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Abstract—In this paper, we consider the problem of estimating In other words, signals which correspond to the FRI model can
finite rate of innovation (FRI) signals from noisy measurements, pe reconstructed from samples taken at the rate of innawatio
and specifically analyze the interaction between FRI techniques which is potentially much lower than their Nyquist rate
and the underlying sampling methods. We first obtain a funda- . . -
mental limit on the estimation accuracy attainable regardless Real-_world signals are often contaml_nated by continuous-
of the sampling method. Next, we provide a bound on the time noise and thus do not conform precisely to the FRI model.
performance achievable using any specific sampling approach. Furthermore, like any mathematical model, the FRI framéwor
Essential differences between the noisy and noise-free casesar syffers from mismodeling errors, i.e., the model holds only
from this analysis. In particular, we identify settings in which approximately in practical scenarios [10]. It is therefafe

noise-free recovery techniques deteriorate substantially under . ¢ tt tifv the effect of noi d mi deli
slight noise levels, thus quantifying the numerical instability Nt€rest to quantify the effect of noise and mismodelingesT

inherent in such methods. This instability, which is only present On FRI techniques. In the noisy case, it is no longer possible
in some families of FRI signals, is shown to be related to a perfectly recover the original signal from its samples. &rev
specific type of structure, which can be characterized by viewing theless, one might hope for an appropriate finite-rate fgcien
the signal model as a union of subspaces. Finally, we develop a,pich achieves the best possible estimation accuracy,dn th
methodology for choosing the optimal sampling kernelfor linear . . .
recorstruction, based on a generalization of the Karhunen-Léve sense that Increasing the sampling rate conveys no further
transform. The results are illustrated for several types of time- Performance benefits. For example, to recov&-bandlimited
delay estimation problems. signal contaminated by continuous-time white noise, ome ca
Index Terms—Finite rate of innovation, Sampling, Cramér— use an ideal Iow—pass filter with cutoff pr?or to sampling at.
Rao bound, Union of subspaces, Time-delay estimation a rate of2B. This strategy removes all noise components with
frequencies larger thaR, while leaving all signal components
intact. Consequently, any alternative method which doés no
zero out frequencies above can be improved upon, whereas
The field of digital signal processing hinges on the availabimethods which zero out some of the signal frequencies can
ity of techniques for sampling analog signals, thus comvgrt suffer from an arbitrarily large reconstruction error. hu
them to discrete measurements. The sampling mechanism asaspling at a rate o2B is indeed optimal in the case of a
to preserve the information present in the analog domaiB;bandlimited signal, if the signal is corrupted by continge
ideally permitting flawless recovery of the original signabr time noise prior to sampling. Sampling at a rate higher than
example, one may wish to recover a continuous-time sigriaB can be beneficial only when the sampling process itself
x(t) from a discrete set of samples. The archetypical maniféstroduces additional noise into the system, e.g., as dtreSu
tation of this concept is the Shannon sampling theorem, whiquantization.
states that @-bandlimited function can be reconstructed from By contrast, empirical observations indicate that, for som
samples taken at the Nyquist raté& [1]. noisy FRI signals, substantial performance improvemergs a
Recently, considerable attention has been devoted to #whievable when the sampling rate is increased beyond the
extension of sampling theory to functions having a finiteeratate of innovation [4], [7], [8]. This phenomenon has also
of innovation (FRI). These are signals determined by a finiteeen studied in the specific setting of time delay estimation
numberp of parameters per time unit [2]. Such a definitiomectangular pulses [11]. Thus, in some cases, there apfeears
encompasses a rich variety of signals, including spling#t-s be a fundamental difference between the noiseless and-noise
invariant signals, multiband signals, and pulse streams. dorrupted settings, in terms of the required sampling 1@te.
many FRI settings, several existing algorithms are guagaht first goal in this paper will be to provide an analytical jfisa-
to recover the signat(¢) from samples taken at rateg[2]-[9]. tion and quantification of these empirical findings. As wel wil
see, the fact that oversampling improves performance is not
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I. INTRODUCTION



iS necessary. technique which minimizes the MSE for recovering) from

To demonstrate these results, we first derive the @raRao its measurements. While nonlinear reconstruction tectasiqu
bound (CRB) for estimating a finite-duration segment of asre commonly used and typically outperform the best linear
FRI signalz(t) directly from continuous-time measurementgstimator, this approach provides a simple means for identi
y(t) = z(t) + w(t), wherew(t) is a Gaussian white noisefying an appropriate sampling method. The resulting method
process. This yields a lower bound on the accuracy wheretgn then be used in conjunction with standard nonlinear FRI
z(t) can be recovered by any unbiased technique, regardlessovery algorithms.
of its sampling rate. We demonstrate our results via the problem of estimating a

