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ABSTRACT

We consider the linear regression problem of estimating an un-
known, deterministic parameter vector based on measurements
corrupted by colored Gaussian noise. We present and analyze esti-
mators based on the blind minimax approach, a technique whereby
a parameter set is estimated from measurements and then used
to construct a minimax estimator. We demonstrate analytically
that the obtained estimators strictly dominate the least-squares es-
timator (LSE), i.e., they achieve lower mean-squared error for any
value of the parameter vector. Simulations show that these estima-
tors outperform Bock’s estimator, which also dominates the LSE.

1. INTRODUCTION

We consider the classical problem of estimating a deterministic,
unknown parameter vectorx from a measurement vectory =
Hx + w, whereH is a known matrix andw represents Gaussian
noise with known covarianceCw [1]. An estimator̂x is a function
of y intended to be close tox, typically in terms of mean-squared
error (MSE). However, the MSE of an estimator generally depends
on the unknown value ofx, and no estimator minimizes the MSE
for all values ofx. Hence, a standard approach is to limit discus-
sion to the set of linear unbiased estimators, for which the MSE
does not depend onx. The well-known least-squares estimator
(LSE) minimizes the MSE among all linear unbiased estimators.

Yet biased and nonlinear estimators may outperform the LSE
in terms of MSE; this is known as the Stein phenomenon [2, 3].
One example is the James-Stein estimator [4], an estimator de-
signed for the i.i.d. case, in whichH = I andCw = σ2I. Un-
der simple regularity conditions, the James-Stein estimator strictly
dominates the LSE, meaning that it achieves lower MSE forany
value ofx.

Several extended Stein estimators attempt to apply these re-
sults to the more interesting case in whichH and Cw are not
identity matrices [5–7]. However, none of these methods has be-
come a standard alternative to the LSE. One reason is that Stein
estimators are considered counterintuitive (see the discussion fol-
lowing [8]). Another reason is that many extended Stein estimators
are shrinkage estimators, rendering them inappropriate for appli-
cations (such as image enhancement) in which a gain factor does
not affect performance.

A somewhat different estimation problem occurs when the pa-
rameterx is unknown, but lies within a known setS. In this case,
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a linear minimax estimator may be designed which minimizes the
worst-case MSE among all possible values ofx in S [9,10]. It has
recently been shown that minimax estimators achieve lower MSE
than the LSE, as long asx does indeed lie within the setS [11,12].

We seek to apply the success of minimax estimators to the
general estimation problem, in which no information onx is avail-
able. To do so, we propose a two-stage estimation process. First,
the measurements are used to estimate a parameter setS likely to
contain the true value ofx. Next, a minimax estimator is con-
structed for the setS, to obtain the final estimate ofx. We refer to
the resulting estimator as a blind minimax estimator (BME).

BMEs are successful because a parameter set can be estimated
far more accurately than the actual value ofx. Subsequently, in
many cases the obtained estimator outperforms the LSE. In a
recent paper [11], BMEs were examined for the i.i.d. case, and
shown to strictly dominate the LSE under simple regularity condi-
tions. Furthermore, in the i.i.d. case, BMEs were shown to closely
resemble the James-Stein estimator.

One advantage of BMEs is that the two-stage blind minimax
technique described above extends naturally to the general (non-
i.i.d.) setting. This paper focuses on such an extension. We pro-
vide closed forms for the BMEs, and show that they strictly domi-
nate the LSE and also outperform other extended Stein estimators.

We use the blind minimax approach to construct two differ-
ent estimators. The spherical BME (Section 2) is a shrinkage es-
timator which can be implemented very efficiently, while the el-
lipsoidal BME (Section 3) is a non-shrinkage estimator which is
slightly more computationally complex. Both estimators domi-
nate the LSE and outperform other extended Stein estimators, and
both estimators reduce to the blind minimax estimator of [11] in
the i.i.d. case. The proposed estimators are compared with existing
estimators in an empirical study in Section 4, and the results are
summarized in Section 5.

