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Correspondence

The Cramér-Rao Bound for Estimating a
Sparse Parameter Vector

Zvika Ben-Haim and Yonina C. Eldar

Abstract—The goal of this contribution is to characterize the best achiev-
able mean-squared error (MSE) in estimating a sparse deterministic pa-
rameter from measurements corrupted by Gaussian noise. To this end, an
appropriate definition of bias in the sparse setting is developed, and the
constrained Cramér-Rao bound (CRB) is obtained. This bound is shown to
equal the CRB of an estimator with knowledge of the support set, for al-
most all feasible parameter values. Consequently, in the unbiased case, our
bound is identical to the MSE of the oracle estimator. Combined with the
fact that the CRB is achieved at high signal-to-noise ratios signal-to-noise
ratio (SNRs) by the maximum likelihood technique, our result provides a
new interpretation for the common practice of using the oracle estimator
as a gold standard against which practical approaches are compared.

Index Terms—Constrained estimation, Cramér-Rao bound (CRB),
sparse estimation.

I. INTRODUCTION

The problem of estimating a sparse unknown parameter vector
from noisy measurements has been analyzed intensively in the past
few years, and has already given rise to numerous successful signal
processing algorithms (see, e.g., [1], [2]). In this contribution, we
consider the setting in which a deterministic sparse vector ���� is to be
estimated from a small number of noisy measurements. Much of the
interest in sparse estimation is a consequence of the fact that a variety
of practical approaches are surprisingly successful in this task.

One way to determine the quality of an estimator is to compare its
mean-squared error (MSE) with theoretical performance limits: if one
is able to approach the bound, then efforts at further performance en-
hancements are futile. This motivates the development of lower bounds
on the MSE of estimators in the sparse setting. While there are lower
bounds on the worst-case achievable MSE among all possible param-
eter values [3], the actual performance for a specific value, or even for
most values, might be substantially lower. Our goal is to characterize
the minimum MSE obtainable for each particular parameter vector. A
standard method of achieving this objective is the Cramér-Rao bound
(CRB) [4].

In this correspondence, we formulate the sparsity assumption as a
constrained estimation problem, and our results are inspired by the
well-studied theory of the constrained CRB [5]–[7]. However, deriving
the CRB for sparse estimation requires the development of a bound
suitable for non-smooth constraints [8], [9]. In obtaining this modified
bound, we also provide new insight into the meaning of the constrained
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CRB. In particular, we will see that while the unconstrained CRB is rel-
evant to estimators having a completely specified bias, the constrained
bound applies to a wider class of techniques having a partially speci-
fied bias function. This distinction explains some curious properties of
the constrained CRB.

In terms of the application to the sparse setting, our contribution is
related to, but distinct from, the work of Babadi et al. [10], in which the
CRB of the “oracle estimator” was derived. This estimator has knowl-
edge of the locations of the nonzero components of ����. By contrast,
our goal is to obtain a lower bound on the performance of estimators
which are not endowed with oracular knowledge. It was also shown in
[10] that when the measurements consist of Gaussian random mixtures
of the parameter vector, there exists an estimator which asymptotically
achieves the oracle CRB; this is shown to hold on average over real-
izations of the measurement mixtures. While a random measurement
matrix is a common setup in the field of compressive sensing, there
are many cases in which the matrix is fixed and given a priori. For ex-
ample, images can be modeled as sparse combinations of empirically
determined atoms [11], [12]. In this correspondence, we will focus on
the setting in which the measurement matrix is deterministic and pre-
specified.

When examining the CRB, it is common to particularly emphasize
the unbiased case. In the sparse estimation setting, the unbiased CRB
can be summarized as follows. For parameters having maximal support,
i.e., parameters whose representation requires the maximum allowed
number � of atoms, the lower bound equals the MSE of the oracle es-
timator. On the other hand, for parameters which do not have maximal
support (a set which has Lebesgue measure zero in �), our lower bound
is identical to the CRB for an unconstrained problem, which is substan-
tially higher than the oracle MSE.

