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Abstract

The goal of this paper is to characterize the best achievable performance for the problem of estimating

an unknown parameter having a sparse representation. Specifically, we consider the setting in which a

sparsely representable deterministic parameter vector is to be estimated from measurements corrupted by

Gaussian noise, and derive a lower bound on the mean-squared error (MSE) achievable in this setting.

To this end, an appropriate definition of bias in the sparse setting is developed, and the constrained

Cramér–Rao bound (CRB) is obtained. This bound is shown to equal the CRB of an estimator with

knowledge of the support set, for almost all feasible parameter values. Consequently, in the unbiased

case, our bound is identical to the MSE of the oracle estimator. Combined with the fact that the CRB is

achieved at high signal-to-noise ratios by the maximum likelihood technique, our result provides a new

interpretation for the common practice of using the oracle estimator as a gold standard against which

practical approaches are compared.

EDICS Topics: SSP-PARE, SSP-PERF.

Index terms: Constrained estimation, Cramér–Rao bound, sparse estimation.

I. INTRODUCTION

The problem of estimating a sparse unknown parameter vector from noisy measurements has been

analyzed intensively in the past few years [1]–[4], and has already given rise to numerous successful

signal processing algorithms [5]–[9]. In this paper, we consider the setting in which noisy measurements

of a deterministic vector x0 are available. It is assumed that x0 has a sparse representation x0 = Dα0,

where D is a given dictionary and most of the entries of α0 equal zero. Thus, only a small number

of “atoms,” or columns of D, are required to represent x0. The challenges confronting an estimation
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technique are to recover either x0 itself or its sparse representation α0. Several practical approaches turn

out to be surprisingly successful in this task. Such approaches include the Dantzig selector (DS) [4] and

basis pursuit denoising (BPDN), which is also referred to as the Lasso [1], [2], [10].

A standard measure of estimator performance is the mean-squared error (MSE). Several recent papers

analyzed the MSE obtained by methods such as the DS and BPDN [4], [11]. To determine the quality

of estimation approaches, it is of interest to compare their achievements with theoretical performance

limits: if existing methods approach the performance bound, then they are nearly optimal and further

improvements in the current setting are impossible. This motivates the development of lower bounds on

the MSE of estimators in the sparse setting.

Since the parameter to be estimated is deterministic, the MSE is in general a function of the parameter

value. While there are lower bounds on the worst-case achievable MSE among all possible parameter

values [12, §7.4], the actual performance for a specific value, or even for most values, might be

substantially lower. Our goal is therefore to characterize the minimum MSE obtainable for each particular

parameter vector. A standard method of achieving this objective is the Cramér–Rao bound (CRB) [13],

[14].

The fact that x0 has a sparse representation is of central importance for estimator design. Indeed,

many sparse estimation settings are underdetermined, meaning that without the assumption of sparsity, it

is impossible to identify the correct parameter from its measurements, even without noise. In this paper,

we treat the sparsity assumption as a deterministic prior constraint on the parameter. Specifically, we

assume that x0 ∈ S, where S is the set of all parameter vectors which can be represented by no more

than s atoms, for a given integer s.

Our results are inspired by the well-studied theory of the constrained CRB [15]–[18]. This theory is

based on the assumption that the constraint set can be defined using the system of equations f(x) = 0,

g(x) ≤ 0, where f and g are continuously differentiable functions. The resulting bound depends on

the derivatives of the function f . However, sparsity constraints cannot be written in this form. This

necessitates the development of a bound suitable for non-smooth constraint sets [19]. In obtaining this

modified bound, we also provide new insight into the meaning of the general constrained CRB. In

particular, we show that the fact that the constrained CRB is lower than the unconstrained bound results

from an expansion of the class of estimators under consideration.

With the aforementioned theoretical tools at hand, we obtain lower bounds on the MSE in a variety of

sparse estimation problems. Our bound limits the MSE achievable by any estimator having a pre-specified

bias function, for each parameter value. Particular emphasis is given to the unbiased case; the reason
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for this preference is twofold: First, when the signal-to-noise ratio (SNR) is high, biased estimation is

suboptimal. Second, for high SNR values, the unbiased CRB is achieved by the maximum likelihood

(ML) estimator.

While the obtained bounds differ depending on the exact problem definition, in general terms and for

unbiased estimation the bounds can be described as follows. For parameters having maximal support,

i.e., parameters whose representation requires the maximum allowed number s of atoms, the lower bound

equals the MSE of the “oracle estimator” which knows the locations (but not the values) of the nonzero

representation elements. On the other hand, for parameters which do not have maximal support (a set

which has Lebesgue measure zero in S), our lower bound is identical to the CRB for an unconstrained

problem, which is substantially higher than the oracle MSE.

The correspondence between the CRB and the MSE of the oracle estimator (for all but a zero-measure

subset of the feasible parameter set S) is of practical interest since, unlike the oracle estimator, the

CRB is achieved by the ML estimator at high SNR. Our bound can thus be viewed as an alternative

justification for the common use of the oracle estimator as a baseline against which practical algorithms

are compared. This gives further merit to recent results, which demonstrate that BPDN and the DS both

achieve near-oracle performance [4], [11]. However, the existence of parameters for which the bound

is much higher indicates that oracular performance cannot be attained for all parameter values, at least

using unbiased techniques. Indeed, as we will show, in many sparse estimation scenarios, one cannot

construct any estimator which is unbiased for all sparsely representable parameters.

Our contribution is related to, but distinct from, the work of Babadi et al. [20], in which the CRB

of the oracle estimator was derived (and shown to equal the aforementioned oracle MSE). Our goal in

this work is to obtain a lower bound on the performance of estimators which are not endowed with

oracular knowledge; consequently, as explained above, for some parameter values the obtained CRB will

be higher than the oracle MSE. It was further shown in [20] that when the measurements consist of

Gaussian random mixtures of the parameter vector, there exists an estimator which achieves the oracle

CRB at high SNR; this is shown to hold on average over realizations of the measurement mixtures. The

present contribution strengthens this result by showing that for any given (deterministic) well-behaved

measurement setup, there exists a technique (namely, the ML estimator) achieving the CRB at high SNR.

Thus, convergence to the CRB is guaranteed for all measurement settings, and not merely when averaging

over an ensemble of such settings.

The rest of this paper is organized as follows. In Section II, we review the sparse setting as a constrained

estimation problem. Section III defines a generalization of sparsity constraints, which we refer to as locally
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balanced constraint sets; the CRB is then derived in this general setting. In Section IV, our general results

are applied back to some specific sparse estimation problems. In Section V, the CRB is compared to the

empirical performance of estimators of sparse vectors. Our conclusions are summarized in Section VI.

Throughout the paper, boldface lowercase letters v denote vectors while boldface uppercase letters M

denote matrices. Given a vector function f : Rn → Rk, we denote by ∂f/∂x the k × n matrix whose

ijth element is ∂fi/∂xj . The support of a vector, denoted supp(v), is the set of indices of the nonzero

entries in v. The Euclidean norm of a vector v is denoted ∥v∥2, and the number of nonzero entries in

v is ∥v∥0. Finally, the symbols R(M), N (M), and M † refer, respectively, to the column space, null

space, and Moore–Penrose pseudoinverse of the matrix M .