2. THE SPHERICAL BLIND MINIMAX ESTIMATOR

Consider the problem of estimating an unknown deterministic pa-
rameter vectorx ∈ Cm from measurementsy ∈ Cn given by

y = Hx + w, (1)

whereH ∈ Cn×m is a known matrix andw is a Gaussian random
vector with zero mean and covarianceCw.

Supposex is known to lie within a compact parameter setS.
In this case, alinear minimaxestimator may be constructed [9,10].
This is the linear estimator̂xM minimizing the worst-case MSE



among all possible values ofx in S,

x̂M = arg min
x̂=Gy

max
x∈S

E
{‖x̂− x‖2} . (2)

For example, when the setS is a sphere centered on the origin,
S = {x : ‖x‖2 ≤ L2}, the linear minimax estimator is [10]

x̂M =
L2

L2 + ε0
x̂LS, (3)

wherex̂LS is the LSE,

x̂LS = (H∗C−1
w H)−1H∗C−1

w y, (4)

andε0 is the MSE ofx̂LS, given by

ε0 = E
{‖x̂LS − x‖2} = Tr

(
(H∗C−1

w H)−1) . (5)

It has recently been shown that any linear minimax estimator
achieves lower MSE than that of the LSE, for all values ofx in S
[11,12]. Thus, as long as some parameter setS is known, minimax
estimators outperform the LSE.

The blind minimax approach uses minimax estimators when
no parameter set is known. This is done in a two-stage process:

1. A parameter setS is estimated from the measurements;

2. A minimax estimator designed forS is used to estimate the
parameter vectorx.

Blind minimax estimators differ in the method by which the
parameter set is estimated. In this section, we use a spherical pa-
rameter set centered on the origin, and estimate the sphere radius
from the measurements. The resultingspherical blind minimax
estimator(SBME) will have the form (3), whereL2 is estimated
from the measurements.

As an estimate ofL2, we seek a value as close as possible to
‖x‖2: a smaller value would exclude the true vectorx from the
parameter set, while a larger value would yield an overly conser-
vative estimator. Since‖x‖2 is unknown, a natural alternative is to
use the LSE to estimate‖x‖2; for instance, one may estimateL2

as‖x̂LS‖2. Closer observation reveals that‖x̂LS‖2 is, in fact, an
overestimate of‖x‖2, since

E
{‖x̂LS‖2

}
= ‖x‖2 + ε0. (6)

To correct for this effect, we estimateL2 as‖x̂LS‖2 − ε0. Substi-
tuting this value into (3), the SBME is given by

x̂SBM =

(
1− ε0

‖x̂LS‖2
)

x̂LS. (7)

Thus, the SBME is a shrinkage estimator: it consists of multiply-
ing the LSE by a scaling factor. The scaling factor is a “restraint”
which lessens the effect of random fluctuations in the measure-
ments.

It is remarkable that for the i.i.d. case, the above estimator re-
duces to the original Stein estimator [2], which was derived in a
different manner and later shown to strictly dominate the LSE [4].
An estimator is said to strictly dominate the LSE if it achieves
lower MSE for all values ofx. By comparison, an estimator dom-
inates the LSE if its MSE is at least as low as that of the LSE for
all values ofx, and is strictly lower for at least one value ofx.

While the SBME reduces to Stein’s estimator in the i.i.d. case,
it is equally well-defined for the non-i.i.d. case. Furthermore, as
the following theorem shows, the SBME strictly dominates the
LSE in the non-i.i.d. case.

Theorem 1. Supposeε0/λmax > 4, whereλmax is the largest
eigenvalue of(H∗C−1

w H)−1. Then, the SBME(7) strictly domi-
nates the LSE(4).

The valueε0/λmax is referred to as the effective dimension,
and may be roughly described as the number of independent pa-
rameters in the system. In the i.i.d. case, for example, the effective
dimension simply equals the length of the parameter vector.

The proof of Theorem 1 makes use of the following result,
known as Stein’s lemma [3, Theorem 1.5.15].