The correspondence between the unbiased CRB and the MSE of the
oracle estimator (for all but a zero-measure subset of the feasible pa-
rameter set �) is of practical interest since, unlike the oracle estimator,
the CRB is achieved by the maximum likelihood (ML) estimator at high
signal-to-noise ratio (SNR). Our bound can thus be viewed as an alter-
native justification for the common use of the oracle estimator as a base-
line against which practical algorithms are compared. This gives fur-
ther merit to recent results, which demonstrate that practical algorithms
achieve near-oracle performance [2], [14]. However, the existence of
parameters for which the bound is much higher indicates that oracular
performance cannot be attained for all parameter values, at least using
unbiased techniques. Indeed, as we will show, in many sparse estima-
tion scenarios, one cannot construct any estimator which is unbiased
for all sparsely representable parameters.

The rest of this paper is organized as follows. In Section II, we model
the sparse setting as a constrained estimation problem. Section III de-
fines a generalization of sparsity constraints, which we refer to as lo-
cally balanced constraint sets; the CRB is then derived in this general
setting. In Section IV, our general results are applied back to the sparse
estimation problem. The implications of this analysis are discussed in
Section V.

Throughout the paper, boldface lowercase letters ��� denote vectors
while boldface uppercase letters ��� denote matrices. Given a vector
function ��� � ��� � , we denote by ��������� the � � 	 matrix whose

�th element is ������� . The support of a vector, denoted ���������, is
the set of indices of the nonzero entries in ���. The Euclidean norm of
a vector ��� is denoted ������, and the number of nonzero entries in ��� is
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������. Finally, the symbols������,� �����, and���� refer, respectively,
to the column space, null space, and Moore-Penrose pseudoinverse of
the matrix ��� .

II. SPARSE ESTIMATION PROBLEMS

Suppose we observe a measurement vector ��� � �, given by

��� � ������� ���� (1)

where ���� � � is an unknown deterministic signal, ��� is independent,
identically distributed (i.i.d.) Gaussian noise with zero mean and vari-
ance ��, and��� is a known ��	 matrix. It is known that ���� is sparse,
i.e.

���� � � ���� � � � ������ � 
	 � (2)

We will adopt the standard assumption that

���	
����� � �
 (3)

where ���	
����� is defined as the smallest integer 
 such that there
exist 
 linearly dependent columns in ��� [13]. This condition is re-
quired to ensure identifiability of ���� from the measurements.

The goal of an estimator is to obtain an approximation ���� of ���� from
the measurements ���. We will measure the quality of an estimator using
the MSE, defined as ������� 
 �����

�

�	. Since ���� is deterministic, the
expectation is taken only over the noise���, so that the MSE is in general
a function of the unknown parameter.

A widely used approach for estimating parameters from noisy mea-
surements is the ML technique. For (1), the ML estimator is given by


��
���
���� 
��������� ���� ������ � 
� (4)

Unfortunately, (4) is a nonconvex optimization problem and solving it
is NP-hard, meaning that an efficient algorithm for calculating the ML
estimator is unlikely to exist. Consequently, numerous practical alter-
natives have been proposed for estimating���� [1], [2]. Previous research
on the performance of these estimators has examined their worst-case
MSE among all possible values of ���� � � . Specifically, it has been
shown that, under suitable conditions on ��� and 
, a variety of tech-
niques obtain an MSE of ��
�� ��� 	� for all ���� � � [2], [14]. Con-
versely, it is known that the worst-case error of any estimator is at least
a constant times 
�� ��� 	 [3, Sec. 7.4]. Thus, there exist techniques
which are optimal, up to a constant, in terms of worst-case error. Nev-
ertheless, the MSE of these approaches for specific values of ����, even
for a vast majority of such values, might be much lower. Our analysis
differs from this line of work in that we characterize the pointwise per-
formance of an estimator, i.e., the MSE for specific values of ����.