II. SPARSE ESTIMATION PROBLEMS

In this section, we describe several estimation problems whose common theme is that the unknown

parameter has a sparse representation with respect to a known dictionary. We then review some standard

techniques used to recover the unknown parameter in these problems. In Section V we will compare

these methods with the performance bounds we develop.

A. The Sparse Setting

Suppose we observe a measurement vector y ∈ Rm, given by

y = Ax0 +w (1)

where x0 ∈ Rn is an unknown deterministic signal, w is independent, identically distributed (IID)

Gaussian noise with zero mean and variance σ2, and A is a known m× n matrix. We assume the prior

knowledge that there exists a sparse representation of x0, or, more precisely, that

x0 ∈ S , {x ∈ Rn : x = Dα, ∥α∥0 ≤ s} . (2)

In other words, the set S describes signals x which can be formed from a linear combination of no more

than s columns, or atoms, from D. The dictionary D is an n × p matrix with n ≤ p, and we assume

that s < p, so that only a subset of the atoms in D can be used to represent any signal in S. We further

assume that D and s are known.

Quite a few important signal recovery applications can be formulated using the setting described above.

For example, if A = I , then y consists of noisy observations of x0, and recovering x0 is a denoising

problem [5], [6]. If A corresponds to a blurring kernel, we obtain a deblurring problem [7]. In both
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cases, the matrix A is square and invertible. Interpolation and inpainting can likewise be formulated

as (1), but in those cases A is an underdetermined matrix, i.e., we have m < n [9]. For all of these

estimation scenarios, our goal is to obtain an estimate x̂ whose MSE is as low as possible, where the

MSE is defined as

MSE , E
{
∥x̂− x0∥22

}
. (3)

Note that x0 is deterministic, so that the expectation in (3) (and throughout the paper) is taken over the

noise w but not over x0. Thus, the MSE is in general a function of x0.

In the above settings, the goal is to estimate the unknown signal x0. However, it may also be of interest

to recover the coefficient vector α0 for which x0 = Dα0, e.g., for the purpose of model selection [1],

[4]. In this case, the goal is to construct an estimator α̂ whose MSE E{∥α̂−α0∥22} is as low as possible.

Unless D is unitary, estimating α0 is not equivalent to estimating x0. Note, however, that when estimating

α0, the matrices A and D can be combined to obtain the equivalent problem

y = Hα0 +w (4)

where H , AD is an m× p matrix and

α0 ∈ T = {α ∈ Rp : ∥α∥0 ≤ s}. (5)

Therefore, this problem can also be seen as a special case of (1) and (2). Nevertheless, it will occasionally

be convenient to refer specifically to the problem of estimating α0 from (4).

Signal estimation problems differ in the properties of the dictionary D and measurement matrix A.

In particular, problems of a very different nature arise depending on whether the dictionary is a basis or

an overcomplete frame. For example, many approaches to denoising yield simple shrinkage techniques

when D is a basis, but deteriorate to NP-hard optimization problems when D is overcomplete [21].

A final technical comment is in order. If the matrix H in (4) does not have full column rank, then there

may exist different feasible parameters α1 and α2 such that Hα1 = Hα2. In this case, the probability

distribution of y will be identical for these two parameter vectors, and the estimation problem is said to

be unidentifiable [22, §1.5.2]. A necessary and sufficient condition for identifiability is

spark(H) > 2s (6)

where spark(H) is defined as the smallest integer k such that there exist k linearly dependent columns

in H [23]. We will adopt the assumption (6) throughout the paper. Similarly, in the problem (1) we will

assume that

spark(D) > 2s. (7)
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B. Estimation Techniques

We now review some standard estimators for the sparse problems described above. These techniques

are usually viewed as methods for obtaining an estimate α̂ of the vector α0 in (4), and we will adopt

this perspective in the current section. One way to estimate x0 in the more general problem (1) is to first

estimate α0 with the methods described below and then use the formula x̂ = Dα̂.

A widely-used estimation technique is the ML approach, which provides an estimate of α0 by solving

min
α

∥y −Hα∥22 s.t. ∥α∥0 ≤ s. (8)

Unfortunately, (8) is a nonconvex optimization problem and solving it is NP-hard [21], meaning that an

efficient algorithm providing the ML estimator is unlikely to exist. In fact, to the best of our knowledge,

the most efficient method for solving (8) for general H is to enumerate the
(
p
s

)
possible s-element

support sets of α and choose the one for which ∥y −Hα∥22 is minimal. This is clearly an impractical

strategy for reasonable values of p and s. Consequently, several efficient alternatives have been proposed

for estimating α0. One of these is the ℓ1-penalty version of BPDN [1], which is defined as a solution

α̂BP to the quadratic program

min
α

1
2∥y −Hα∥22 + γ∥α∥1 (9)

with some regularization parameter γ. More recently, the DS was proposed [4]; this approach estimates

α0 as a solution α̂DS to

min
α

∥α∥1 s.t. ∥HT (y −Hα)∥∞ ≤ τ (10)

where τ is again a user-selected parameter. A modification of the DS, known as the Gauss–Dantzig

selector (GDS) [4], is to use α̂DS only to estimate the support of α0. In this approach, one solves (10)

and determines the support set of α̂DS. The GDS estimate is then obtained as

α̂GDS =

H†
α̂DS

y on the support set of α̂DS

0 elsewhere
(11)

where Hα̂DS
consists of the columns of H corresponding to the support of α̂DS.

Previous research on the performance of these estimators has primarily examined their worst-case MSE

among all possible values of α0 ∈ T . Specifically, it has been shown [4] that, under suitable conditions

on H , s, and τ , the DS of (10) satisfies

∥α0 − α̂DS∥22 ≤ Csσ2 log p with high probability (12)
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for some constant C. It follows that the MSE of the DS is also no greater than a constant times sσ2 log p

for all α0 ∈ T [12]. An identical property was also demonstrated for BPDN (9) with an appropriate

choice of γ [11]. Conversely, it is known that the worst-case error of any estimator is at least a constant

times sσ2 log p [12, §7.4]. Thus, both BPDN and the DS are optimal, up to a constant, in terms of worst-

case error. Nevertheless, the MSE of these approaches for specific values of α0, even for a vast majority

of such values, might be much lower. Our goal differs from this line of work in that we characterize the

pointwise performance of an estimator, i.e., the MSE for specific values of α0.