Lemma 1 (Stein). Let v̂ ∼ Np(v, I), and letg(v̂) be a differen-

tiable function such thatE
∣∣∣ ∂g(v̂)

∂v̂i

∣∣∣ < ∞ for all i. Then,

E

{
∂g(v̂)

∂v̂i

}
= −E{g(v̂)(vi − v̂i)} . (8)

Proof of Theorem 1.The MSE ofx̂SBM is given by

MSE(x̂SBM) = E

{∥∥∥∥x− x̂LS +
ε0

x̂∗LSx̂LS
x̂LS

∥∥∥∥
2
}

= ε0 + E

{
ε20

x̂∗LSx̂LS

}
+ 2E

{
ε0x̂

∗
LS(x− x̂LS)

x̂∗LSx̂LS

}
.

(9)

Let us denoteQ = H∗C−1
w H, and letV∗ΛV be the eigen-

value decomposition ofQ, such thatV is unitary andΛ =
diag(λ1, . . . λm). Define v̂ = VQ1/2x̂LS andv = VQ1/2x.
The third term in (9) may now be written as

E3 , E

{
ε0x̂

∗
LS(x− x̂LS)

x̂∗LSx̂LS

}

= E

{
v̂∗Λ−1(v − v̂)

v̂∗Λ−1v̂

}

=

m∑
i=1

λ−1
i E

{
v̂i(vi − v̂i)

v̂∗Λ−1v̂

}
, (10)

where in the last step we used the fact thatv̂ ∼ Nm(v, I). Defin-
ing gi(v̂) = v̂i

v̂∗Λ−1v̂
, we apply Stein’s lemma to obtain

E3 = −
∑

i

λ−1
i E

{
1

v̂∗Λ−1v̂
− 2

λ−1
i v̂2

i

(v̂∗Λv̂)2

}

= −E

{
Tr(Λ−1)

v̂∗Λ−1v̂

}
+ 2E

{
v̂∗Λ−2v̂

(v̂∗Λ−1v̂)2

}

= −E

{
ε0

x̂∗LSx̂LS

}
+ 2E

{
x̂∗LSQ

−1x̂LS

(x̂∗LSx̂LS)2

}
. (11)

Substituting this result back into (9) yields

MSE(x̂SBM) = ε0 + E

{
ε0

x̂∗LSx̂LS

(
4
x̂∗LSQ

−1x̂LS

x̂∗LSx̂LS

)
− ε0

}

≤ ε0 + E

{
ε0

x̂∗LSx̂LS
(−ε0 + 4λmax)

}
. (12)

If ε0 > 4λmax, then the expectation is taken over a strictly neg-
ative range, and hencêxSBM always has strictly lower MSE than
x̂LS, which proves the theorem.



As we have shown, in terms of MSE, the SBME is a better esti-
mator than the LSE. This is particularly notable in light of the sim-
ple mechanism used to generate the SBME. However, the SBME
is a shrinkage estimator, i.e., it consists of the LSE multiplied by
a gain factor. In some applications, such as image reconstruction,
a gain factor has no effect on the end result. In the next section,
we use the blind minimax approach to develop a non-shrinkage
estimator, which also dominates the LSE.

3. THE ELLIPSOIDAL BLIND MINIMAX ESTIMATOR

Not all elements of the least-squares estimatex̂LS are equally
trustworthy. Rather,̂xLS is a Gaussian random vector with mean
x and covarianceQ−1 = (H∗C−1

w H)−1. Thus, some elements
in x̂LS have lower variance than others. In this sense, the scalar
shrinkage factor of the SBME (7) and other extended Stein es-
timators [6] seems inadequate. Indeed, several researchers have
proposed shrinking each element according to its variance [5, 7].
Ironically, however, there has been disagreement as to whether
high-variance components should be shrunk more [5] or less [7],
and little justification has been given to shrinkage factor choice.

The blind minimax approach provides a natural framework for
solving these disputes. To see this, denotex̂LS = x + u, where
u ∼ Nm(0,Q−1). The SBME was constructed by using‖x̂LS‖2
as an estimate for‖x‖2. However, since the noiseu is colored, it
is sensible to first whiten the noise by writing

Q1/2x̂LS = Q1/2x + ũ, (13)

whereũ ∼ Nm(0, I). A better approach is then to estimatex∗Qx
usingx̂∗LSQx̂LS. Such an estimate can be readily incorporated into
the blind minimax framework by using an ellipsoidal parameter
set,{x : x∗Qx ≤ L2}, rather than the spherical parameter set
of the SBME. This parameter set is elongated in directions of low
noise, resulting in lower shrinkage for those directions. In the i.i.d.
case,Q = I, and the estimator reduces to the SBME.