Another baseline with which practical techniques are often com-
pared is the oracle estimator, given by

���������� �
���
�
��� ��� on the set supp ������

� �������	�
(5)

where������ is the submatrix constructed from the columns of��� corre-
sponding to the nonzero entries of ����. In other words, ���������� is the
least-squares (LS) solution among vectors whose support coincides
with ����������. Of course, in practice the support of ���� is unknown, so
that ���������� cannot actually be implemented. Nevertheless, one often
compares the performance of true estimators with ����������, whose MSE
is given by [2]

�
��	������

��� ������ ��	�� (6)

Is (6) a bound on estimation MSE? While ���������� is a reasonable
technique to adopt if ���������� is known, this does not imply that (6) is
a lower bound on the performance of practical estimators. Indeed, when
the SNR is low, it has been shown that some estimators outperform
����������, thanks to the use of shrinkage [14]. Furthermore, if ����������
is known, then there exist (biased) techniques which are better than
���������� for all values of ���� [15]. Thus, ���������� is neither achievable in
practice, nor optimal in terms of MSE. As we will see, one can indeed
interpret (6) as a lower bound on the achievable MSE, but such a result
requires a certain restriction of the class of estimators under consider-
ation.

III. THE CONSTRAINED CRB

Our goal in this paper is to calculate the CRB when it is known that
the parameter ��� satisfies the sparsity constraint (2). While the con-
strained CRB has been studied extensively in the past [5]–[7], prior
derivations assumed that the constraint set is given by

� � ���� � � � �������� � �� �������� � �	 (7)

where �������� and �������� are continuously differentiable functions. We will
refer to such � as continuously differentiable sets. Unfortunately, in
some cases, including the sparse estimation scenario of Section II, the
constraint set cannot be written in the form (7), and the aforementioned
results are therefore inapplicable. Our goal in the current section is to
close this gap by extending the constrained CRB to sets � encom-
passing the sparse estimation scenario.

A. Bias Requirements in the Constrained CRB

In previous settings for which the constrained CRB was derived, it
was noted that the resulting bound is typically lower than the uncon-
strained version [5, Remark 4]. At first glance, one would attribute the
reduction in the value of the CRB to the fact that the constraints add in-
formation about the unknown parameter, which can then improve esti-
mation performance. On the other hand, the CRB separately character-
izes the achievable performance for each value of the unknown param-
eter����. Thus, the CRB at���� applies even to estimators designed specif-
ically to perform well at ����. Such estimators surely cannot achieve fur-
ther gain in performance if it is known that ���� � � . Why, then, is the
constrained CRB lower than the unconstrained bound? The answer to
this apparent paradox involves a careful definition of the class of esti-
mators to which the bound applies.

To obtain a meaningful bound, one must exclude some estimators
from consideration. Unless this is done, the bound will be tarnished by
estimators of the type ���� � ���
, for some constant ���
, which achieve
an MSE of 0 at the specific point ��� � ���
. It is standard practice to
circumvent this difficulty by restricting attention to estimators having
a particular bias �������� � �����	 
 ���. In particular, it is common to
examine unbiased estimators, for which �������� � �. If ��� is known to
belong to a constrained set � , then it seems reasonable to seek estima-
tors which are unbiased for all ��� � � . However, as we will see, this
requirement can be too strict: in some cases it is impossible to construct
estimators which are unbiased for all ��� � � . Moreover, the CRB is a
local bound, meaning that it determines the achievable performance at
a particular value of ��� based on the statistics at ��� and at nearby values.
Thus, it is irrelevant to introduce requirements on estimation perfor-
mance for parameters which are distant from the value ��� of interest.

Since we seek a locally unbiased estimator, one possibility is to re-
quire unbiasedness at a single point, say ���
. As it turns out, it is always
possible to construct such a technique: this is again ���� � ���
, which is
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Fig. 1. In a locally balanced set such as a union of subspaces (a) and an open ball (b), each point is locally defined by a set of feasible directions along which an
infinitesimal movement does not violate the constraints. The curve (c) is not characterized in this way and thus is not locally balanced.

unbiased at ���� but nowhere else. To avoid this loophole, one can re-
quire an estimator to be unbiased in the neighborhood

�������� � ���� � � � ����� ������ � �� (8)

of ����, for some small �. Note that �������� includes only those points ���
which are close to���� and satisfy the constraints� . In the unconstrained
case for which � � �, this implies that both the bias �������� and the
bias gradient

��������
����

����
(9)

vanish at ��� � ����, and leads to the standard derivation of the un-
constrained unbiased CRB. When constraints are imposed, such that
� �� �, one obtains a weaker requirement on the bias gradient ��� at
����. Specifically, the derivatives of the bias need only be specified in
directions which do not violate the constraints.