The continuous-time measurement setting we study is finite-duration sequence of pulses having unknown postion
be distinguished from previous bounds in the FRI literatund amplitudes [2], [4], [5], [8]. In this case, a simple stiffnt
[12], [13] in four respects. First and most importantly, theondition is obtained for the existence of a sampling scheme
measurements are a continuous-time procg$$ and the whose performance bound coincides with the continuous-
bound therefore applies regardless of the sampling methtiche CRB. This scheme is based on sampling the Fourier
Second, in our model, the noise is added prior to samplingpefficients of the pulse shape, and is reminiscent of recent
Thus, as will be shown below, even sampling at an arbitraritime-delay estimation algorithms [7], [8]. However, while
high rate will not completely compensate for the noise. @hirthe sampling scheme is theoretically sufficient for optimal
we bound the mean-squared error (MSE) in estimati@y recovery ofz(t), we show that in some cases there is room for
and not the parameters defining it, since we seek to determgubstantial improvement in the reconstruction stage ofethe
the accuracy with whiche(¢) itself can be recovered. Suchalgorithms. Finally, we demonstrate that the Fourier domai
a bound does not depend on the specific parametrizationi®flso optimal (in the sense of minimizing the reconstaorcti
the signal, and consequently, possesses a simpler aahlytMSE) when the sampling budget is limited. Specifically, give
expression. Fourth, contrary to previous work, our analysin allowed number of sample¥, the reconstruction MSE
does not assume a specific FRI family. In particular, we d® minimized by sampling theV highest-variance Fourier
not limit ourselves to periodic time-delay estimation isgf$. coefficients of the signat(¢).

In practice, rather than processing the continuous-timeThe rest of this paper is organized as follows. The problem
signal y(t), it is typically desired to estimate:(t) from setting is defined in Section Il, and some examples of signals
a discrete set of samplefe,} of y(¢). In this scenario, conforming to this model are presented in Section Ill. Wathe
in addition to the continuous-time noise(t), digital noise briefly summarize our main results in Section IV. In Sectign V
may arise from the sampling process itself, for example duge provide a technical generalization of the CRB to general
to quantization. To quantify the extent to which samplingpaces. This result is used to obtain bounds on the achévabl
degrades the ability to recover the signal, we next derige theconstruction error from continuous-time measuremeses{
CRB for estimatingz(¢) from the measurements:,}. This tion VI) and using a sampling mechanism (Section VII). Next,
analysis depends on the relative power of the two noiserfgctan Section VIl a Bayesian viewpoint is introduced and agi
When only digital noise is present, oversampling can be usgddetermine the optimal sampling kernels having a givee rat
to completely overcome its effect. On the other hand, whéyudget. The results are demonstrated for the specific signal
there exists only continuous-time noise, the bound comgrgnodel of time-delay estimation in Section IX.
to the continuous-time CRB as the sampling rate increases. |
some cases, these bounds coincide at a finite sampling rate,
which implies that the sampling scheme has captured all of
the information present in the continuous-time signal, ang A. Notation

further increase in the sampling rate is useless. Conyersel 1o following notation is used throughout the paper. A

when the continuous-time and sampled CRBs differ, the 9@B|gface lowercase letter denotes a vector, while a boldface
between these bounds is indicative of the degree to WhIEBpercase letteM denotes a matrixIy is the N x N

information is lost in the sampling_ process. Our technicae Ci_dentity matrix. For a vectow, the notation||v| indicates
then be used to plot the best possible performance as adancthe E(clidean norm and, is the kth element. Given a
of the sampling rate, and thus provide the practitioner ‘ﬂithcomplex number: € C thé symbolsz* and R{} denote

tool for evaluating the benefits of oversampling. the complex conjugate and the real partpfespectively. For
When a certain sampling technique achieves the perfgy; operator?, the range space and null space &€P) and
mance of continuous-time measurements, it can be identifiﬁgp(P), respectively, while the trace and adjoint are denoted,
using the met_hod defscrlbed above. H_owever, N SOME Cap&spectively, byTr(P) and P*. The Kronecker delta, denoted
no such technique exists, or the sampling rate it requires Smn, €qualsl when m = n and 0 otherwise. The
be prohibitive. In these cases, it is desirable to determi@?pecfation of a random variableis written asE{v}.
the optimal sampling scheme having an allowed rate. SinceThe Hilbert space of square-integrable complex-valued
different signals are likely to be recovered successfulhw ¢,ctions over(0, Ty] is denotedL[0, Ty] or simply L. The
different sampling kernels, a Bayesian or average-cadgsana corresponding inner product is
is well-suited for this problem. Specifically, we assumet tha
the signalz(¢) has a known prior distribution over the class of

A *
signals, and determine the linear sampling and recongruct {f9)= 0 F(t)g(t)dt @

II. DEFINITIONS

To



and the induced norm i$f]|7_ £ (f, f). For an ordered set a family of probability measures ovéf2, .7 ). Let (), %) be

of K functionsg, ..., gk in Lo, we define the associatsgt a measurable space, and let the random varigblé) — Y
transformationG : CX — L, as denote the measurements. This random variable can represen
% eithery(t) itself or samples thereof.

(Gv)(t) = kagk(t)_ @) An estimator can be defined in this general s_etting as a
Pt measurable functiost : ) — Lo. The MSE of an estimatat

By the definition of the adjoint, it follows that atz s defined as

G f=Wfo), - (fgr))T. (3 MSE(@,z) £E{||z a7, } = E{A

To

12(t) — x(t)|2dt} :
(8)

B. Setting An estimatorz is said to be unbiased if

In this work, we are interested in the problem of estimatinqE
FRI signals from noisy measurements. To define FRI signals
formally, let theTj-local number of degrees of freedaN, (¢) In the next section, we demonstrate the applicability of our
of a signalz(t) at timet be the number of parameters definingnodel by reviewing several scenarios which can be formdlate
the segmenfx(t) : t € [t — To/2,t + Ty/2]}. The Ty-local using the FRI framework. Some of these settings will also be

{2(t)} = =(t) for all x € X and almost alk € [0, T,]. (9)

rate of innovation of:(¢) is then defined as [2] used in the sequel to exemplify our theoretical results.
Nr, (t)
pT, = max #' 4 Il. TYPES OFFRI SIGNALS

Numerous FRI signal structures have been proposed and
analyzed in the sampling literature. Whereas most of thase ca
b treated within our framework, some FRI structures do not
conform exactly to our problem setting. Thus, before dejvin

We say thatz(t) is an FRI signal ifpg, is finite for all
sufficiently large values ofly. In Section IIl, we will give
several examples of FRI signals and compute their rates
innovation.