As with the construction of the SBME, we observe that

E{x̂∗LSQx̂LS} = x∗Qx + m, (14)

so thatx̂∗LSQx̂LS is an overestimate ofx∗Qx. We therefore use
x̂∗LSQx̂LS −m to estimate the ellipsoid radius.

Theellipsoidal blind minimax estimator(EBME) can thus be
defined as follows. First, calculate the valueL2 = x̂∗LSQx̂LS−m.
Next, substituteL2 into the formula [10] for the minimax estimator
designed for the parameter set{x : x∗Qx ≤ L2}. Formally,
let VΛV∗ be the eigenvalue decomposition ofQ, so thatV is
unitary,Λ = diag(λ1, . . . λm), andλ1 ≥ · · · ≥ λm. We then
have the following closed form for the EBME.

Proposition 1 (Closed-Form EBME). The EBME is given by

x̂EBM = V diag(0k,1m−k)V∗
(
I− αQ1/2

)
x̂LS, (15)

where

α =

∑m
i=k+1 λ

−1/2
i

x̂∗LSQx̂LS − k
, (16)

andk is the smallest integer0 ≤ k ≤ m−1 such thatα < λ
−1/2
k+1 .

Proof. Follows from Proposition 1 of [10].

While the closed form of the EBME appears somewhat more
intimidating than that of the SBME, their computational complex-
ities are comparable. The major difference is the calculation of the
valuek, for whichm divisions are required. Like the SBME, the
EBME also dominates the LSE under suitable conditions.

Theorem 2. SupposeTr(Q−1/2) > 4λ
1/2
max, whereλ

1/2
max is the

largest eigenvalue ofQ−1/2. Then, the EBME(15) strictly domi-
nates the LSE(4).

The proof of Theorem 2 is based on an analogy between the
diagonal matrixdiag(0k,1m−k) in (15) and Baranchik’s positive-
part modification [3, 13] of the James-Stein estimator. Baranchik
proposed using a shrinkage factor of 0 whenever the James-Stein
estimator uses negative shrinkage, and showed that the result-
ing positive-part estimatordominates the James-Stein estimator.
Although the EBME is not a shrinkage estimator, it resembles
Baranchik’s modification. To see this, consider the estimatorx̂0

obtained by removing the termdiag(0k,1m−k) from (15),

x̂0 = (I− αQ1/2)x̂LS

= V diag
(
1− αλ

1/2
1 , · · · 1− αλ1/2

m

)
V∗x̂LS. (17)

Sinceα ≥ λ
−1/2
i for all i ≤ k, this would introduce negative

shrinkage for the firstk eigenvectors ofV. As the following
proposition shows, the MSE can be reduced by eliminating this
negative shrinkage.

Proposition 2 (Generalized Positive-Part Estimator). Let x̂ be
any estimator of the form̂x = VDV∗x̂LS, whereD is a diagonal
matrix, whose diagonal elementsdi may be functions of the ran-
dom variablex̂∗LSQx̂LS. Suppose at least one of the elementsdi

is negative with nonzero probability. Then,x̂ is dominated by the
(generalized) positive-part estimator

x̂+ = VD+V∗x̂LS, (18)

whereD+ is a diagonal matrix with diagonal elementsdi+ =
max(0, di).

Proof. The estimator̂x+ is said to dominatêx if MSE(x̂) ≥
MSE(x̂+) for all x, with strict inequality for at least one value
of x. We will show thatMSE(x̂) − MSE(x̂+) is nonnegative
for all x, and positive for any value ofx whose elements are all
nonzero.