It is worth emphasizing that the dependence of the CRB on the con-
straints is manifested through the class of estimators being considered,
or more specifically, through the allowed estimators’ bias gradient ma-
trices. By contrast, the unconstrained CRB applies to estimators having
a fully specified bias gradient matrix. Consequently, the constrained
bound applies to a wider class of estimators, and is thus usually lower
than the unconstrained version of the CRB. In other words, estimators
which are unbiased in the constrained setting, and thus applicable to
the unbiased constrained CRB, are likely to be biased in the uncon-
strained context. Since a wider class of estimators is considered by the
constrained CRB, the resulting bound is lower, thus explaining the puz-
zling phenomenon described in the beginning of this subsection.

B. Locally Balanced Constraints

We now consider a class of constraint sets, called locally balanced
sets, which encompass the sparsity constraints of Section II. Roughly
speaking, a locally balanced set is one whose neighborhood at each
point is defined by the directions along which one can move without
leaving the set. Formally, a metric space� is said to be locally balanced
if, for all ��� � � , there exists an open set 	 
 � such that ��� � 	 and
such that, for all ���� � 	 and for all ��� � �, we have

���� ������ � ���� � 	� (10)

An example of a locally balanced set is given in Fig. 1(a), which rep-
resents a union of two subspaces. In this example, for any point ��� � � ,
and for any point���� � � sufficiently close to ���, the entire line segment
between ��� and ����, as well as the line segment in the opposite direction,
are also in � . This illustrates the fact that any union of subspaces is

locally balanced, and, in particular, so is the sparse estimation setting
of Section II [16]–[18]. As another example, consider any open set,
such as the open ball in Fig. 1(b). For such a set, any point ��� has a
sufficiently small neighborhood 	 such that, for any ���� � 	, the line
segment connecting ��� to ���� is contained in � . On the other hand, the
curve in Fig. 1(c) is not locally balanced, since the line connecting ��� to
any other point on the set does not lie within the set.1

Observe that the neighborhood of a point ��� in a locally balanced set
� is entirely determined by the set of feasible directions along which
infinitesimal changes of ��� do not violate the constraints. These are the
directions 			 � ����� � ����
����� � ����� for all points ���� �� ��� in the set
	 of (10). Recall that we seek a lower bound on the performance of
estimators whose bias gradient is defined over the neighborhood of ����
restricted to the constraint set � . Suppose for concreteness that we are
interested in unbiased estimators. For a locally balanced constraint set
� , this implies that

���			 � � (11)

for any feasible direction 			. In other words, all feasible directions must
be in the nullspace of ���. This is a weaker condition than requiring
the bias gradient to equal zero, and is thus more useful for constrained
estimation problems. If an estimator ���� satisfies (11) for all feasible di-
rections 			 at a certain point ����, we say that ���� is� -unbiased at ����. This
terminology emphasizes the fact that � -unbiasedness depends both on
the point ���� and on the constraint set � .

Consider the subspace 
 spanned by the feasible directions at a cer-
tain point ��� � � . We refer to
 as the feasible subspace at ���. Note that

 may include infeasible directions, if these are linear combinations of
feasible directions. Nevertheless, because of the linearity of (11), any
vector ��� � 
 satisfies ������ � �, even if ��� is infeasible. Thus, � -unbi-
asedness is actually a property of the feasible subspace 
 , rather than
the set of feasible directions.

Since� is a subset of a finite-dimensional Euclidean space,
 is also
finite-dimensional, although different points in � may yield subspaces
having differing dimensions. Let ����� � � � � ���� denote an orthonormal
basis for 
 , and define the matrix




 � 	����� � � � � ����
� (12)

Note that ���� and 


 are functions of ���. For a given value of ���, different
orthonormal bases can be chosen, but the choice of a basis is arbitrary
and will not affect our results.