For concreteness, let us focus on the problem of estimatiwgﬁo the derivation of the CRB, we first provide examples for
the finite-duration segmentz(t) : ¢t € [0,T,]}, for some scenarios that can be analyzed via our model and discuss some

constantTy, and let K = Ny, (T,/2) denote the number of of its limitations.
parameters defining this segment. We then have

A. Shift-Invariant Spaces
2 X2 {he € Lo[0,Ty] : 0 € O} ) P

Consider the class of signals that can be expressed as
wherehg is a set of functions parameterized by the ve@pr

and © is an open subset @&*. z(t) =Y a[mlg(t — mT) (10)
We wish to examine the random process mez

with some arbitrary square-integrable sequeke meZ

y(t) = () +w(t), te(0,T] ©) Y 54 grable sequefapnlimez

where g(t) is a given pulse inLy(R) andT > 0 is a given
wherew(t) is continuous-time white Gaussian noise. Reca$icalar. This set of signals is a linear subspacéR), which
that formally, it is not possible to define Gaussian whitesaoi iS often termed ashift-invariant (SI) space [16], [17]. The
over a continuous-time probability space [14]. Instead, waass of functions that can be represented in the form (10)
interpret (6) as a simplified notation for the equivalentaiet is quite large. For example, choosipgt) = sinc(t/T) leads

measurements to the subspace af /T-bandlimited signals. Other important
¢ examples include the space of spline functions (obtained by
z(t) = / z(1)dr + ocb(t), te€]0,To] (7) letting g(¢) be a B-spline function) and communication signals
0

such as pulse-amplitude modulation (PAM) and quadrature

whereb(t) is a standard Wiener process (also called Browniamplitude modulation (QAM). Reconstruction in S| spaces
motion) [15]. It follows thatw(t) can be considered as afrom noiseless samples has been addressed in [18], [19] and
random process such that, for afiyy € Lo, the inner products extended to the noisy setting in [20]-[22].
a = (f,w)y andb = (g,w) are zero-mean jointly Gaussian Intuitively, every signal lying in a S| space with spacifig
random variables satisfyin@{ab*} o2 (f,g) [14]. The has one degree of freedom pErseconds (corresponding to
subscriptc in o, is meant as a reminder of the fact tha(t) is one coefficient from the sequenée|m]}). It is thus tempting
continuous-time noise. By contrast, when examining sasmpl® regard the rate of innovation of such signals 84"
of the random procesgt), we will also consider digital noise However, this is only true in an asymptotic sense and for
which is added during the sampling process. compactly supported pulsegt). For any finite window size

In this paper, we consider estimators which are functioffy, the Tj-local rate of innovationps, is generally larger.
either of the entire continuous-time process (6) or of son8pecifically, suppose that the support¢df) is contained in
subset of the information present in (6), such as a discedte g, t;,] and consider intervals of the forfn, ¢t + MT], where
of samples ofy(t). To treat these two cases in a unified way)/ is an integer. Then, due to the overlaps of the pulses, for
let (Q2,.%) be a measurable space and {é% : 6 € ©} be any such interval we can only assure that there are no more



than M + [(t, — t,)/T| coefficients affecting the values of 2) Single-Burst Channel Soundingtn certain medium
x(t). Thus, theMT-local rate of innovation of signals of theidentification and channel sounding scenarios, the echbes o

form (10) is given by a transmitted pulsg(t) are analyzed to identify the positions
. and reflectance coefficients of scatterers in the medium [8],
1 b —la . .
pur = — [ 1+ [27e] _ (11) [30]. In these cases, the received signal has the form
T M L
z(t) = apg(t — ty), (14)
In particular, signals of the form (10) having a generat@ ® ; )

which is not compactly supported have an infinitg-local \\here 7, is the number of scatterers and the amplitudes

rate of innqvation, f(_)r_any f_initéFO. Thi_s is the case, for {as}}_, and time-delays,} -, correspond to the reflectance
example, with bandlimited signals, which are therefore nghj |ocation of the scatterers. Such signals can be thodght o
FRI functions under our definition. As will be discussed ie th,4 belonging to a union of subspaces, where the parameters
sequel, this is not a flaw of the definition we use for the rat,ﬁe}iL determine anl-dimensional sut;space and the coef-
. . . . . . f—1 ’
of innovation. Rather, it reflects the fact that it is impOSSi ficjans {4,} | describe the position within the subspace. In
to recover any finite-duration segmeift, 7>] of such signals oqnwrast with the previous example, however, in this sgttin
from a finite number of measurements. we have a union of an infinite number of subspaces, since
there are infinitely many possible values for the parameters
. . . . t1,...,tr.
B. Nonlinearly-Distorted Shift-Invariant Spaces Lotk . .
y P In this case, for any window of siz&, > max,{t;} —
In certain communication scenarios, nonlinearities are imin,{¢,}, the Ty-local rate of innovation is given by
troduced in order to avoid amplitude clipping, an operation 97
known as companding [23]. When the original signal lies in PTy = - (15)
0

a Sl space, the resulting transmission takes the form L . .
P 9 3) Periodic Channel Sounding:Occasionally, channel