MSE(x̂)−MSE(x̂+) = E
{‖x̂− x‖2}− E

{‖x̂+ − x‖2}

= E
{‖x̂‖2 − ‖x̂+‖2

}− 2E{x̂∗x− x̂∗+x}
= E

{
x̂∗LSV(D2 −D2

+)V∗x̂LS

}

− 2E{x̂∗LSV(D−D+)V∗x} . (19)

Since d2
i − d2

i+ ≥ 0 for all i, the first term in (19) is non-
negative. Hence, to prove the proposition, it suffices to show
thatE{x̂∗LSV(D−D+)V∗x} is nonpositive for allx, and neg-
ative for valuesx with nonzero elements. To this end, define
z = V∗x and ẑ = V∗x̂LS. We note that̂z ∼ Nm(z,Λ−1),
so that the elements ofẑ are statistically independent. To calculate
E{x̂∗LSV(D−D+)V∗x}, we condition on̂x∗LSQx̂LS, obtaining

E{x̂∗LSV(D−D+)V∗x} = E{E{ẑ∗(D−D+)z|ẑ∗Λẑ}}

= E

{
m∑

i=1

(di − di+)E{ẑizi|ẑ∗Λẑ}
}

, (20)



where we used the fact thatdi and di+ are deterministic when
conditioned on̂x∗LSQx̂LS. We now define

ri(ẑ) ,

√
ẑ∗Λẑ−∑

j 6=i λj ẑ2
j

λi
, (21)

and note that̂zi = sgn(ẑi)ri(ẑ). For eachi, we further condition
on all values{ẑj}j 6=i, to obtain

E{ẑizi|ẑ∗Λẑ, {ẑj}j 6=i} = ziri(ẑ)E{sgn(ẑi)|ẑ∗Λẑ, {ẑj}j 6=i} .
(22)

Since ẑi is independent of{ẑj}j 6=i, it follows that sgn(ẑi) is
jointly independent of{ẑj}j 6=i andẑ∗Λẑ. Thus

E{sgn(ẑi)|ẑ∗Λẑ, {ẑj}j 6=i} = E{sgn(ẑi)} . (23)

Combining this result with (20) and (22), we obtain

E{x̂∗LSV(D−D+)V∗x}

= E

{
m∑

i=1

(di − di+)ri(ẑ)|zi| sgn(zi)E{sgn(ẑi)}
}

. (24)

Whenzi = 0, theith term in the sum above equals0. In all other
cases, we use the fact thatẑi is Gaussian with meanzi to obtain

Pr{sgn(ẑi) = sgn(zi)} > Pr{sgn(ẑi) 6= sgn(zi)} . (25)

Thus,sgn(zi)E{sgn(ẑi)} is positive ifzi 6= 0, and equals zero if
zi = 0. It follows that all terms in (24) are nonnegative, except for
the term(di − di+), which is nonpositive. As a result, (24) (and
hence (19)) is nonpositive for allx, so that the MSE of̂x+ is never
higher than that of̂x.

We must also show that for somex, (24) is strictly negative.
To this end we choosex for which all elements are nonzero; as a
result, all terms in (24) are strictly positive, except for(di − di+).
This last term is negative whendi < 0 and zero otherwise. Since,
for at least one value ofi, di is negative with nonzero probability,
we conclude that for the chosen value ofx, (24) is strictly negative,
completing the proof of Proposition 2.

This generalization of the concept of a positive part estimator
is now used to prove Theorem 2.

Proof of Theorem 2.We show that̂x0 of (17) strictly dominates
the LSE. The result follows sincêxEBM is the positive part of̂x0.

Denotings =
∑m

i=k+1 λ
−1/2
i , the MSE ofx̂0 is given by

MSE = E

{∥∥∥∥x− x̂LS +
sQ1/2x̂LS

x̂∗LSQx̂LS − k

∥∥∥∥
2
}

= ε0 + E

{
s2x̂∗LSQx̂LS

(x̂∗LSQx̂LS − k)2

}

+ 2E

{
s(x− x̂LS)∗Q1/2x̂LS

x̂∗LSQx̂LS − k

}
. (26)

We now definêv = V∗Q1/2x̂LS andv = V∗Q1/2x. Using this
notation, the third term in (26) may be written as