1We note in passing that since the curve in Fig. 1(c) is continuously differen-
tiable, it can be locally approximated by a locally balanced set. Our derivation
of the CRB can be extended to such approximately locally balanced sets in a
manner similar to that of [5], but such an extension is not necessary for the pur-
poses of this paper.
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As we have seen, � -unbiasedness at ���� can alternatively be written
as ������ � � for all ��� � � , or, equivalently

������ � �� (13)

The constrained CRB can now be derived as a lower bound on all� -un-
biased estimators, which is a weaker requirement than “ordinary” un-
biasedness.

Just as � -unbiasedness was defined by requiring the bias gradient
matrix to vanish when multiplied by any feasible direction vector, we
can define � -biased estimators by requiring a specific value (not nec-
essarily zero) for the bias gradient matrix when multiplied by a feasible
direction vector. In an analogy to (13), this implies that one must define
a value for the matrix ������ . Our goal is thus to construct a lower bound
on the covariance at a given ��� achievable by any estimator whose bias
gradient ��� at ��� satisfies ������ � ��� , for a given matrix ��� . This is re-
ferred to as specifying the� -bias of the estimator at���. Specified in this
manner, the � -bias is dependent on the choice of the basis ��� . This is,
however, merely a notational effect: the bias gradient in any particular
direction will not change if a different basis is chosen.

C. The CRB for Locally Balanced Constraints

It is helpful at this point to compare our derivation with prior work
on the constrained CRB, which considered continuously differentiable
constraint sets of the form (7). It has been previously shown [5] that
inequality constraints of the type �������� � � have no effect on the CRB.
Consequently, we will consider constraints of the form

� � ���� � � � �������� � �� (14)

where ��� � ��� � is a continuously differentiable function defining
the equality constraints. Define the 	 	 
 matrix ��� ����� � ����
����. For
simplicity of notation, we will omit the dependence of ��� on ���. As-
suming that the constraints are nonredundant, ��� is a full-rank matrix,
and thus one can define a 
	 �
� 	� matrix ��� (also dependent on ���)
such that

������ � �� ������� � ���� (15)

The matrix ��� is closely related to the matrix ��� spanning the feasible
direction subspace of locally balanced sets. Indeed, the column space

���� � of ��� is the tangent space of � , i.e., the subspace of � con-
taining all vectors which are tangent to � at the point ���. Thus, the
vectors in 
���� � are precisely those directions along which infinites-
imal motion from ��� does not violate the constraints, up to a first-order
approximation. It follows that if a particular set � is both locally bal-
anced and continuously differentiable, its matrices ��� and ��� coincide.
Note, however, that there exist sets which are locally balanced but not
continuously differentiable (and vice versa).

With the above formulation, the CRB for continuously differentiable
constraints can be stated as a function of the the matrix��� and the bias
gradient��� [7]. In fact, the resulting bound depends on��� only through
������ . This is to be expected in light of the discussion of Section III-A:
The bias should be specified only for those directions which do not
violate the constraint set. Furthermore, the proof of the CRB in [7,
Theorem 1] depends not on the formulation (14) of the constraint set,
but merely on the class of bias functions under consideration. Conse-
quently, one can state the bound without any reference to the under-
lying constraint set. To do so, let ��� be a measurement vector with pdf

���������, which is assumed to be differentiable with respect to ���. The
Fisher information matrix (FIM) �������� is defined as

�������� � � ������� (16)

where

��� �
� ��� 
���������

����
� (17)

We assume that the FIM is well-defined and finite. We further assume
that integration with respect to ��� and differentiation with respect to ���
can be interchanged, a standard requirement for the CRB. We then have
the following result.