Another baseline with which practical techniques are often compared is the oracle estimator, given by

α̂oracle =

H†
α0
b on the set supp(α0)

0 elsewhere
(13)

where Hα0
is the submatrix constructed from the columns of H corresponding to the nonzero entries of

α0. In other words, α̂oracle is the least-squares (LS) solution among vectors whose support coincides with

supp(α0), which is assumed to have been provided by an “oracle.” Of course, in practice the support

of α0 is unknown, so that α̂oracle cannot actually be implemented. Nevertheless, one often compares the

performance of true estimators with α̂oracle, whose MSE is given by [4]

σ2Tr((HT
α0
Hα0

)−1). (14)

Is (14) a bound on estimation MSE? While α̂oracle is a reasonable technique to adopt if supp(α0)

is known, this does not imply that (14) is a lower bound on the performance of practical estimators.

Indeed, as will be demonstrated in Section V, when the SNR is low, both BPDN and the DS outperform

α̂oracle, thanks to the use of shrinkage in these estimators. Furthermore, if supp(α0) is known, then there

exist biased techniques which are better than α̂oracle for all values of α0 [24]. Thus, α̂oracle is neither

achievable in practice, nor optimal in terms of MSE. As we will see, one can indeed interpret (14) as

a lower bound on the achievable MSE, but such a result requires a certain restriction of the class of

estimators under consideration.

III. THE CONSTRAINED CRAMÉR–RAO BOUND

A common technique for determining the achievable performance in a given estimation problem is to

calculate the CRB, which is a lower bound on the MSE of estimators having a given bias [13]. In this

paper, we are interested in calculating the CRB when it is known that the parameter x satisfies sparsity

constraints such as those of the sets S of (2) and T of (5).
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Fig. 1. In a locally balanced set such as a union of subspaces (a) and an open ball (b), each point is locally defined by a set

of feasible directions along which an infinitesimal movement does not violate the constraints. The curve (c) is not characterized

in this way and thus is not locally balanced.

The CRB for constrained parameter sets has been studied extensively in the past [15]–[18]. However,

in prior work derivation of the CRB assumed that the constraint set is given by

X = {x ∈ Rn : f(x) = 0, g(x) ≤ 0} (15)

where f(x) and g(x) are continuously differentiable functions. We will refer to such X as continuously

differentiable sets. As shown in prior work [15], the resulting bound depends on the derivatives of

the function f . Yet in some cases, including the sparse estimation scenarios discussed in Section II, the

constraint set cannot be written in the form (15), and the aforementioned results are therefore inapplicable.

Our goal in the current section is to close this gap by extending the constrained CRB to constraint sets

X encompassing the sparse estimation scenario.

We begin this section with a general discussion of the CRB and the class of estimators to which it

applies. This will lead us to interpret the constrained CRB as a bound on estimators having an incompletely

specified bias gradient. This interpretation will facilitate the application of the existing constrained CRB

to the present context.

A. Bias Requirements in the Constrained CRB

In previous settings for which the constrained CRB was derived, it was noted that the resulting bound

is typically lower than the unconstrained version [15, Remark 4]. At first glance, one would attribute the

reduction in the value of the CRB to the fact that the constraints add information about the unknown
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parameter, which can then improve estimation performance. On the other hand, the CRB separately

characterizes the achievable performance for each value of the unknown parameter x0. Thus, the CRB at

x0 applies even to estimators designed specifically to perform well at x0. Such estimators surely cannot

achieve further gain in performance if it is known that x0 ∈ X . Why, then, is the constrained CRB lower

than the unconstrained bound? The answer to this apparent paradox involves a careful definition of the

class of estimators to which the bound applies.

To obtain a meaningful bound, one must exclude some estimators from consideration. Unless this

is done, the bound will be tarnished by estimators of the type x̂ = xu, for some constant xu, which

achieve an MSE of 0 at the specific point x = xu. It is standard practice to circumvent this difficulty by

restricting attention to estimators having a particular bias b(x) , E{x̂}−x. In particular, it is common

to examine unbiased estimators, for which b(x) = 0.

However, in some settings, it is impossible to construct estimators which are unbiased for all x ∈ Rn.

For example, suppose we are to estimate the coefficients α0 of an overcomplete dictionary based on the

measurements given by (4). Since the dictionary is overcomplete, its nullspace is nontrivial; furthermore,

each coefficient vector in the nullspace yields an identical distribution of the measurements, so that an

estimator can be unbiased for one of these vectors at most.

The question is whether it is possible to construct estimators which are unbiased for some, but not all,

values of x. One possible approach is to seek estimators which are unbiased for all x ∈ X . However, as

we will see later in this section, even this requirement can be too strict: in some cases it is impossible

to construct estimators which are unbiased for all x ∈ X . More generally, the CRB is a local bound,

meaning that it determines the achievable performance at a particular value of x based on the statistics

at x and at nearby values. Thus, it is irrelevant to introduce requirements on estimation performance for

parameters which are distant from the value x of interest.

Since we seek a locally unbiased estimator, one possibility is to require unbiasedness at a single point,

say xu. As it turns out, it is always possible to construct such a technique: this is again x̂ = xu, which

is unbiased at xu but nowhere else. To avoid this loophole, one can require an estimator to be unbiased

in the neighborhood

Bε(x0) = {x ∈ Rm : ∥x− x0∥2 < ε} (16)

of x0, for some small ε. It follows that both the bias b(x) and the bias gradient

B(x) , ∂b

∂x
(17)
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vanish at x = x0. This formulation is the basis of the unconstrained unbiased CRB, a lower bound on

the covariance at x0 which applies to all estimators whose bias gradient is zero at x0.

It turns out that even this requirement is too stringent in constrained settings. As we will see in

Section IV-A, estimators of the coefficients of an overcomplete dictionary must have a nonzero bias

gradient matrix. The reason is related to the fact that unbiasedness is required over the set Bε(x0),

which, in the overcomplete setting, has a higher dimension than the number of measurements.

However, it can be argued that one is not truly interested in the bias at all points in Bε(x0), since

many of these points violate the constraint set X . A reasonable compromise is to require unbiasedness

over Bε(x0) ∩ X , i.e., over the neighborhood of x0 restricted to the constraint set X . This leads to a

weaker requirement on the bias gradient B at x0. Specifically, the derivatives of the bias need only be

specified in directions which do not violate the constraints. The exact formulation of this requirement

depends on the nature of the set X . In the following subsections, we will investigate various constraint

sets and derive the corresponding requirements on the bias function.

It is worth emphasizing that the dependence of the CRB on the constraints is manifested through the

class of estimators being considered, or more specifically, through the allowed estimators’ bias gradient

matrices. By contrast, the unconstrained CRB applies to estimators having a fully specified bias gradient

matrix. Consequently, the constrained bound applies to a wider class of estimators, and is thus usually

lower than the unconstrained version of the CRB. In other words, estimators which are unbiased in

the constrained setting, and thus applicable to the unbiased constrained CRB, are likely to be biased in

the unconstrained context. Since a wider class of estimators is considered by the constrained CRB, the

resulting bound is lower, thus explaining the puzzling phenomenon described in the beginning of this

subsection.

