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Summary

o Consider the linear regression model,
y = Hx 4+ w, in which x is deterministic.

o Blind minimax: Estimate a region containing the
unknown value x, then apply a minimax
estimator designed for this region.

o Obtained estimators strictly dominate
the least-squares estimator
(i.e., always achieve lower MSE).

Problem Setting

System of measurements: y = Hx+w

e x unknown, deterministic parameter vector

e W Gaussian noise: zero mean, known covariance C,y
e H known system model

e Yy oObservation vector

Objective:

Construct an estimator X to estimate x from measurements y,
such that the mean-squared error (MSE) is minimized:
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Note that x is deterministic, so that the Bayesian
approach (i.e., Wiener filtering) is not applicable here!

Previous Work

Least-squares estimator (Gauss, 1821)
ks = (H'C,'H)'H'Cly

e Unbiased

e Achieves constant MSE, given by €y = Tr((H*C,'H)1).

e Achieves Cramer-Rao lower bound: best unbiased estimator
o Outperformed by many biased estimators!

Stein-type estimators

e Family of biased estimators outperforming the LSE

e James and Stein (1961) proposed an estimator for the
i.i.d. case (H =1I,Cy = 0°I).

e Bock (1975) extended to general case:
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where A,y is the largest eigenvalue of AE*O%IVL.

e Shrinkage estimator: inappropriate for some applications
o Can other estimators achieve better improvement over LSE?

Minimax Estimation

Used when x is known to lie in a given
parameter set S
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Find linear estimator which minimizes the
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Closed form solution is known for many types

of parameter sets (Eldar et al., 2005)

Theorem: For any compact parameter set S, a minimax
estimator achieves lower MSE than the least-squares
estimator, forallx e S (Ben-Haim and Eldar, 2005).

Blind Minimax Estimation

The idea:

Use minimax estimators even when a parameter set is unknown!
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How does this work?

Blind minimax estimators work
because a parameter set can be
estimated far more accurately than

Estimate a parameter set S from the measurements

Apply a minimax estimator designed for S

the actual value of the parameter.

Spherical blind minimax estimator (SBME)

Use spherical parameter set centered on the origin;
estimate the radius from measurements
Minimax estimator for a spherical set is given by
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where L is the radius.
Note that ||x||* = mﬁ :»hm:mw — €9, so we choose to estimate

L? = ||%1g]|* — €9, obtaining

This is a shrinkage estimator which reduces to Stein’s estimator
in the i.i.d. case.

Theorem: If the effective dimension d > 4,
then the spherical blind minimax estimator
achieves lower MSE than the least-squares
estimator, for all values of x.

Effective dimension: the number of independent measurements,
defined as d = Tr(Q 1) /Amax(Q 1), where Q = H*C_,'H.

Ellipsoidal blind minimax estimator (EBME)

When the noise is colored, some
measurements are more reliable than

others. This information can be utilized

using an ellipsoidal parameter set.

e Note that
Q V%5 = Q2 x+ W

where Q = H*C,,'H and W is white noise.

e Hence, rather than estimate ||x||* using ||%;s||?, one can
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estimate x*Q " 1x using »MmDLxrm.

e This results in the ellipsoidal blind minimax estimator:
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and k is the smallest integer 0 < k < m — 1 such that a < A JP\ 2,

o The EBME is not a shrinkage estimator, which makes it
appropriate for a wider range of applications.

Theorem: If Tr(Q™Y?) /Amax (Q71/2) > 4,
then the ellipsoidal blind minimax estimator
achieves lower MSE than the least-squares
estimator, for all values of x.

Discussion

e We provide two novel estimators based on the blind
minimax technique.

e The proposed estimators achieve lower MSE than the
least-squares estimator, under simple regularity conditions.

e The blind minimax estimators generally outperform
Bock’s estimator.

e Both estimators reduce to Stein’s estimator in the i.i.d. case,
although they are derived for a more general setting.

Where should these estimators be used?
e The SBME is a simple shrinkage estimator which can replace
any usage of the least-squares estimator.
Some examples are: linear prediction, system identification,
and channel estimation.
e In some cases, a shrinkage estimator does not affect performance
(e.g., a binary slicer, or an image reconstructor).
This happens when the MSE is only an approximation of the true
quality measure (bit error rate, subjective image quality, etc.).
In such cases the EBME may provide improved performance.

References

Z.Ben-Haim and Y. C. Eldar, 2005, “Minimax estimators dominating the least-squares
estimator,” in Proc. ICASSP 2005, vol. IV, pp. 53-56.

M. E. Bock, 1975, “Minimax estimators of the mean of a multivariate normal distribution,”
Ann. Statist., vol. 3, no. 1, pp. 209-218.

Y. C. Eldar, A. Ben-Tel, and A. Nemirovski, 2005, “Robust mean-squared error estimation with
bounded data uncertainties,” IEEE Trans. Signal Proc., vol. 53, no. 1, pp. 168-181.

K. F. Gauss, 1821, Theory of Motion of Heavenly Bodies.

W. James and C. Stein, 1961, “Estimation with quadratic loss,” in Proc 4th Berkeley Symp. Math.
Statist. Prob., vol. 1, pp. 311-319.

C. Stein, 1956, “Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution,” in Proc. 3rd Berkeley Symp. Math. Statist. Prob., vol. 1, pp. 197-206.

Numerical Results

Estimator MSE comparison under
typical operating conditions

Optimal estimator under various operating conditions
Color indicates estimator achieving lowest MSE for given operating conditions.

Combined colors indicate that two or more estimators achieve performance within 5% of optimal.
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e 15 parameters e 10 parameters Bock e 15 parameters

e 15 measurements e 10 measurements e 15 measurements

e Effective dimension 4.8 e x distributed i.i.d. EBME S=)V= e Effective dimension 5

o xdistributed normally i.i.d.