) sounding techniques consist of repeatedly probing the unedi

z(t) = T(Z almlg(t —mT) (12) [31]. Assuming the medium does not change throughout the

mez experiment, the result is a periodic signal
wherer(-) is a nonlinear, invertible function. Clearly, tiéT- L
local rate of innovatiom ;1 of this type of signals is the same w(t) =) Y ag(t—te—mT). (16)
as that of the underlying Sl function, and is thus given by).(11 meZ =1

The recovery of nonlinearly distorted Sl signals from nkeise As before, the seX of feasible signals is an infinite union of

samples was treated in [23]-[26]. We are not aware of reseafthite-dimensional subspaces in whi¢k }{_, determine the
work treating the noisy case. subspace anfla,}%_, define the position within the subspace.
TheT)-local rate of innovation in this case coincides with (15).
4) Semi-Periodic Channel Soundin@ihere are situations
C. Union of Subspaces in which a channel consists aof paths whose amplitudes

Much of the FRI literature treats signal classes which ap@ange rapidly, but the time delays can be assumed constant

unions of subspaces [5], [7], [10], [27]. We now give exare;pleﬂr:roughOUt thi duration Off theh expelrimentd_[S], [31], [3? : i
of a few of these models. these cases, the output of a channel sounding experimdnt wi

1) Finite Union of Subspacesthere are various situationshave the form

. . . . . . L
in which a continuous-time signal is known to belong to one _
of a finite set of spaces. One such signal model is described 2(t) = 3 > almlg(t —te—mT),

by

17
meZ =1
K wherea,[m] is the amplitude of théth path at thenth probing
x(t) = Z Z ay[m]gi(t — mT), (13) experiment. This is, once again, a union of subspaces, lbet he
el 1 each subspace is infinite-dimensional, as it is determined b
the infinite set of parametefsi,[m]}. In this case, thel/T-
where {g(t)};_, are a set of generators. In this modelocal rate of innovation can be shown to be
it is assumed that only. < K out of the K sequences I 14 [festa]
{a1[m]}mez, - .., {ax[m]}mez are not identically zero [28]. PMT = — (1 + T) . (18)
Therefore, the signat(t) is known to reside in one of’) T M
spaces, each of which is spanned bylaglement subset of 5) Multiband Signals:Multiuser communication channels
the set of generatorfy (¢)}+_,. This class of functions can are often characterized by a small number of utilized sub-
be used to describe multiband signals [27], [29]. Howevdsands interspersed by large unused frequency bands [28]. Th
the discrete nature of these models precludes analysig usigsulting signal can be described as
the differential tools employed in the remainder of this grap I
Therefore, in this work we will focus on infinite unions of z(t) = ZZWMW — nT)elwe, (19)
subspaces. nez =1



where {as[n]},cz is the data transmitted by théh user, varianceos?. This is to be contrasted with the characterization
andwy is the corresponding carrier frequency. In some casekthe rate of innovation in the noise-free case as the lowest
the transmission frequencies are unknown [27], [29], tesul sampling rate allowing for perfect recovery of the signal;
in an infinite union of infinite-dimensional subspaces. Thindeed, when noise is present, perfect recovery is no longer
setting is analogous in many respects to the semi-periogicssible.

channel sounding case; in particular, théT-local rate of

innovation can be shown to be the same as that given by (18). Bound for Sampled Measurements

In Section VII, we consider lower bounds for estimating
IV. SUMMARY OF MAIN RESULTS x(t) from samplesof the signaly(t). In this setting, the

In this section, we provide a high-level description of ouga@mples inherit the noise(t) embedded in the signaj(t),
main contributions and summarize the resulting conclussior@nd may suffer from additional discrete-time noise, fornexa
An overview of the dependencies between the remainifdg, due to quantization. We derive the CRB for estimating
sections in this paper is provided in Fig. 1. x(t) from sampled measurements in the presence of both

The overarching objective of this paper is to design arfyPes of noise. However, since the discrete-time noise mmode
analyze sampling schemes for reconstructing FRI signais fr has been previously analyzed [12], [13], we only discuss the
noisy measurements. This goal is accomplished in four stagiéindamental distinctions between both models and mostly
We first derive a general form of the CRB suitable for the esfiocus in this paper on the assumption that the sampling noise
mation of continuous-time signals (Section V). We then gppiS hegligible.
this result to identify the best achievable MSE for estimgti N this setting, the sampled CRB can be designed so as
an FRI signalz(t) from its continuous-time measurement§0 converge to the continuous-time bound as the sampling
y(t) = x(t) + w(t), providing a fundamental lower boundrate increases. Moreover, if the family of FRI signals is
which is independent of the sampling method (Section VI§ontained in a finite-dimensional subspaté of L, then a
Next, we compare this continuous-time bound with the lowe8@MPpling scheme achieving the continuous-time CRB can be
possible MSE for a given sampling scheme, thus measurig;@nstructed. Such a sampling scheme is obtained by choosing
the loss entailed in any particular technique (Section .Viikernels which span the subspagel, and yields samples
Finally, we provide a mechanism for choosing the optimayhich fully capture the information present in the sigpa).
sampling kernels (in a specific Bayesian sense), under fpantrariwise, if X is not contained in a finite-dimensional
assumption of a linear reconstruction scheme (Section).viifubspace, then no finite-rate sampling method achieves the
Our results can be applied to specific families of FRI signalgontinuous-time CRB. In this case, any increase in the sam-
but they also yield some general conclusions as to thevelatP!ing rate can improve performance, and the continuous-tim
difficulty of various classes of estimation problems. Thed¥und is obtained only asymptotically.
general observations are summarized below. It is interesting to examine this distinction from a union