B. Locally Balanced Constraints

We now consider a class of constraint sets, called locally balanced sets, which encompass the sparsity

constraints of Section II. Roughly speaking, a locally balanced set is one which is locally defined at each

point by the directions along which one can move without leaving the set. Formally, a metric space X

is said to be locally balanced if, for all x ∈ X , there exists an open set C ⊂ X such that x ∈ C and such

that, for all x′ ∈ C and for all |λ| ≤ 1, we have

x+ λ(x′ − x) ∈ C. (18)

As we will see, locally balanced sets are useful in the context of the constrained CRB, as they allow us

to identify the feasible directions along which the bias gradient must be specified.
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An example of a locally balanced set is given in Fig. 1(a), which represents a union of two subspaces.

In Fig. 1(a), for any point x ∈ X , and for any point x′ ∈ X sufficiently close to x, the entire line

segment between x and x′, as well as the line segment in the opposite direction, are also in X . This

illustrates the fact that any union of subspaces is locally balanced, and, in particular, so are the sparse

estimation settings of Section II [25]–[27]. As another example, consider any open set, such as the open

ball in Fig. 1(b). For such a set, any point x has a sufficiently small neighborhood C such that, for any

x′ ∈ C, the line segment connecting x to x′ is contained in X . On the other hand, the curve in Fig. 1(c)

is not locally balanced, since the line connecting x to any other point on the set does not lie within the

set.1

Observe that the neighborhood of a point x in a locally balanced set X is entirely determined by the

set of feasible directions v along which infinitesimal changes of x do not violate the constraints. These

are the directions v = x′−x for all points x′ ̸= x in the set C of (18). Recall that we seek a lower bound

on the performance of estimators whose bias gradient is defined over the neighborhood of x0 restricted

to the constraint set X . Suppose for concreteness that we are interested in unbiased estimators. For a

locally balanced constraint set X , this implies that

Bv = 0 (19)

for any feasible direction v. In other words, all feasible directions must be in the nullspace of B. This is

a weaker condition than requiring the bias gradient to equal zero, and is thus more useful for constrained

estimation problems. If an estimator x̂ satisfies (19) for all feasible directions v at a certain point x0,

we say that x̂ is X -unbiased at x0. This terminology emphasizes the fact that X -unbiasedness depends

both on the point x0 and on the constraint set X .

Consider the subspace F spanned by the feasible directions at a certain point x ∈ X . We refer to F as

the feasible subspace at x. Note that F may include infeasible directions, if these are linear combinations

of feasible directions. Nevertheless, because of the linearity of (19), any vector u ∈ F satisfies Bu = 0,

even if u is infeasible. Thus, X -unbiasedness is actually a property of the feasible subspace F , rather

than the set of feasible directions.

Since X is a subset of a finite-dimensional Euclidean space, F is also finite-dimensional, although

different points in X may yield subspaces having differing dimensions. Let u1, . . . ,ul denote an

1We note in passing that since the curve in Fig. 1(c) is continuously differentiable, it can be locally approximated by a locally

balanced set. Our derivation of the CRB can be extended to such approximately locally balanced sets in a manner similar to

that of [15], but such an extension is not necessary for the purposes of this paper.
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orthonormal basis for F , and define the matrix

U = [u1, . . . ,ul]. (20)

Note that ui and U are functions of x. For a given function x, different orthonormal bases can be chosen,

but the choice of a basis is arbitrary and will not affect our results.

As we have seen, X -unbiasedness at x0 can alternatively be written as Bu = 0 for all u ∈ F , or,

equivalently

BU = 0. (21)

The constrained CRB can now be derived as a lower bound on all X -unbiased estimators, which is a

weaker requirement than “ordinary” unbiasedness.

Just as X -unbiasedness was defined by requiring the bias gradient matrix to vanish when multiplied

by any feasible direction vector, we can define X -biased estimators by requiring a specific value (not

necessarily zero) for the bias gradient matrix when multiplied by a feasible direction vector. In an analogy

to (21), this implies that one must define a value for the matrix BU . Our goal is thus to construct a

lower bound on the covariance at a given x achievable by any estimator whose bias gradient B at x

satisfies BU = P , for a given matrix P . This is referred to as specifying the X -bias of the estimator at

x.

C. The CRB for Locally Balanced Constraints

It is helpful at this point to compare our derivation with prior work on the constrained CRB, which

considered continuously differentiable constraint sets of the form (15). It has been previously shown

[15] that inequality constraints of the type g(x) ≤ 0 have no effect on the CRB. Consequently, we will

consider constraints of the form

X = {x ∈ Rn : f(x) = 0}. (22)

Define the k × n matrix F (x) = ∂f/∂x. For simplicity of notation, we will omit the dependence of F

on x. Assuming that the constraints are non-redundant, F is a full-rank matrix, and thus one can define

an n× (n− k) matrix W (also dependent on x) such that

FW = 0, W TW = I. (23)

The matrix W is closely related to the matrix U spanning the feasible direction subspace of locally

balanced sets. Indeed, the column space R(W ) of W is the tangent space of X , i.e., the subspace

of Rn containing all vectors which are tangent to X at the point x. Thus, the vectors in R(W ) are
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precisely those directions along which infinitesimal motion from x does not violate the constraints, up to

a first-order approximation. It follows that if a particular set X is both locally balanced and continuously

differentiable, its matrices U and W coincide. Note, however, that there exist sets which are locally

balanced but not continuously differentiable (and vice versa).

With the above formulation, the CRB for continuously differentiable constraints can be stated as a

function of the the matrix W and the bias gradient B [18]. In fact, the resulting bound depends on B

only through BW . This is to be expected in light of the discussion of Section III-A: The bias should

be specified only for those directions which do not violate the constraint set. Furthermore, the proof of

the CRB in [18, Theorem 1] depends not on the formulation (22) of the constraint set, but merely on the

class of bias functions under consideration. Consequently, one can state the bound without any reference

to the underlying constraint set. To do so, let y be a measurement vector with pdf p(y;x), which is

assumed to be differentiable with respect to x. The Fisher information matrix (FIM) J(x) is defined as

J(x) = E
{
∆∆T

}
(24)

where

∆ =
∂ log p(y;x)

∂x
. (25)

We assume that the FIM is well-defined and finite. We further assume that integration with respect to y

and differentiation with respect to x can be interchanged, a standard requirement for the CRB. We then

have the following result.

Theorem 1. Let x̂ be an estimator and let B = ∂b/∂x denote the bias gradient matrix of x̂ at a given

point x0. Let U be an orthonormal matrix, and suppose that BU is known, but that B is otherwise

arbitrary. If

R(U(U +BU)T )) ⊆ R(UUTJUUT ) (26)

then the covariance of x̂ at x0 satisfies

Cov(x̂) ≽ (U +BU)
(
UTJU

)†
(U +BU)T . (27)

Equality is achieved in (27) if and only if

x̂ = x0 + b(x0) + (U +BU)
(
UTJU

)†
UT∆ (28)

in the mean square sense, where ∆ is defined by (25). Conversely, if (26) does not hold, then there exists

no finite-variance estimator with the required bias gradient.
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As required, no mention of constrained estimation is made in Theorem 1; instead, partial information

about the bias gradient is assumed. Apart from this restatement, the theorem is identical to [18,

Theorem 1], and its proof is unchanged. However, the above formulation is more general in that it

can be applied to any constrained setting, once the constraints have been translated to bias gradient

requirements. In particular, Theorem 1 provides a CRB for locally balanced sets if the matrix U is

chosen as a basis for the feasible direction subspace of Section III-B.