E3 , E

{
s(x− x̂LS)∗Q1/2x̂LS

x̂∗LSQx̂LS − k

}

= E

{
s(v − v̂)∗Λ−1/2v̂

v̂∗v̂ − k

}

=

m∑
i=1

λ
−1/2
i E

{
s(vi − v̂i)v̂i

v̂∗v̂ − k

}
, (27)

where we have used the fact thatv̂ ∼ Nm(v, I).
Let gi(v̂) = sv̂i

v̂∗v̂−k
, noting thatk is implicitly dependent on

v̂, and thats is implicitly dependent onk. Thus,gi(v̂) is dis-
continuous for some values of̂v, namely, those values for which
α = λ

−1/2
i . However, these values of̂v occur with probability

zero; for all other values,k (and hences) are constant for suffi-
ciently small changes in̂v. Thus,

∂gi(v̂)

∂v̂i
= s

v̂∗v̂ − k − 2v̂2
i

(v̂∗v̂ − k)2
with probability1, (28)

andE
{∣∣∣ ∂gi(v̂)

∂v̂j

∣∣∣
}

< ∞ for all j. Using Lemma 1, we have

E

{
s(vi − v̂i)v̂i

v̂∗v̂ − k

}
= −E

{
s
v̂∗v̂ − k − 2v̂2

i

(v̂∗v̂ − k)2

}
. (29)

Combining with (27), we obtain

E3 = −
m∑

i=1

λ
−1/2
i E

{
s
v̂∗v̂ − k − 2v̂2

i

(v̂∗v̂ − k)2

}

= E

{
−s Tr(Q−1/2)

v̂∗v̂ − k
+ 2s

v̂∗Λ−1/2v̂

(v̂∗v̂ − k)2

}

= E

{
− s Tr(Q−1/2)

x̂∗LSQx̂LS − k
+ 2s

x̂∗LSQ
1/2x̂LS

(x̂∗LSQx̂LS − k)2

}
. (30)

We note thatk is chosen in Proposition 1 in a manner which en-
sures that̂x∗LSQx̂LS − k ≥ 0. Hence

E3 ≤ E

{
s

x̂∗LSQx̂LS − k

(
−Tr(Q−1/2) + 2

x̂∗LSQ
1/2x̂LS

x̂∗LSQx̂LS

)}

≤ E

{
s

x̂∗LSQx̂LS − k

(
−Tr(Q−1/2) + 2λ1/2

max

)}
, (31)

whereλ
1/2
max is the largest eigenvalue ofQ−1/2. Substituting this

result back into (26), and using the fact thats ≤ Tr(Q−1/2),
yields

MSE ≤ ε0 + E

{
s
(−Tr(Q−1/2) + 4λ

1/2
max

)

x̂∗LSQx̂LS − k

}
. (32)

If Tr(Q−1/2) > 4λ
1/2
max, then the expectation above is negative, so

thatx̂0 (and hencêxEBM) strictly dominate the LS estimator.

As we have seen, both the EBME and the SBME achieve lower
MSE than the least-squares estimator. These results pose several
further questions: Do BMEs significantly improve the MSE? How
do BMEs compare with other extended Stein estimators? Is there
a substantial difference between the spherical and ellipsoidal esti-
mators? These questions will be answered in the numerical study
in the next section.

4. NUMERICAL RESULTS

Estimator performance generally depends on a number of oper-
ating conditions, including the effective dimension, the signal-to-
noise ratio (SNR), the distribution of eigenvaluesλ1, . . . λm, and
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Fig. 1. MSE vs. SNR for a typical operating condition:x dis-
tributed normally i.i.d., effective dimension 4.8,m = n = 15.

the value of the unknown parameter vectorx. A computer sim-
ulation was used to test the effect of these conditions on estima-
tor performance. The simulations were also used to compare the
BMEs with Bock’s estimator [6]

x̂Bock =

(
1− ε0/λmax − 2

x̂∗LSH
∗C−1

w Hx̂LS

)
x̂LS, (33)

which is the most commonly-used extended Stein estimator [14].
Typical simulation results are plotted in Fig. 1. In this simu-

lation, both the number of measurements and the number of pa-
rameters is 15, and the effective dimension is 4.8. The param-
eter vectorx is chosen from a zero-mean i.i.d. normal distribu-
tion, whose variance is chosen to yield the required SNR, defined
asE

{‖x‖2} / Tr((H∗C−1
w H)−1). The plot displays the average

MSE among 50 random realizations ofx; for each value ofx the
MSE was calculated as the average error obtained from 30 noise
realizations.