It shoulc be notec thai our CRB anaysis is focuset on of subspaces viewpoint. Suppose that, as in the examples of
urbiase( estimetors This is a stardarc assumgtion which is ~ Section llI-C, the familyX can be described as a union of an
requirec in order to oktain meaiingful bounds [33].For high infinite number of subspace®,, } indexed by the continuous
values of the signa-to-noise ratio (SNR) urbiase( estimetors ~Parametery, so that
are optimal, anc the CR_B ?s the_r of pra_(tical relevange How- x— U U,. (21)
ever undel low SNR it is quite possible for tectniques to "
outpeiform the CRB. Thest effects are further discusse: in
Sedion 1X, where we show thai the CRB typically predicts
the peifformance of pradical teckniques very accurately but

doe: occesiorally fail to do sc in specific cases. dim <2Ua> < o 22)

A. Continuous-Time Bound where dim(M) is the dimension of the subspacel. By
Our first goal in this paper is to derive the continuouszontrast, in the noise-free case, it has been previouslywrsho

time CRB, which defines a fundamental limit on the accurag¢@4] that the number of samples required to recovét) is

with which an FRI signal can be estimated, regardless given by

the sampling technique. This bound turns out to have a max dim(Uy, + Ua, ), (23)

particularly simple closed form expression which depemuls o ana

the rate of innovation, but not on the cla¥sof FRI signals I-€., the largest dimension among sums tafo subspaces

being estimated. Specifically, as we show in Theorem 2 hglonging to the union. In general, the dimension of (22) wil

Section VI, the MSE of any unbiased estimafosatisfies P& much higher than (23), illustrating the qualitative efiénce
between the noisy and noise-free settings. For example, if

iMSE(ﬁc,x) > pTOJg, (20) the subspaces/, are finite-dimensional, then (23) is also
0 necessarily finite, whereas (22) need not be.
Thus, the rate of innovation can be given a new interpratatio Nevertheless, one may hope that the structure embodied in
as the ratio between the best achievable MSE and the natsevill allow nearly optimal recovery using a sampling rate

In this case, a finite sampling rate captures all of the inferm
tion present in the signal if and only if



V. Mathematical Prerequisites

e

VI. CRB for VII. CRB for VIII. Optimal Sampling
Continuous-Time Measurements Discrete-Time Measurements for Linear Reconstruction
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IX. Application:
Channel Estimation

Fig. 1. Overview of the results presented in this paper.

close to the rate of innovation. This is certainly the caseconplex random process distributed according to a known
in many noise-free FRI settings. For example, there existior distribution. We further assume that both the sangplin
techniques which recover the pulse stream (14) from samp#esd reconstruction techniques are linear. While nonlinear
taken at the rate of innovation, despite the fact that in¢bise reconstruction methods are typically used for estimatifRy F

X is typically not contained in a finite-dimensional subspacsignals, this assumption is required for analytical triaitits,
However, this situation often changes when noise is added,and is used only for the purpose of identifying sampling
which case standard techniques improve considerably unéernels. Once these kernels are chosen, they can be used in
oversampling. This empirical observation can be quantifi@dnjunction with nonlinear reconstruction algorithmsofigh
using the CRB: as we show, the CRB for samples taken iatthis case no analytic optimality conditions can be predid

the rate of innovation is substantially higher in this casant  Under these assumptions, we identify the sampling kernels
the optimal, continuous-time bound. This demonstrate$ thaelding the minimal MSE. An additional advantage of our
the sensitivity to noise is a fundamental aspect of estitgatiassumption of linearity is that in this case, the optimahkés
signals of the form (14), rather than a limitation of exigtindepend only on the autocorrelation

algorithms. On the other hand, other FRI models, such as the .

semi-periodic pulse stream (17), exhibit considerableseoi Rx(t,7) = E{z(t)2"(7)} (24)

resilience, and indeed in these cases the CRB convergesythe signalz(t), rather than on higher-order statistics. Indeed,
the continuous-time value much more quickly. iven a budget ofV samples, the optimal sampling kernels are
As we discuss in Section IX-E, the different levels c2§Vi{ven by the N eigenfunctions ofRx corresponding to the
robustness to noise can be explained when the signal modglgargest eigenvalues. This is reminiscent of the Karhunen—
are examined in a union of subspaces context. In this case, thave transform (KLT), which can be used to identify the
parameter® definingz(¢) can be partitioned into parametergyptimal sampling kernels in the noiseless setting. However
defining the subspacé/, and parameters pinpointing thejy our case, shrinkage is applied to the measurements prior
position within the subspace. Our analysis hints that e&tm 1o reconstruction, as is typically the case with Bayesian
of the position within a subspace is often easier than esitma estimation of signals in additive noise.
of the subspace itself. Thus, when most parameters are usef| setting of particular interest occurs when the autocorre-
to select an intra-subspace position, estimation at treobt |5ti0n R is cyclic, in the sense that
innovation is successful, as occurs in the semi-periodge ca
(17). By contrast, when a large portion of the parameters Rx(t,7) = Rx((t — 7)modT) (25)
?he;nrg\tethsf is:r?c?\?;ticc?n Iir; ﬁZiésasaf;mtElilsngi]s rfhtz :;g,ze;n tt ePsomeT. This scenario occurs,'for gxample, in the periodic
non-periodic pulse stream (14) Whérd)nis evenly divided pulse _stream (16) and th? se_ml-_per!odlc pulse stream (17),
. ' . assuming a reasonable prior distribution on the paraméters
among subspace-selecting parame{er$ and intra-subspace It is not difficult to show that the eigenfunctions &fy are
parameters{a,}. Thus we see that the CRB, together wit iven, in this case, by the complex exponentials
the union of subspaces viewpoint, provide valuable insigh ' '

