) into the
spherical minimax method (6) yields the “balanced” BME

(45)

A striking property of the balanced BME is that it reduces to
Stein’s estimator [6] in the i.i.d. case. Both techniques are well-
defined unless , an event which has zero probability.
Furthermore, the balanced BME extends Stein’s method, in that
it continues to dominate LS for the non-i.i.d. case, under suitable
conditions. This is shown by the following theorem.

Theorem 3: Suppose , where is given by (3),
is the largest eigenvalue of , and is given by (4).

Then, the balanced BME (45) strictly dominates the LS esti-
mator.

Proof: The theorem follows by substituting in
Proposition 1.

A well-known drawback of Stein’s approach is that it some-
times causes negative shrinkage, i.e., the shrinkage factor in (45)
is negative with nonzero probability. This is known to increase

the MSE [24]. From the blind minimax perspective, this nega-
tive shrinkage is a result of the fact that can become negative.
Thus, it is natural to replace (44) with

(46)

where . Substituting this value of into
the spherical minimax estimator yields the “positive-part BME,”
given by

(47)

Note that when , the estimator equals ;
in all other cases, . Thus, (47) may be written as

(48)

In other words, is the positive part of the balanced
BME. Specifically, in the i.i.d. case, is the positive-part
correction of Stein’s estimator. In the i.i.d. case, Baranchik
[24] demonstrated that dominates . An interesting
question for further research is whether the dominance property
holds in the non-i.i.d. case as well.

The “balanced” method presented in this section for esti-
mating the parameter set radius results in a value (44) of
which is smaller than that of the SBME. As a result, the balanced
approach causes more shrinkage towards the origin. This tends
to improve performance for low signal-to-noise ratio (SNR) at
the expense of performance degradation for high SNR. In par-
ticular, has a positive probability of yielding an estimate
of . This may indeed reduce the MSE when the parameter is
exceedingly small with respect to the noise variance, but will
sacrifice high-SNR performance.

In Fig. 3, the positive part estimator is compared with
the SBME of Section III. The problem setting of this simulation
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is identical to that of Fig. 5(a), which will be described in de-
tail in Section VII. In general, the positive-part BME tends to
perform as well or worse than the SBME at SNR values above
0 dB, and better for lower SNR values. Thus, in most applica-
tions, use of the SBME is probably preferable. However, the
fact that Stein’s estimator can be derived and extended using
blind minimax considerations illustrates the versatility of this
approach.

VI. COMPARISON WITH LS REGULARIZATION

Independently of the development of Stein-type estimators,
many researchers became aware of deficiencies of the LS ap-
proach for solving ill-conditioned problems. A variety of alter-
natives were proposed as a result. These substitutes were gener-
ally not required to dominate the LS estimator; rather, they were
intended to improve estimation quality in specific scenarios. Of
these approaches, the most common is Tikhonov regularization
[25], also referred to as ridge regression [26].

Tikhonov regularization is intended for ill-posed problems,
i.e., problems in which is nearly singular. The ma-
trix is guaranteed to be positive-definite (and
hence invertible), since we assume that is full-rank and
is positive-definite. However, may contain eigenvalues which
are very close to zero. In these cases, the LS estimator (which
depends on the term ) causes severe amplification of mea-
surement noise. In effect, an ill-posed setting is one in which the
SNR of at least one parameter is extremely low; as we have seen,
the LS approach results in overestimation in such conditions.
Regularization techniques attempt to mitigate this problem by
improving the conditioning of the matrix .

Tikhonov regularization may be justified in a Bayesian set-
ting, as follows. Suppose that the parameter vector is known
to be distributed normally, independently of the noise , with
zero mean and a covariance matrix . The minimum MSE es-
timator of given is then the Wiener filter [1], [27]

(49)

In practice, is a deterministic parameter, and thus does not
have a covariance matrix. However, by replacing with an
appropriately chosen regularization matrix, the (generalized)
Tikhonov estimator is obtained.

There are several methods for empirically selecting a regu-
larization matrix . If nothing is known about the parameter

, one possibility is to choose , where is to be
estimated from . Optimally, one would like to use the average
value of as an approximation of the variance . However,
since is unknown, this is not possible. Instead, can be esti-
mated as , which is an approximation of the desired
quantity . This results in the estimator

(50)

This derivation is based on an empirical Bayes approach [28], in
which the elements of are assumed to be i.i.d. An alternative
is to assume instead that the variance of is proportional to
the variance of the noise , which implies . In
analogy to the previous derivation, one may then estimate

as . Substituting into (49) results in the shrinkage
estimator

(51)

Unfortunately, the Tikhonov estimators and do not
dominate LS; like the original Tikhonov regularization, they
perform poorly at high SNR values. To illustrate this, we per-
formed a simulation in which the MSE of the LS method was
compared to that of and . In this example, 15 param-
eters were estimated using 15 independent measurements, with

. The noise variance of five of the measurements was
100 times larger than the noise variance of the remaining mea-
surements. The parameter vector was chosen in the direction of
a high-variance measurement, and its magnitude was varied to
obtain different SNR values. Here and in the remainder of the
paper, we define the SNR as

SNR (52)

For comparison, the MSE of the LS and blind minimax tech-
niques were also calculated.