Theorem 1: Let 	��� be an estimator and let ��� � ����
���� denote the
bias gradient matrix of 	��� at a given point ����. Let ��� be an orthonormal
matrix, and suppose that ������ is known, but that ��� is otherwise arbi-
trary. If


�������� 
�������� �� � 
������������������ � (18)

then the covariance of 	��� at ���� satisfies

����	���� � ���� 
������� ����������
�

���� 
�������� � (19)

Equality is achieved in (19) if and only if

	��� � ���� 
 ��������� 
 ���� 
������� ����������
�

������� (20)

in the mean square sense, where ��� is defined by (17). Conversely, if
(18) does not hold, then there exists no finite-variance estimator with
the required bias gradient.

As required, no mention of constrained estimation is made in The-
orem 1 ; instead, partial information about the bias gradient is assumed.
Apart from this restatement, the theorem is identical to [7, Theorem 1],
and its proof is unchanged. However, the above formulation is more
general in that it can be applied to any constrained setting, once the
constraints have been translated to bias gradient requirements. In par-
ticular, as we will see below, Theorem 1 provides a CRB for locally
balanced sets if the matrix��� is chosen as a basis for the feasible direc-
tion subspace of Section III-B.

IV. CRB FOR SPARSE ESTIMATION

We are now ready to derive the CRB for the estimation problem (1)
subject to the constraint set (2). We begin by identifying the feasible
subspaces � corresponding to each of the elements in 
 . To this end,
consider first vectors ��� � 
 for which ������ � �, i.e., vectors having
maximal support. Denote by ���� 
 
 
 � ��� the support set of ���. Then,
for all � and for 	 � �� 
 
 
 � �, we have ���� 
 ����� �� � ������ � �,
where ���� is the �th column of the identity matrix. Thus ���
 ����� � 
 ,
and consequently, the vectors ����� � 
 
 
 � ���� � are all feasible directions,
as is any linear combination of these vectors. On the other hand, for any
� 
� ��������� and for any nonzero �, we have ����
 ������� � �
�, and
thus ���� is not a feasible direction; neither is any other vector which is
not in ��������� � 
 
 
 � ���� �. It follows that the feasible subspace � for
points having maximal support is given by ��������� � 
 
 
 � ���� �, and a
possible choice for the matrix ��� of (12) is

��� � ����� � 
 
 
 � ���� � ��� ������ � �� (21)

The situation is different for points ��� having ������ � �. In this case,
vectors ���� corresponding to any direction � are feasible directions, since
���� 
 ������� � ������ 
 � � �. It follows that � � � and thus a
convenient choice for the matrix ��� is

��� � ��� ��� ������ � �� (22)

Consequently, whenever ������ � �, a specification of the 
-bias
amounts to completely specifying the usual estimation bias ��������.
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To invoke Theorem 1, we must also determine the FIM ��������. Under
our assumption of white Gaussian noise, �������� is given by [4, p. 85]

�������� �
�

��
���
�
���� (23)

Using (21)–(23), it is readily shown that

���
�
������ �

�

�
����

��������� when ������ � �
�

�
������� when ������ � �

(24)

where������ is the 	� � matrix consisting of the columns of��� indexed
by ���������.

We now wish to determine the conditions under which (18)
holds. Consider first points ���� for which ������� � �. Since, by
(3), we have ���	
����� 
 �, it follows that in this case ����������

is invertible. Therefore ������������������� � � ��������� �. Since
��������� ���� ����� �� � ��������� �, it follows that (18) holds when
������� � �.

However, (18) is no longer guaranteed when ������� � �. In this
case, ��� � ��� , so that (18) is equivalent to ����� ����� � � ����������.
Using the fact that ���������� � ������ � and that, for any matrix 


,
��


� � � � �


��, we find that (18) is equivalent to

� ����� � � ���� ������ (25)

Combining these conclusions with Theorem 1 yields the following
CRB for the problem of estimating a sparse vector.

Theorem 2: Consider the estimation problem (1) with ���� given by
(2), and assume that (3) holds. For a finite-variance estimator ���� of���� to
exist, its bias gradient matrix��� must satisfy (25) whenever ������� � �.
Furthermore, the covariance of any estimator whose �-bias gradient
matrix is ������ satisfies


�������� ������� ����������
��������� ����

� � when ������� � �


�������� ������� �������������

��� ������ ������� ��������� when ����������

(26)

Here, ������ is the matrix containing the columns of ��� corresponding
to ����������.