into the relative degrees of success of various FRI estimati Yn(t) = Lej%"m ne. (26)
techniques. " VT ’

] . Furthermore, in the case of the periodic and semi-periodic
C. Choosing the Sampling Kernels pulse streams, the magnitudes of the eigenvalues? gf

In some cases, one may choose the sampling systame directly proportional to the magnitudes of the respecti
according to design specifications, leading to the questidfourier coefficients of the pulse shapgét). It follows that
What sampling kernels should be chosen given an allottéte optimal sampling kernels are the exponentials (26)eeorr
number of samples? We tackle this problem in Section VIdponding to the largest Fourier coefficientsy¢f). This result
by adopting a Bayesian framework, wherein the sigr@) is is encouraging in light of recently proposed FRI reconstouc



TABLE |

CRB SETTINGS derivative of the probability measure) which is differeie
with respect ta&d, and such that its differentiation with respect
Measurements to 6 can be interchanged with integration with respectyto
Discrete Continuous|  The CRB also requires the mappihg from 6 to x to be non-
Discrete Standard [35] [15] redundant and differentiable. The formal statement ofehes
Estimand  Continuous Uncorstrained No urbiaset estimztor regularity conditions is provided below. For the measungme
Continuous Corstrained | Section VII ‘ Section VI setting (6), with reasonable mappings, these conditions are

guaranteed to hold, as we will demonstrate in the sequel; in
this section, however, we list these conditions in full satth
techniques which utilize exponential sampling kernels, [7inore general statement of the CRB will be possible.

and demonstrates the suitability of the Bayesian approach P1) There exists a valu@, € © such that the measutg,
designing practical estimation kernels. dominates{ Py : @ € ©}. In other words, there exists a
Radon-Nikodym derivativeg (y) £ dPs/dPs, such that,

V. MATHEMATICAL PREREQUISITES CRB FORGENERAL for any eventd € %

PARAMETER SPACES

In statistics and signal processing textbooks, the CRB Py(A) Z/pe(y)Pgo(dy). (27)
is typically derived for parameters belonging to a finite- A
dimensional Euclidean space [33], [35], [36]. HoweversthiP2) For all y such thatpg(y) > 0, the functionspe(y)
result is insufficient when it is required to estimate a signa  andlog pg(y) are continuously differentiable with respect
x belonging to other Hilbert spaces, such as fhe space to 6. We denote bydpe(y)/00 and dlogpe(y)/00 the
defined above. When no knowledge about the structure of column vectors of the gradients of these two functions.
z is available, a bound for estimation from measuremen®3) The supporfy € ) : po(y) > 0} of pe(y) is independent

contaminated byolored noise was derived in [37]. However, of 6.
this bound does not hold when the noisg) is white. Indeed, P4) There exists a measurable functipn) x © — R such
in the white noise case, it can be shown that no finite-MSE that for all sufficiently smalA > 0, foralli =1,..., K,
unbiased estimators exist, unless further informationuabo  for all y, and for allé,
x(t) is available. For example, the naive estimait6r) = y(t) 1
has an errori(t) — z(t) equal tow(t), whose variance is A [Po+ae(y) —pe(y)] < aly, 0) (28)
infinite.

In our setting, we are given the additional information that and such that for ai,
:; belongs to the constraint sat of (5). '!'o the best of our /qQ(y,O)Pgu(dy) < oo. (29)

nowledge, the CRB has not been previously defined for any

type of constraint sek C Lo, a task which will be accom- | (28), ; represents théth column of thek x K identity

plished in the present section. As we show below, a finite- matrix.

valued CRB can be constructed by requiring unbiasedngss) For eacts, the K x K Fisher information matrix (FIM)
only within the constraint sei, as per (9). As we will

see, the CRB increases linearly with the dimension of the Jo é]E{(alng"(y)) (alogp”(y)) } (30)
manifold X. Thus, in particular, the CRB is infinite when 06 06
X = Lo. However, for FRI signals, the dimension &f is is finite and invertible.

finite by definition, implying that a finite-valued CRB can bepg) 1, is Fréchet differentiable with respect & in the sense
constructed. Although the development of this bound ingoke  that for eachd, there exists a continuous linear operator
some deep concepts from measure theory, it is a direct analog Ohg /00 : R¥ — L, such that
of the CRB for finite-dimensional parameters [33, Th. 2.5.15 Ohe

Table | summarizes the various CRB settings treated in the 5 lhe+s — he — 5 0lln _ 9 (31)
literature and in this work. -0 14l