The results are displayed in Fig. 4. It is evident from this
figure that the Tikhonov regularization is inadequate at high
SNR, as it performs worse than the LS estimator. Both Tikhonov
approaches converge to the LS approach at infinite SNR, but
consistently obtain higher MSE than the LS method for SNR
values above 5 dB. This makes them unattractive candidates for
replacing the LS technique.

VII. NUMERICAL RESULTS

Estimator performance depends on a variety of operating con-
ditions, including the effective dimension, the SNR, the eigen-
values of , and the value of the unknown pa-
rameter vector . Several computer simulations were imple-
mented to test the effect of these conditions on performance
of the SBME and EBME. In these tests, a value of
was used for the parameter set (18) of the EBME. The simu-
lations were also used to compare the BMEs with Bock’s esti-
mator [13], which is the most commonly used extended Stein
estimator [16], [17]. Like Stein’s results, Bock’s approach con-
sists of a shrinkage estimator, given by

(53)

The theorems of Sections III and IV ensure that the BMEs
achieve lower MSE than the LS estimator, but do not guar-
antee that this improvement is substantial. To measure this per-
formance gain, we first chose a typical scenario, in which the
number of parameters and the number of measurements
were both . The system matrix was chosen as , and the
noise covariance was

(54)
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Fig. 4. Comparison between Tikhonov regularization, LS, and BME. The Tikhonov estimators x̂xx are seen to perform worse than the LS estimator at high SNR,
whereas the BMEs dominate the LS method.

Fig. 5. MSE versus SNR for a typical operating condition: effective dimension 5:8, m = n = 15. (a) Parameter vector xxx in direction of maximum noise. (b)
Parameter vector xxx in direction of minimum noise.

resulting in an effective dimension of . Here was selected
to achieve the desired SNR (52). To illustrate the dependence
on the value of the parameter vector , two different settings
were tested. In Fig. 5(a), is chosen in the direction of the max-
imum eigenvector of , while in Fig. 5(b), is chosen in
the direction of the minimum eigenvector. This corresponds to
parameters in the direction of maximal and minimal noise, re-
spectively. Estimates of the MSE were calculated for a range of
SNR values by generating 10 000 random realizations of noise
per SNR value.

It is evident from Fig. 5 that substantial improvement in MSE
can be achieved by using BMEs in place of the LS approach: in
some cases, the MSE of the LS estimator is nearly three times
larger than that of the BMEs. The performance gain is particu-

larly noticeable at low and moderate SNR. At infinite SNR, the
LS technique is known to be optimal [1], and all other methods
converge to the value of the LS estimate; as a result, perfor-
mance gain is smaller at high SNR, although substantial im-
provement can be obtained even at 10–15 dB.

To further compare the BMEs with Bock’s estimator, another
simulation was performed, in which a large set of parameter
values were generated for different SNRs. For each estimator,
and for each SNR, the lowest and highest MSE were determined,
resulting in a measure of the performance range for each esti-
mator. This performance range is displayed in Fig. 6 for two dif-
ferent choices of , which are indicated in the figure caption.
One may observe that both BMEs outperform Bock’s estimator
under nearly all circumstances. It is also interesting to note that
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Fig. 6. Range of possible MSE values obtained for different values of xxx, as a function of SNR. HHH = III for both parts. (a) m = n = 15, with eigenvalues of
CCC distributed uniformly between 1 and 0:01, resulting in an effective dimension of 7:6. (b) m = n = 10, with CCC containing five eigenvalues of 1 and five
eigenvalues of 0:1, resulting in an effective dimension of 5:5.

while the MSE of the EBME is highly dependent on the value
of the parameter value , the performance of the SBME is fairly
constant. This is a result of the symmetric form of the SBME.
On the other hand, the EBME achieves considerably lower MSE
for most values of the parameter vector.

It is insightful to compare the performance of the SBME and
EBME in Figs. 5 and 6. While the worst case performance of
the two blind minimax techniques is similar, the EBME per-
forms considerably better for some values of . This is a result
of the fact that the EBME selectively shrinks the noisy measure-
ments, whereas the SBME uses an identical shrinkage factor for
all elements. If one measurement contains very little noise, the
SBME is forced to reduce the shrinkage of all other measure-
ments. The EBME, by contrast, can effectively reduce the effect
of noisy measurements without shrinking the clean elements. As
a result, the EBME is superior by far if is orthogonal to the
noisiest measurements, whence the selective shrinkage is most
effective; its performance gain is less substantial when is in
the direction of high shrinkage, since in these cases, shrinkage
is applied to the parameter as well as the noise.