IV. BOUNDS ON SPARSE ESTIMATION

In this section, we apply the CRB of Theorem 1 to several sparse estimation scenarios. We begin with

an analysis of the problem of estimating a sparse parameter vector.

A. Estimating a Sparse Vector

Suppose we would like to estimate a parameter vector α0, known to belong to the set T of (5), from

measurements y given by (4). To determine the CRB in this setting, we begin by identifying the feasible

subspaces F corresponding to each of the elements in T . To this end, consider first vectors α ∈ T for

which ∥α∥0 = s, i.e., vectors having maximal support. Denote by {i1, . . . , is} the support set of α.

Then, for all δ, we have

∥α+ δeik∥0 = ∥α∥0 = s, k = 1, . . . , s (29)

where ej is the jth column of the identity matrix. Thus α + δeik ∈ T , and consequently, the vectors

{ei1 , . . . , eis} are all feasible directions, as is any linear combination of these vectors. On the other

hand, for any j /∈ supp(α) and for any nonzero δ, we have ∥α + δej∥0 = s + 1, and thus ej is not

a feasible direction; neither is any other vector which is not in span{ei1 , . . . ,eis}. It follows that the

feasible subspace F for points having maximal support is given by span{ei1 , . . . ,eis}, and a possible

choice for the matrix U of (20) is

U = [ei1 , . . . ,eis ] for ∥α∥0 = s. (30)

The situation is different for points α having ∥α∥0 < s. In this case, vectors ei corresponding to any

direction i are feasible directions, since

∥α+ δei∥0 ≤ ∥α∥0 + 1 ≤ s. (31)

Because the feasible subspace is defined as the span of all feasible directions, we have

F ⊇ span{e1, . . . , ep} = Rp. (32)
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It follows that F = Rp and thus a convenient choice for the matrix U is

U = I for ∥α∥0 < s. (33)

Consequently, whenever ∥α∥0 < s, a specification of the T -bias amounts to completely specifying the

usual estimation bias b(x).

To invoke Theorem 1, we must also determine the FIM J(α). Under our assumption of white Gaussian

noise, J(α) is given by [13, p. 85]

J(α) =
1

σ2
HTH. (34)

Using (30), (33), and (34), it is readily shown that

UTJU =


1
σ2H

T
αHα when ∥α∥0 = s

1
σ2H

TH when ∥α∥0 < s

(35)

where Hα is the p× s matrix consisting of the columns of H indexed by supp(α).

We now wish to determine under what conditions (26) holds. Consider first points α0 for which

∥α0∥0 = s. Since, by (6), we have spark(H) > s, it follows that in this case UTJU is invertible.

Therefore

R(UUTJUUT ) = R(UUT ). (36)

Since

R(UUT (I +BT )) ⊆ R(UUT ) (37)

we have that condition (26) holds when ∥α0∥0 = s.

The condition (26) is no longer guaranteed when ∥α0∥0 < s. In this case, U = I , so that (26) is

equivalent to

R(I +BT ) ⊆ R(HTH). (38)

Using the fact that R(HTH) = R(HT ) and that, for any matrix Q, R(QT ) = N (Q)⊥, we find that

(38) is equivalent to

N (H) ⊆ N (I +B). (39)

Combining these conclusions with Theorem 1 yields the following CRB for the problem of estimating a

sparse vector.
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Theorem 2. Consider the estimation problem (4) with α0 given by (5), and assume that (6) holds.

For a finite-variance estimator α̂ of α0 to exist, its bias gradient matrix B must satisfy (39) whenever

∥α0∥0 < s. Furthermore, the covariance of any estimator whose T -bias gradient matrix is BU satisfies

Cov(α̂) ≽ σ2(I +B)(HTH)†(I +BT )

when ∥α0∥0 < s,

Cov(α̂) ≽ σ2(U +BU)(HT
α0
Hα0

)−1(U +BU)T

when ∥α0∥0 = s. (40)

Here, Hα0
is the matrix containing the columns of H corresponding to supp(α0).

Let us examine Theorem 2 separately in the underdetermined and well-determined cases. In the well-

determined case, in which H has full row rank, the nullspace of H is trivial, so that (39) always

holds. It follows that the CRB is always finite, in the sense that we cannot rule out the existence of

an estimator having any given bias function. Some insight can be obtained in this case by examining

the T -unbiased case. Noting also that HTH is invertible in the well-determined case, the bound for

T -unbiased estimators is given by

Cov(α̂) ≽ σ2(HTH)−1 when ∥α0∥0 < s,

Cov(α̂) ≽ σ2U(HT
α0
Hα0

)−1UT when ∥α0∥0 = s. (41)

From this formulation, the behavior of the CRB can be described as follows. When α0 has non-

maximal support (∥α0∥0 < s), the CRB is identical to the bound which would have been obtained had

there been no constraints in the problem. This is because U = I in this case, so that T -unbiasedness

and ordinary unbiasedness are equivalent. As we have seen in Section III-A, the CRB is a function of

the class of estimators under consideration, so the unconstrained and constrained bounds are equivalent

in this situation. The bound σ2(HTH)−1 is achieved by the unconstrained LS estimator

α̂ = (HTH)−1HTy (42)

which is the minimum variance unbiased estimator in the unconstrained case. Thus, we learn from

Theorem 2 that for values of α0 having non-maximal support, no T -unbiased technique can outperform

the standard LS estimator, which does not assume any knowledge about the constraint set T .

On the other hand, consider the case in which α0 has maximal support, i.e., ∥α0∥0 = s. Suppose first

that supp(α0) is known, so that one must estimate only the nonzero values of α0. In this case, a reasonable
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approach is to use the oracle estimator (13), whose covariance matrix is given by σ2U(HT
α0
Hα0

)−1UT

[4]. Thus, when α0 has maximal support, Theorem 2 states that T -unbiased estimators can perform, at

best, as well as the oracle estimator, which is equivalent to the LS approach when the support of α0 is

known.

The situation is similar, but somewhat more involved, in the underdetermined case. Here, the condition

(39) for the existence of an estimator having a given bias gradient matrix no longer automatically holds.

To interpret this condition, it is helpful to introduce the mean gradient matrix M(α), defined as

M(α) =
∂E{α̂}
∂α

= I +B. (43)

The matrix M(α) is a measure of the sensitivity of an estimator to changes in the parameter vector.