To_ derive the boun_d in the brpadest setting _possible, in trp}s,) The null space of the mappide /06 contains only the
section we temporarily generalize the scenario of Section |~ ;1 vector. This assumption is required to ensure that the

and consider estimation of a parameterbelonging to an mapping fromé to z is non-redundant, in the sense that
arbitrary measurable and separable Hilbert sgac&éhe MSE there does not exist a parametrization3fn which the
of an estimator in this setting is defined aBISE(z,z) = number of degrees of freedom is smaller thsn

E{||# — «||3,}. The concept of bias can similarly be extended
if one defines expectation in the Pettis sense [38]. Speltyfica
the Pettis expectatioR{v} of a random variable : Q@ — H
is defined as an elemehte H such that(k, ¢) = E{(v, ¢)}
for any ¢ € H. If no such element exist, then the expectatiomheorem 1. Let & € © be a deterministic parameter, where
is said to be undefined. © is an open set iRX. Let # be a measurable, separable
The derivation of the CRB requires the existence of a “prolbiilbert space and letr € H be a signal defined by the
ability density” pe(y) (more precisely, a Radon—-Nikodymmappinghe : © — H, as in(5). Let {Py : 8 € O} be

We are now ready to state the CRB for the estimation of a
parameter: € L,[0, T| parameterized by a finite-dimensional
vector§. The proof of this theorem is given in Appendix A.



a family of probability measures over a measurable spackrection subspace [39]: any perturbationaofvhich remains
(Q,.%), and lety : Q — Y be a random variable, wher® within the constraint se¥ must be in one of the directions in
is a measurable Hilbert space. Assume regularity conditio®/. Formally,Z/ can be defined as the range spacé@i§/00.

P1-P6. Letz : Y — H be an unbiased estimator af from If one wishes to use the measurement® distinguish be-
the measurementg such that tweenz and its local neighborhood, then it suffices to observe
. the projection ofy ontol{. Projecting the measurements onto
2
]E{Hﬂ?(l/)HH} < 0. (32) U removes most of the noise, retaining oy independent
Then, the MSE af satisfies Gaussian components, each having a varianeg’ oThus we

. have obtained an intuitive explanation for the boundsaf? in
MSE(z, z) > Tr [(8}“’) <8hg> J;1:| (33) Theorem 2. To formally prove this result, we apply Theorem 1
06 06 to the present setting, as follows.
whereJyg is the FIM (30). Proof of Theorem 2: The problem of estimating the
h | ) | arameter®) from a continuous-time signaj(¢) of the form
T eorem 1 enables us to obtain a ower b‘?“”d on t §)Was examined in [15, Example 1.7.3], where the validity o
estimation error of; based on the FIM for estimatin The - »qqmptions P1-P4 was demonstrated. It was further shown

'?“Fer can ofFen be computed relatively ea5|_ly SIEAs a5t the FIMJg* for estimating® from y(t) is given by [15,
finite-dimensional vector. Even more conveniently, the:eraibid]

on the right-hand side of (33) is taken overkax K matrix, ' L /ohe\* /0N

. . . . cont 0 6
despite the involvement of continuous-time operators.sThu Jg™ = —= <80> (80> .
the computation of (33) is often possible either analyljcal

= 36
= (36)
or numerically, a fact which will be used extensively in th@ur goal will be to use (36) and Theorem 1 to obtain a

sequel. bound on estimators of the continuous-time functioft).
To this end, observe that the FINI*™ is finite since, by
VI. CRB FORCONTINUOUS-TIME MEASUREMENTS Assumption P6, the operatdihg /00 is a bounded operator

ignto L. Furthermore, by Assumption PBhe/06 has a
trivial null space, and thuslg™™® is invertible. Therefore,
Assumption P5 has been demonstrated. We may consequently

We now apply Theorem 1 to the problem of estimating
deterministic signak: from continuous-time measurements
given by (6).

apply Theorem 1, which yields
Theorem 2. Let 2 be a deterministic function defined %),
whered € © is an unknown deterministic parameter a@ds  MSE(z, z)
an open subset ®X. Lety be a measurement signal given by * * -1
(6). Suppose that Assumptions P6—P7 are satisfied. Then, the > o2 Tr (%?) <86}f99> ((%@9) (%)) ]
MSE of any unbiased, finite-variance estimatoof x from y
is bounded by = o2 Tr (I)
MSE(#,z) > KoZ. (34) = Ko? (37)

The bound of Theorem 2 can be translated to units mus completing the proof -

tgeTrate (;)f |nno|vat.|onoTF],_ i W(athassume that4thg se?r:T.]e.nt To illustrate the use of Theorem 2 in practice, let us conside
[0, To] under analysis achieves the maximum (4), i.e., this SR a simple example a signal(t) belonging to a finite-

segment containing the maximum allowed number of degre&ﬁ]ensional subspad@. Specifically. assume that
of freedom. In this caser, = K/Ty, and any unbiased padé. Sp ¥,

estimatorz(t) satisfies

HE{ o) — Par} o5
Z PTy-

ol for some coefficient vecto = (ay,...,ax)” and a given
In the noisy settingpr, loses its meaning as a lower boundet of linearly independent functiorg } spanningg. This
on the sampling rate required for perfect recovery, sinee tincludes, for example, families of shift-invariant subsps
latter is no longer possible at any sampling rate. On therothgith a compactly supported generator (see Section IlI-A).
hand, it follows from (35) that the rate of innovation gaing&rom Theorem 2, the MSE of any unbiased estimator @8
an alternative meaning; namely, is a lower bound on the bounded byK'¢?, whereK is the dimension of the subspace
ratio between the average MSE achievable by any unbiagédWe now demonstrate that this bound is achieved by the
estimator and the noise varianeg, regardless of the sampling unbiased estimator
method i=Pgy (39)