The BMEs clearly outperform both the LSE and Bock’s esti-
mator in the case of Fig. 1. However, it turns out that there exist
operating conditions for whicheachof the estimators tested (with
the exception of the LSE) outperforms all other estimators, if only
by a small margin. A good estimator is therefore one which is
rarely dominated, and then only by a small margin.

To test which estimators satisfy this requirement, the MSE of
the various estimators was calculated under many different operat-
ing conditions. Some of the results of these simulations appear in
Figs. 2 and 3. In these figures, the optimal estimator under each
operating condition is indicated by color1, as defined in the legend
in Fig. 2. (The LSE was outperformed in all operating conditions
tested, so it is not assigned a color.) When two or more estima-
tors achieve MSE performance within 5% of the optimal, this is
indicated by their combined color. For example, a green region
indicates operating conditions for which the performance of the
EBME (yellow) and the SBME (blue) was nearly identical. Such
a plot allows one to effectively compare estimators under a wide
range of operating conditions.

1A color version of this manuscript is available athttp://www.
technion.ac.il/ ∼zvikabh/published/bme imp lse.pdf
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mension 5;m = n = 15)

In Fig. 2, the two most influential operating conditions were
examined: these are the effective dimension and the SNR. The
parameter vector for this simulation was randomly chosen from
an i.i.d. normal distribution, as in Fig. 1. In this simulation, the
number of measurements and the number of parameters were both
equal to 10. The eigenvalues of(H∗C−1

w H)−1 were 1, 0.5, and
eight repetitions of an identical eigenvaluet, whose value was
modified to obtain the desired effective dimension.

It is evident from Fig. 2 that all estimators perform comparably
at high SNR. This is a result of the fact that, at high SNR, all
estimators converge to the LSE, which is optimal for infinite SNR.
However, for moderate and low SNR (below 5–10 dB), the BMEs
perform significantly better than Bock’s estimator, with the EBME
dominating the SBME at low SNR. It is notable that the BMEs
continue to outperform Bock’s estimator and the LSE at effective
dimensions of 2–4; the dominance results of Sections 2 and 3 only
apply to effective dimensions above 4.

The fact that other operating conditions also affect estimator
performance is evident in Fig. 3. Here,m = n = 15, and the



parameter vectorx is chosen in the direction of different eigenvec-
tors of(H∗C−1

w H)−1, with the minimum eigenvector denoted by
1 and the maximum eigenvector denoted by 15. This has the effect
of choosing vectorsx which lie in the direction of minimal and
maximal noise, respectively. The eigenvalues of(H∗C−1

w H)−1

are chosen as a geometric sequence{qi}15i=1, whereq is selected
so that the effective dimension is 5; thus, each eigenvector is asso-
ciated with a different eigenvalue. In all of these cases, the BMEs
outperform Bock’s estimator. However, the ellipsoidal and spheri-
cal versions are better suited for different values of the parameter
vector.

Extensive measurements of the performance of the BMEs thus
demonstrate that they are rarely dominated by Bock’s estimator,
and then only by a small margin. These results provide strong
evidence in favor of the blind minimax approach.

5. DISCUSSION

The blind minimax approach is a general technique for using min-
imax estimators in situations for which no parameter set is known.
We considered an application of this concept to the Gaussian linear
regression model. Two estimators were considered, the spherical
and ellipsoidal BMEs. In Sections 2 and 3, both estimators were
shown to dominate the LSE under simple regularity conditions.
Thus, inanyapplication which makes use of a LSE, the MSE per-
formance can be improved by using either BME instead.

In Section 4, the BMEs were empirically shown to signifi-
cantly outperform Bock’s estimator. This is, perhaps, due to the
fact that the proposed estimators are designed using a systematic
technique, whereas no justification is given to the form of Bock’s
estimator beyond the fact that it dominates the LSE.