For example, a T -unbiased estimator is sensitive to any feasible change in α. Thus, N (M) denotes the

subspace of directions to which α̂ is insensitive. Likewise, N (H) is the subspace of directions for which

a change in α does not modify Hα. The condition (39) therefore states that for an estimator to exist,

it must be insensitive to changes in α which are unobservable through Hα, at least when ∥α∥0 < s.

No such requirement is imposed in the case ∥α∥0 = s, since in this case there are far fewer feasible

directions.

The lower bound (40) is similarly a consequence of the wide range of feasible directions obtained

when ∥α∥0 < s, as opposed to the tight constraints when ∥α∥0 = s. Specifically, when ∥α∥0 < s, a

change to any component of α is feasible and hence the lower bound equals that of an unconstrained

estimation problem, with the FIM given by σ−2HTH . On the other hand, when ∥α∥0 = s, the bound

is effectively that of an estimator with knowledge of the particular subspace to which α belongs; for

this subspace the FIM is the submatrix UTJU given in (35). This phenomenon is discussed further in

Section VI.

Another difference between the well-determined and underdetermined cases is that when H is

underdetermined, an estimator cannot be T -unbiased for all α. To see this, recall from (21) that T -

unbiased estimators are defined by the fact that BU = 0. When ∥α∥0 < s, we have U = I and thus

T -unbiasedness implies B = 0, so that N (I +B) = {0}. But since H is underdetermined, N (H) is

nontrivial. Consequently, (39) cannot hold for T -unbiased estimators when ∥α∥0 < s.

The lack of T -unbiased estimators when ∥α0∥0 < s is a direct consequence of the fact that the

feasible direction set at such α0 contains all of the directions e1, . . . ,ep. The conclusion from Theorem 2

is then that no estimator can be expected to be unbiased in such a high-dimensional neighborhood,

just as unbiased estimation is impossible in the p-dimensional neighborhood Bε(α0), as explained in
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Section III-A. However, it is still possible to obtain a finite CRB in this setting by further restricting the

constraint set: if it is known that ∥α0∥0 = s̃ < s, then one can redefine T in (5) by replacing s with

s̃. This will enlarge the class of estimators considered T -unbiased, and Theorem 2 would then provide

a finite lower bound on those estimators. Such estimators will not, however, be unbiased in the sense

implied by the original constraint set.

While an estimator cannot be unbiased for all α ∈ T , unbiasedness is possible at points α for which

∥α∥0 = s. In this case, Theorem 2 produces a bound on the MSE of a T -unbiased estimator, obtained

by calculating the trace of (40) in the case BU = 0. This bound is given by

E
{
∥α̂−α0∥22

}
≥ σ2Tr((HT

α0
Hα0

)−1), ∥α0∥0 = s. (44)

The most striking feature of (44) is that it is identical to the oracle MSE (14). However, the CRB

is of additional importance because of the fact that the ML estimator achieves the CRB in the limit

when a large number of independent measurements are available, a situation which is equivalent in

our setting to the limit σ → 0. In other words, an MSE of (44) is achieved at high SNR by the ML

approach (8), as we will illustrate numerically in Section V. While the ML approach is computationally

intractable in the sparse estimation setting, it is still implementable in principle, as opposed to α̂oracle,

which relies on unavailable information (namely, the support set of α0). Thus, Theorem 1 gives an

alternative interpretation to comparisons of estimator performance with the oracle.

Observe that the bound (44) depends on the value of α0 (through its support set, which defines Hα0
).

This implies that some values of α0 are more difficult to estimate than others. For example, suppose the

ℓ2 norms of some of the columns of H are significantly larger than the remaining columns. Measurements

of a parameter α0 whose support corresponds to the large-norm columns of H will then have a much

higher SNR than measurements of a parameter corresponding to small-norm columns, and this will clearly

affect the accuracy with which α0 can be estimated. To analyze the behavior beyond this effect, it is

common to consider the situation in which the columns hi of H are normalized so that ∥hi∥2 = 1. In

this case, for sufficiently incoherent dictionaries, Tr((HT
α0
Hα0

)−1) is bounded above and below by a

small constant times s, so that the CRB is similar for all values of α0. To see this, let µ be the coherence

of H [1], defined (for H having normalized columns) as

µ , max
i̸=j

∣∣hT
i hj

∣∣ . (45)

By the Gershgorin disc theorem, the eigenvalues of HT
α0
Hα0

are in the range [1−sµ, 1+sµ]. It follows
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that the unbiased CRB (44) is bounded above and below by

sσ2

1 + sµ
≤ σ2Tr((HT

α0
Hα0

)−1) ≤ sσ2

1− sµ
. (46)

Thus, when s is somewhat smaller than 1/µ, the CRB is roughly equal to sσ2 for all values of α0. As

we have seen in Section II-B, for sufficiently small s, the worst-case MSE of practical estimators, such

as BPDN and the DS, is O(sσ2 log p). Thus, practical estimators come almost within a constant of the

unbiased CRB, implying that they are close to optimal for all values of α0, at least when compared with

unbiased techniques.

B. Denoising and Deblurring

We next consider the problem (1), in which it is required to estimate not the sparse vector α0 itself,

but rather the vector x0 = Dα0, where D is a known dictionary matrix. Thus, x0 belongs to the set

S of (2). We assume for concreteness that D has full row rank and that A has full column rank. This

setting encompasses the denoising and deblurring problems described in Section II-A, with the former

arising when A = I and the latter obtained when A represents a blurring kernel. Similar calculations

can be carried out when A is rank-deficient, a situation which occurs, for example, in some interpolation

problems.

Recall from Section II-A the assumption that every x ∈ S has a unique representation x = Dα

for which α is in the set T of (5). We denote by r(·) the mapping from S to T which returns this

representation. In other words, r(x) is the unique vector in T for which

x = Dr(x) and ∥r(x)∥0 ≤ s. (47)

Note that while the mapping r is well-defined, actually calculating the value of r(x) for a given vector

x is, in general, NP-hard.

In the current setting, unlike the scenario of Section IV-A, it is always possible to construct an unbiased

estimator. Indeed, even without imposing the constraint (2), there exists an unbiased estimator. This is

the LS or maximum likelihood estimator, given by

x̂ = (ATA)−1ATy. (48)

A standard calculation demonstrates that the covariance of x̂ is

σ2(ATA)−1. (49)
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Fig. 2. MSE of various estimators compared with the unbiased CRB (44), for (a) varying SNR and (b) varying sparsity levels.

On the other hand, the FIM for the setting (1) is given by

J =
1

σ2
ATA. (50)

Since A has full row rank, the FIM is invertible. Consequently, it is seen from (49) and (50) that the LS

approach achieves the CRB J−1 for unbiased estimators. This well-known property demonstrates that in

the unconstrained setting, the LS technique is optimal among all unbiased estimators.

The LS estimator, like any unbiased approach, is also S-unbiased. However, with the addition of

the constraint x0 ∈ S, one would expect to obtain improved performance. It is therefore of interest to

obtain the CRB for the constrained setting. To this end, we first note that since J is invertible, we have

R(UUTJUUT ) = R(UUT ) for any U , and consequently (26) holds for any matrix B. The bound

(27) of Theorem 1 thus applies regardless of the bias gradient matrix.