Another important advantage of the blind minimax approach
over Bock’s estimator is that the latter converges to the LS
technique when the matrix is ill-conditioned, i.e., when some
eigenvalues are much larger than others. This is because the
shrinkage in Bock’s method (53) is a function of .
As a result, when contains a significant component in
the direction of a large eigenvalue of , shrinkage becomes
negligible. Yet, in this case, shrinkage is still desirable for the
remaining eigenvalues. This effect is demonstrated in Fig. 7,
which plots the performance of the various approaches for
matrices having condition numbers between 1 and 1000.
Here, ten parameters and ten measurements are used, ,
and the noise covariance is chosen such that the first five
eigenvalues equal and the remaining five eigenvalues equal
a value , which is chosen to obtain the desired condition

Fig. 7. Range of possible MSE values obtained for different values of xxx, as a
function of the condition number ofQQQ. SNR = 0 dB, m = n = 10.

number. For each condition number, a large set of values
are chosen such that the SNR is 0 dB; as in Fig. 6, the range
of MSE values obtained for each estimate is plotted. It is
evident that Bock’s estimator approaches the LS method for
ill-conditioned matrices, despite the fact that shrinkage can still
improve performance, as indicated by the performance of the
SBME. The performance of the EBME improves relative to the
LS estimator for ill-conditioned matrices, since the high-noise
components are further reduced in this case.

VIII. DISCUSSION

The blind minimax approach is a general technique for using
minimax estimators in situations for which no parameter set
is known. We considered an application of this concept to the
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Gaussian linear regression model. Two novel estimators were
proposed: a technique based on a spherical parameter set, and
one based on an ellipsoidal parameter set. In Sections III and
IV, these approaches were shown to dominate the LS method.
Under fairly weak conditions, in any application which makes
use of the LS estimator, the MSE performance can be improved
by using a BME instead. Furthermore, in Section V, we demon-
strated that Stein’s approach, as well as its positive part modifi-
cation, can be derived and generalized using the blind minimax
framework.

It can readily be shown that the dominance condition of the
SBME (Theorem 1) is weaker than the dominance condition
of the EBME (Theorem 2), i.e., the conditions for SBME
dominance hold whenever the conditions for EBME dominance
hold. The dominance condition of Bock’s estimator [13] is
still weaker.1 This would seem to indicate that Bock’s esti-
mator is superior to the proposed estimators. Yet the results of
Section VII demonstrate that the opposite is true: the BMEs
usually outperform Bock’s estimator. This is true in particular
for ill-conditioned problems, for which the LS estimator is
notoriously inaccurate; for such problems, Bock’s approach
dominates the LS method by a negligible margin, whereas the
BMEs achieve a significant performance gain. Thus, while
dominance theorems are useful in providing sufficient condi-
tions for improving on the LS estimator, they are ill-suited for
comparing LS-dominating estimators. This conclusion is note-
worthy since estimators are sometimes chosen by maximizing
the range of conditions for which dominance is guaranteed. It
seems that other analytical tools are required for comparing
LS-dominating estimators. For example, it may be possible to
prove that BMEs dominate Bock’s estimator, for some problem
settings.

The choice between the different BMEs is application de-
pendent. As demonstrated in Section VII, the SBME reliably
achieves constant performance for a variety of values of , al-
though the typical performance of the EBME is superior. The
EBME is particularly well adapted to ill-posed problems, in
which some measurements are much more noisy than others.
In such cases, the use of a single shrinkage factor for all mea-
surements is clearly suboptimal. As a result, scalar shrinkage
methods such as the SBME and Bock’s technique often result
in little improvement over the LS estimator, while the EBME is
capable of selectively shrinking the noisy measurements, thus
improving performance.

The use of a componentwise shrinkage technique such as
the EBME may be useful in additional contexts as well. In
some applications, MSE minimization is only a nominal goal
which approximates some other error criterion. In these cases,
a shrinkage estimator has no impact on the actual objective.
For example, if the vector is an image which is to be recon-
structed, its subjective quality is not affected by multiplying
the entire estimate by a scalar. Likewise, in a binary receiver,

1A simple change to the SBME (adding �2 to the numerator) changes its
dominance condition to that of Bock’s estimator, without significantly affecting
its performance. However, we have been unable to derive this modification using
the blind minimax approach, and thus prefer the simpler form of the SBME used
in the paper.

the sign of must be determined, but the sign does not change
when the estimate is shrunk. In such applications, the SBME
(and Bock’s estimator) have no effect on the final result,
whereas the EBME can be used to improve performance.

IX. CONCLUSION

In this paper, we presented the blind minimax strategy,
whereby one uses linear minimax estimators whose parameter
set is itself estimated from measurements. This simple concept
was examined in the setting of a linear system of measure-
ments with colored Gaussian noise, where we have shown
that the BMEs dominate the LS method. Hence, in any such
problem, the proposed estimators can be used in place of the
LS approach, with a guaranteed performance gain. Apart from
being useful in and of themselves, the proposed techniques
support the underlying concept of blind minimax estimation.
This concept can be applied to many other problems, such as
estimation with uncertain system matrices, estimation with
non-Gaussian noise, and sequential estimation. Use of the blind
minimax approach in such problems remains a topic for further
study.

Stein’s discovery of LS-dominating estimators, half a century
ago, shocked the statistics community, and his results are still
rarely used in practice. It is our hope that the blind minimax
concept will provide additional support for such estimators, both
by supplying an intuitive understanding of Stein’s phenomenon,
and by providing a wide class of powerful new estimators.
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