The choice between the ellipsoidal and spherical BMEs is
application-dependent. The simulations performed indicate that
the EBME outperforms the SBME at low SNR, while the SBME
is often better at moderate SNR. More importantly, however, the
SBME is a shrinkage estimator, while the EBME is not. In ap-
plications where the only goal is minimization of the MSE, the
SBME may be preferred for its simplicity. Thus, for example, the
SBME is an excellent estimator of system parameters, such as au-
toregression (AR) coefficients. However, in certain applications,
MSE minimization is only a nominal goal which approximates
some other error criterion. In some of these cases, a shrinkage es-
timator has no impact on the actual objective. For example, if the
vectorx is a reconstructed image, its subjective quality is hardly
affected by multiplying the entire estimate by a scalar. Likewise,
in a binary receiver, the sign ofx must be determined, but the sign
does not change when the estimate is shrunk. In such applications,
the EBME must be used to improve performance.

The blind minimax approach was initially applied to the i.i.d.
case, in which the noise is white [11]. In this paper, we have
shown that the results can be generalized to the case of colored
Gaussian noise and arbitrary transformation matrices. The analyt-
ical and empirical results we presented serve as a figure of merit
for the proposed estimators in and of themselves. More impor-
tantly, they support the underlying concept of blind minimax esti-
mation, which can be generalized to many other estimation prob-
lems, such as estimation with uncertain system matrices, estima-
tion with non-Gaussian noise, and sequential estimation. Applica-
tion of the blind minimax approach to these problems remains a
topic for further study.

6. REFERENCES

[1] S. M. Kay, Fundamentals of Statistical Signal Processing:
Estimation Theory. Englewood Cliffs, NJ: Prentice Hall,
1993.

[2] C. Stein, “Inadmissibility of the usual estimator for the mean
of a multivariate distribution,” inProc. Third Berkeley Symp.
Math. Statist. Prob., vol. 1, 1956, pp. 197–206.

[3] E. L. Lehmann and G. Casella,Theory of Point Estimation,
2nd ed. New York: Springer, 1998.

[4] W. James and C. Stein, “Estimation with quadratic loss,”
in Proc. Fourth Berkeley Symp. Math. Statist. Prob., vol. 1,
1961, pp. 311–319.

[5] B. Efron and C. Morris, “Stein’s estimation rule and its com-
petitors: an empirical Bayes approach,”J. Amer. Statist. As-
soc., vol. 68, pp. 117–130, 1973.

[6] M. E. Bock, “Minimax estimators of the mean of a multi-
variate normal distribution,”Ann. Statist., vol. 3, no. 1, pp.
209–218, Jan. 1975.

[7] J. O. Berger, “Admissible minimax estimation of a multivari-
ate normal mean with arbitrary quadratic loss,”Ann. Statist.,
vol. 4, no. 1, pp. 223–226, Jan. 1976.

[8] B. Efron and C. Morris, “Combining possibly related esti-
mation problems,”J. Roy. Statist. Soc. B, vol. 35, no. 3, pp.
379–421, 1973.

[9] M. S. Pinsker, “Optimal filtering of square-integrable sig-
nals in Gaussian noise,”Problems in Inform. Transmission,
vol. 16, pp. 120–133, 1980.

[10] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Robust mean-
squared error estimation with bounded data uncertainties,”
IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 168–181,
Jan. 2005.

[11] Z. Ben-Haim and Y. C. Eldar, “Minimax estimators dominat-
ing the least-squares estimator,” inProc. Int. Conf. Acoust.,
Speech and Signal Processing (ICASSP 2005), vol. IV,
Philadelphia, PA, Mar. 2005, pp. 53–56.

[12] ——, “Maximum set estimators with bounded estimation
error,” IEEE Trans. Signal Processing, 2005, to appear.
[Online]. Available: http://www.technion.ac.il/∼zvikabh/
published/maxsetest.pdf

[13] A. J. Baranchik, “Multiple regression and estimation of the
mean of a multivariate normal distribution,” Department of
Statistics, Stanford University, Stanford, CA, Tech. Rep. #51,
1964.

[14] E. Greenberg and C. E. Webster, Jr.,Advanced Econometrics,
2nd ed. New York: Wiley, 1983.