Let us examine Theorem 2 separately in the well-determined and
underdetermined cases. In the former setting, in which ��� has full row
rank, the nullspace of��� is trivial, so that (25) always holds. It follows
that the CRB is always finite, in the sense that we cannot rule out the
existence of an estimator having any given bias function. Some insight
can be obtained in this case by examining the �-unbiased case. Noting
that in this setting ������� is invertible, the bound for �-unbiased esti-
mators is given by


�������� ��������
������ ���� ������� � ��


�������� ���
��������

��� ������ ���
���
� ���� ������� � �� (27)

From this formulation, the behavior of the CRB can be described
as follows. When ���� has nonmaximal support �������� � ��, the CRB
is identical to the bound which would have been obtained had there
been no constraints in the problem. This is because��� � ��� in this case,
so that �-unbiasedness and ordinary unbiasedness are equivalent. The
bound ������������� is achieved by the unconstrained LS estimator

���� � �����
������

���
�
��� (28)

which is the minimum variance unbiased estimator in the unconstrained
case. On the other hand, when ���� has maximal support, Theorem 2

states that �-unbiased estimators can perform, at best, as well as the
oracle estimator, which is equivalent to the LS approach when the sup-
port of ���� is known.

The situation is similar in the underdetermined setting, but the condi-
tion (25) for the existence of an estimator having a given bias gradient
matrix no longer automatically holds in this case. To interpret this con-
dition, it is helpful to introduce the mean gradient matrix��������, defined
as

�������� �
�� �����	

����
� ��� ����� (29)

The matrix �������� is a measure of the sensitivity of an estimator to
changes in the parameter vector. Thus,� ����� denotes the subspace of
directions to which ���� is insensitive. Likewise,� ����� is the subspace of
directions for which a change in ��� does not modify������. The condition
(25) therefore states that for an estimator to exist, it must be insensitive
to changes in ��� which are unobservable through ������, at least when
������ � �. No such requirement is imposed in the case ������ � �,
since in this case there are far fewer feasible directions.

It follows from this analysis that when ��� is underdetermined, an
estimator cannot be �-unbiased for all ���. To see this, recall from (13)
that �-unbiased estimators are defined by the fact that������ � �. When
������ � �, we have ��� � ��� and thus �-unbiasedness implies ��� � �,
so that� ���� ����� � ��	. But since��� is underdetermined,� ����� is
nontrivial, so that (25) cannot hold.

While an estimator cannot be unbiased for all ��� 
 � , unbiasedness
is possible at points ��� for which ������ � �. In this case, Theorem 2
produces a bound on the MSE of a �-unbiased estimator, obtained by
calculating the trace of (26) in the case ������ � �. This bound is given
by

� ������ �����
�

� � �
��	������

��� ������ ����� ������� � �� (30)

The most striking feature of (30) is that it is identical to the oracle
MSE (6). However, the CRB is of additional importance because of the
fact that the ML estimator achieves the CRB in the limit when a large
number of independent measurements are available, a situation which
is equivalent in our setting to the limit ��
 �. Thus, an MSE of (30) is
achieved at high SNR by the ML approach (4). While the ML approach
is computationally intractable in the sparse estimation setting, it is still
implementable in principle, as opposed to ���������	, which relies on un-
available information (namely, the support set of ����). Thus, Theorem 2
gives an alternative interpretation to comparisons of estimator perfor-
mance with the oracle.

Note that when examining performance averaged over realizations
of a random measurement matrix��� , it has previously been shown that
the oracle MSE can be achieved under much weaker conditions, namely
when �, 	 and � simultaneously tend to infinity [10]. In the present
setting, however, we consider a fixed, prespecified matrix ��� , which
is only assumed to specify the spark requirement (3); this is a more
difficult estimation setting and thus stronger conditions are required to
guarantee oracle-quality performance.