For simplicity, in the following we derive the CRB for S-unbiased estimators. A calculation for arbitrary

S-bias functions can be performed along similar lines. Consider first values x ∈ S such that ∥r(x)∥0 < s.

Then, ∥r(x) + δei∥0 ≤ s for any δ and for any ei. Therefore,

x+ δDei ∈ S (51)

for any δ and ei. In other words, the feasible directions include all columns of D. Since it is assumed

that D has full row rank, this implies that the feasible subspace F equals Rn, and the matrix U of (20)

can be chosen as U = I .
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Next, consider values x ∈ S for which ∥r(x)∥0 = s. Then, for sufficiently small δ > 0, we have

∥r(x) + δv∥0 ≤ s if and only if v = ei for some i ∈ supp(r(x)). Equivalently,

x+ δv ∈ S if and only if v = Dei and i ∈ supp(r(x)). (52)

Consequently, the feasible direction subspace in this case corresponds to the column space of the matrix

Dx containing the s columns of D indexed by supp(r(x)). From (7) we have spark(D) > s, and

therefore the columns of Dx are linearly independent. Thus the orthogonal projector onto F is given by

P , UUT = Dx(D
T
xDx)

−1DT
x . (53)

Combining these calculations with Theorem 1 yields the following result.

Theorem 3. Consider the estimation setting (1) with the constraint (2), and suppose spark(D) > 2s.

Let x̂ be a finite-variance S-unbiased estimator. Then,

Cov(x̂) ≽ σ2(ATA)−1 when ∥r(x)∥0 < s,

Cov(x̂) ≽ σ2
(
PATAP

)†
when ∥r(x)∥0 = s. (54)

Here, P is given by (53), in which Dx is the n× s matrix consisting of the columns of D participating

in the (unique) s-element representation Dα of x.

As in Theorem 2, the bound exhibits a dichotomy between points having maximal and non-maximal

support. In the former case, the CRB is equivalent to the bound obtained when the support set is known,

whereas in the latter the bound is equivalent to an unconstrained CRB. This point is discussed further in

Section VI.

V. NUMERICAL RESULTS

In this section, we demonstrate the use of the CRB for measuring the achievable MSE in the sparse

estimation problem (4). To this end, a series of simulations was performed. In each simulation, a random

100×200 dictionary H was constructed from a zero-mean Gaussian IID distribution, whose columns hi

were normalized so that ∥hi∥2 = 1. A parameter α0 was then selected by choosing a support uniformly

at random and selecting the nonzero elements as Gaussian IID variables with mean 0 and variance 1.

Noisy measurements y were obtained from (4), and α0 was then estimated using BPDN (9), the DS (10),

and the GDS (11). The regularization parameters were chosen as τ = 2σ
√
log p and γ = 4σ

√
log(p− s),

rules of thumb which are motivated by a theoretical analysis [11]. The MSE of each estimate was then

calculated by repeating this process with different realizations of the random variables. The unbiased
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CRB was calculated using (44). In this case, the unbiased CRB equals the MSE of the oracle estimator

(13), but as we will see below, interpreting (44) as a bound on unbiased estimators provides further

insight into the estimation problem.

A first set of experiments was conducted to examine the CRB at various SNR levels. In this simulation,

the ML estimator (8) was also computed, in order to verify its convergence to the CRB at high SNR. Since

the ML approach is computationally prohibitive when p and s are large, this necessitated the selection of

the rather low support size s = 3. The MSE and CRB were calculated for 15 SNR values by changing

the noise standard deviation σ between 1 and 10−3. The MSE of the ML approach, as well as the other

estimators of Section II-B, is compared with the CRB in Fig. 2(a). The convergence of the ML estimator

to the CRB is clearly visible in this figure. The performance of the GDS is also impressive, being as

good or better than the ML approach. Apparently, at high SNR, the DS tends to correctly recover the

true support set, in which case GDS (11) equals the oracle (13). Perhaps surprisingly, applying a LS

estimate on the support set obtained by BPDN (which could be called a “Gauss–BPDN” strategy) does

not work well at all, and in fact results in higher MSE than a direct application of BPDN. (The results

for the Gauss–BPDN method are not plotted in Fig. 2.)

Note that some estimation techniques outperform the oracle MSE (or CRB) at low SNR. It may appear

surprising that a practical technique such as the DS outperforms the oracle. The explanation for this stems

from the fact that the CRB (44) is a lower bound on the MSE of unbiased estimators. The bias of most

estimators tends to be negligible in low-noise settings, but often increases with the noise variance σ2.

Indeed, when σ2 is as large as ∥α0∥22, the measurements carry very little useful information about α0,

and an estimator can improve performance by shrinkage. Such a strategy, while clearly biased, yields

lower MSE than a naive reliance on the noisy measurements. This is indeed the behavior of the DS and

BPDN, since for large σ2, the ℓ1 regularization becomes the dominant term, resulting in heavy shrinkage.

Consequently, it is to be expected that such techniques will outperform even the best unbiased estimator

at low SNR, as indeed occurs in Fig. 2(a).

The performance of the estimators of Section II-B, excluding the ML method, was also compared

for varying sparsity levels. To this end, the simulation was repeated for 15 support sizes in the range

1 ≤ s ≤ 30, with a constant noise standard deviation of σ = 0.01. The results are plotted in Fig. 2(b).

While a substantial gap exists between the CRB and the MSE of the practical estimators in this case,

the general trend in both cases describes a similar rate of increase as s grows. Interestingly, a drawback

of the GDS approach is visible in this setting: as s increases, correct support recovery becomes more

difficult, and shrinkage becomes a valuable asset for reducing the sensitivity of the estimate to random
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measurement fluctuations. The LS approach practiced by the GDS, which does not perform shrinkage,

leads to gradual performance deterioration.

Results similar to Fig. 2 were obtained for a variety of related estimation scenarios, including several

deterministic, rather than random, dictionaries H .

VI. DISCUSSION

In this paper, we extended the CRB to constraint sets satisfying the local balance condition (Theorem 1).

This enabled us to derive lower bounds on the achievable performance in various estimation problems

(Theorems 2 and 3). In simple terms, Theorems 2 and 3 can be summarized as follows. The behavior

of the CRB differs depending on whether or not the parameter has maximal support (i.e., ∥α∥0 = s). In

the case of maximal support, the bound equals that which would be obtained if the sparsity pattern were

known; this can be considered an “oracle bound”. On the other hand, when ∥α∥0 < s, performance is

identical to the unconstrained case, and the bound is substantially higher. We now discuss some practical

implications of these conclusions. To simplify the discussion, we consider the case of unbiased estimators,

though analogous conclusions can be drawn for any bias function.