Before concluding this section, we briefly consider the estimation
setting in which the parameter ���� is not sparse itself, but has a sparse
representation, i.e., the situation in which there exists a known dictio-
nary ��� such that ���� � �������, for some ������� � �. We are interested
in estimating ���� from measurements (1); thus, only the constraint set
has changed. If ��� is a unitary matrix, then estimating ���� is equiva-
lent to estimating ����, which can be rewritten in the form of the sparse
estimation setting (1)–(2). However, in many cases ��� is not unitary,
and indeed the dictionary is often overcomplete (i.e., column rank de-
ficient). In such cases, while the estimation problem is different, the
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constraint set is still locally balanced, so that one can again apply The-
orem 1 to determine the CRB. The resulting bound shares many of
the characteristics of Theorem 2 described above. In particular, when
���� � ������� with ������� � �, the CRB equals the unconstrained bound,
whereas when ������� � �, the CRB coincides with the case in which
the nonzero locations of ���� are known. Due to space limitations, fur-
ther details concerning this estimation setting are given in [9].

V. DISCUSSION

In this correspondence, we extended the CRB to constraint sets sat-
isfying the local balance condition (Theorem 1). This enabled us to de-
rive a lower bound on the achievable performance in sparse estimation
problems (Theorem 2). In simple terms, Theorem 2 can be summarized
as follows. The behavior of the CRB differs depending on whether or
not the parameter has maximal support (i.e., ������� � �). In the case
of maximal support, the bound equals that which would be obtained
if the sparsity pattern were known; this can be considered an “oracle
bound”. On the other hand, when ������� � �, performance is identical
to the unconstrained case, and the bound is substantially higher. We
now discuss some practical implications of this result. To simplify the
discussion, we consider the case of unbiased estimators, though analo-
gous conclusions can be drawn for any bias function.

When ������� � � and all nonzero elements of ���� are considerably
larger than the standard deviation of the noise, the support set can be
recovered correctly with high probability (at least if computational con-
siderations are ignored). Thus, in this case an estimator can mimic the
behavior of the oracle, and the CRB is expected to be tight. Indeed,
in the high SNR limit, the ML estimator achieves the unbiased CRB.
The proposed bound can thus be viewed as an alternative justification
for the common use of the oracle estimator as a baseline against which
practical algorithms are compared, at least in the high SNR regime.
This gives further merit to recent results, which demonstrate that a va-
riety of algorithms achieve near-oracle performance [2], [14]. On the
other hand, when the support of���� is not maximal, the unbiasedness re-
quirement demands sensitivity to changes in all components of ����, and
consequently the bound coincides with the unconstrained CRB. Thus,
in underdetermined cases no estimator is unbiased for all ���� � � . This
emphasizes the need for bias in the construction of successful estima-
tion algorithms. In particular, shrinkage techniques are designed to re-
duce MSE by lowering the variance at the expense of a small gain in
bias.

An interesting observation can also be made concerning maximal-
support points ���� for which some of the nonzero elements are close
to zero. The CRB in this “low-SNR” case corresponds to the oracle
MSE, but as we will see, the bound is loose for such values of ����. Intu-
itively, at low-SNR points, any attempt to recover the sparsity pattern
will occasionally fail. Consequently, despite the optimistic CRB, it is
unlikely that the oracle MSE can be achieved. Indeed, the covariance
matrix of any finite-variance estimator is a continuous function of ����
[19], and the fact that performance is bounded by the (much higher)
unconstrained bound when ������� � � implies that performance must
be similarly poor when the SNR is low.

This excessive optimism is a result of the local nature of the CRB
: The bound depends on the estimation setting only in an �-neighbor-
hood of the parameter itself. Indeed, the CRB depends on the constraint
set only through the feasible directions, which were defined in Section
Section III-B as those directions which do not violate the constraints
for sufficiently small deviations. Thus, for the CRB, it is entirely irrel-
evant if some of the components of ���� are close to zero, as long as
���������� is held constant. A tighter bound for sparse estimation prob-
lems can be obtained using a non-local technique such as the Ham-
mersley-Chapman–Robbins approach, and will be described in a forth-
coming publication [20].
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