When ∥α∥0 = s and all nonzero elements of α are considerably larger than the standard deviation of

the noise, the support set can be recovered correctly with high probability (at least if computational

considerations are ignored). Thus, in this case an estimator can mimic the behavior of the oracle,

and the CRB is expected to be tight. Indeed, in the high SNR limit, the ML estimator achieves the

unbiased CRB. On the other hand, when the support of α is not maximal, the unbiasedness requirement

demands sensitivity to changes in all components of α, and consequently the bound coincides with the

unconstrained CRB. Thus, as claimed in Section III, in underdetermined cases no estimator is unbiased

for all α ∈ S.

An interesting observation can also be made concerning maximal-support points α for which some

of the nonzero elements are close to zero. The CRB in this “low-SNR” case corresponds to the oracle

MSE, but as we will see, the bound is loose for such values of α. Intuitively, at low-SNR points, any

attempt to recover the sparsity pattern will occasionally fail. Consequently, despite the optimistic CRB,

it is unlikely that the oracle MSE can be achieved. Indeed, the covariance matrix of any finite-variance

estimator is a continuous function of α [22], and the fact that performance is bounded by the (much

higher) unconstrained bound when ∥α∥0 < s implies that performance must be similarly poor for low

SNR.

This excessive optimism is a result of the local nature of the CRB: The bound is a function of the
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estimation setting only in an ε-neighborhood of the parameter itself. Indeed, the CRB depends on the

constraint set only through the feasible directions, which were defined in Section III-B as those directions

which do not violate the constraints for sufficiently small deviations. Thus, for the CRB, it is entirely

irrelevant if some of the components of α are close to zero, as long as supp(α) is held constant.

A tighter bound for sparse estimation problems may be obtained using the Hammersley–Chapman–

Robbins (HCR) approach [15], [28], [29], which depends on the constraints at points beyond the local

neighborhood of x. Such a bound is likely to yield tighter results for low SNR values, and will create

a smooth transition between the regions of maximal and non-maximal support. However, the bound will

depend on more complex properties of the estimation setting, such as the distance between Dα and

feasible points with differing supports. The derivation of such a bound is a subject for further research.

ACKNOWLEDGEMENT

The authors would like to thank Yaniv Plan for helpful discussions. The authors are also grateful to

the anonymous reviewers for their comments, which considerably improved the presentation of the paper.

REFERENCES

[1] J. A. Tropp, “Just relax: Convex programming methods for identifying sparse signals in noise,” IEEE Trans. Inf. Theory,

vol. 52, no. 3, pp. 1030–1051, 2006.

[2] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of

noise,” IEEE Trans. Inf. Theory, vol. 52, no. 1, pp. 6–18, 2006.

[3] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm.

Pure Appl. Math., vol. LIX, pp. 1207–1223, 2006.

[4] E. Candes and T. Tao, “The Dantzig selector: Statistical estimation when p is much larger than n,” Ann. Statist., vol. 35,

no. 6, pp. 2313–2351, 2007, with discussion.

[5] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Trans.

Image Process., vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[6] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative

filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[7] ——, “Image restoration by sparse 3D transform-domain collaborative filtering,” in Proc. SPIE Electronic Imaging ’08,

no. 6812-07, San Jose, CA, Jan. 2008.

[8] M. Protter and M. Elad, “Image sequence denoising via sparse and redundant representations,” IEEE Trans. Image Process.,

vol. 18, no. 1, pp. 27–36, Jan. 2009.

[9] M. Elad, J.-L. Starck, P. Querre, and D. Donoho, “Simultaneous cartoon and texture image inpainting using morphological

component analysis (MCA),” J. Applied and Computational Harmonic Analysis, vol. 19, pp. 340–358, Nov. 2005.

[10] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput., vol. 20,

pp. 33–61, 1998.

February 15, 2010 DRAFT



25

[11] Z. Ben-Haim, Y. C. Eldar, and M. Elad, “Near-oracle performance of basis pursuit under random noise,” Mar. 2009.

[Online]. Available: http://arxiv.org/abs/0903.4579

[12] E. J. Candès, “Modern statistical estimation via oracle inequalities,” Acta Numerica, pp. 1–69, 2006.

[13] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice Hall, 1993.

[14] J. Shao, Mathematical Statistics, 2nd ed. New York: Springer, 2003.

[15] J. D. Gorman and A. O. Hero, “Lower bounds for parametric estimation with constraints,” IEEE Trans. Inf. Theory, vol. 26,

no. 6, pp. 1285–1301, Nov. 1990.

[16] T. L. Marzetta, “A simple derivation of the constrained multiple parameter Cramér–Rao bound,” IEEE Trans. Signal

Process., vol. 41, no. 6, pp. 2247–2249, Jun. 1993.

[17] P. Stoica and B. C. Ng, “On the Cramér–Rao bound under parametric constraints,” IEEE Signal Process. Lett., vol. 5,

no. 7, pp. 177–179, 1998.

[18] Z. Ben-Haim and Y. C. Eldar, “On the constrained Cramér-Rao bound with a singular Fisher information matrix,” IEEE

Signal Process. Lett., vol. 16, no. 6, pp. 453–456, Jun. 2009.

[19] ——, “Performance bounds for sparse estimation with random noise,” in Proc. IEEE Workshop on Statistical Signal

Processing, Cardiff, Wales, UK, Sep. 2009.

[20] B. Babadi, N. Kalouptsidis, and V. Tarokh, “Asymptotic achievability of the Cramér–Rao bound for noisy compressive

sampling,” IEEE Trans. Signal Process., vol. 57, no. 3, pp. 1233–1236, 2009.

[21] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J. Computing, vol. 24, no. 2, pp. 227–234, 1995.

[22] E. L. Lehmann and G. Casella, Theory of Point Estimation, 2nd ed. New York: Springer, 1998.

[23] D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization,”

Proc. Nat. Acad. Sci. USA, vol. 100, no. 5, pp. 2197–2202, March 4, 2003.

[24] Z. Ben-Haim and Y. C. Eldar, “Blind minimax estimation,” IEEE Trans. Inf. Theory, vol. 53, no. 9, pp. 3145–3157, Sep.

2007.

[25] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a structured union of subspaces,” IEEE Trans. Inf. Theory,

to appear. [Online]. Available: http://arxiv.org/pdf/0807.4581

[26] Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant spaces,” IEEE Trans. Signal Process., 2009, to

appear. [Online]. Available: http://arxiv.org/abs/0806.3332

[27] K. Gedalyahu and Y. C. Eldar, “Low rate sampling schemes for time delay estimation,” IEEE Trans. Signal Process.,

May 2009, submitted. [Online]. Available: http://arxiv.org/abs/0905.2429

[28] J. M. Hammersley, “On estimating restricted parameters,” J. Roy. Statist. Soc. B, vol. 12, no. 2, pp. 192–240, 1950.

[29] D. G. Chapman and H. Robbins, “Minimum variance estimation without regularity assumptions,” Ann. Math. Statist.,

vol. 22, no. 4, pp. 581–586, Dec. 1951.

February 15, 2010 DRAFT