Before formally proving Theorem 2, note that (34) has an

intuitive geometric interpretation. Specifically, the stmint wherePyg is the orthogonal projector onto the subspgce
setX is a K-dimensional differential manifold 5[0, 7. In To verify that (39) achieves the CRB, I&t denote the set
other words, for any point € X, there exists d -dimensional transformation (2) associated with the functidas }/<_,. One
subspaceé/ tangent toX at x. We refer toi/ as the feasible may then writex = G andPg = G(G*G)~'G*. Thus (39)

K
2(t) =Y argr(t) (38)
k=1




becomes a modified set of sampling kerne(s,,(t)}2_, which are an
. . . invertible linear transformation ofs,, (¢)})_;, so that
T=GG"G)TG'GO+G(G"G)  G'w

n=1»
N
=GO+ Pgw (40) Sn(t) =Y Buisi(t) (46)
i=1

and therefore
X ) ) whereB € RY*¥ is an invertible matrix. Then, the resulting
E{ll& - 2%, } = E{|PgwllZ,} - (41)  measurements are given byé — Be, and similarly the
Sinceg is a K-dimensional subspace, it is spanned by a sgfiginal measurements can be recovered frora. It follows
of K orthonormal functionsu .. ., ux € Ls. Thus that these settings are equivalent in terms of the accuréby w
p which 2 can be estimated. In particular, the FIM for estimating
z in the two settings is identical [15, Th. 1.7.2].
E{|Pgul|i,} = ZE{K“”“’CHQ} =KoZ  (42)  When digital noise is present in addition ]to continuous-
k=1 time noise, the sampling schemé¢s, (¢)} and {s,(¢)} are
which demonstrates that indeed achieves the CRB in thisno longer necessarily equivalent, since the gain introduxe
case. the transformatio will alter the ratio between the energy of
In practice, a signal is not usually estimated directly frorthe signal and the digital noise. The two estimation prolslem
its continuous-time measurements. Rather, the sigifal are then equivalent if and only B is a unitary transformation.
is typically sampled and digitally manipulated. In the next How should one choose the spaSe= span{si,...,sy}
section, we will compare the results of Theorem 2 withpanned by the sampling kernels? Suppose for a moment that
the performance achievable from sampled measurements, trete exist elements in the range spacedbh /06 which
demonstrate that in some cases, a finite-rate sampling schere orthogonal taS. This implies that one can pertutb in
is sufficient to achieve the continuous-time bound of Thestuch a way that the constraint s€tis not violated, without
rem 2. changing the distribution of the measuremant$his situation
occurs, for example, when the number of measuremants
is smaller than the dimensioK of the parametrization of
X. While it may still be possible to reconstruct some of the
In this section, we consider the problem of estimatig) information concerning: from these measurements, this is an
of (5) from a finite number of samples of the proceg$) undesirable situation from an estimation point of view. hu
given by (6). Specifically, suppose our measurements aengiye will assume henceforth that

VIl. CRB FOR SAMPLED MEASUREMENTS

by
T R(%Z)mslz{m. (47)
n = () +on = [ YOSOd+ vy n =1 N | N
0 (43) As an example of the necessity of the condition (47), con-

sider again the signal (38), which belongs t&adimensional
subspacg C L, spanned by the functions, . .., gx. In this
case it is readily seen that for any vector

K

where {s,}N_| € L,[0,Tp] are sampling kernels, and, is
a discrete white Gaussian noise process, independent:pf
having mean zero and varianeé. Note that the model (43)
includes both continuous-time noise, which is present @& th Ohg
signaly(t) = z(t) + w(t) prior to sampling, and digital noise FEr ka‘gk(t)' (48)
vy, Which arises from the sampling process, e.g., as a result of k=1

quantization. In this section, we will separately examihe t Since the functiondg,} span the spac§, this implies that

effect of each of these noise components. R(0hg/00) = G, and therefore the condition (47) can be
From (6) and (43), it can be seen that the measuremewtstten as
c1,...,cyn are jointly Gaussian with mean Gnst ={o} (49)
J— E{c,} = (x,5,) (44) which is a standard requirement in the design of a sampling
_ system for signals belonging to a subspgcgt0].
and covariance By virtue of Theorem 1, a lower bound on unbiased
T, 2 Cov(ei, ;) = o2 (si,5,) + 036”_. (45) estimation ofz can be obtained by first computing the FIM

J,™P for estimating® from c. This yields the following

A somewhat unusual aspect of this estimation setting is tHgsult. For simplicity of notation, in this theorem we assum
the choice of the sampling kernels (¢) affects not only the that the functionzy and the sampling kernels, are real. If
measurements obtained, but also the statistics of the.r@ise complex sampling kernels are desired (as will be required in
example of the impact of this fact is the following. Supposé€ sequel), the result below can still be used by trang/atin
first that no digital noise is present, i.ey = 0, and consider €ach measurement to an equivalent pair of real-valued sampl

. _ , _ _ Theorem 3. Let z be a deterministic real function defined
We require the new functions,, . . ., ux since the functiongi, ..., gx by (5 h 0coOi K d L
are not necessarily orthonormal. The choice of non-orthoabrfunctions y( )’ .W erev c IS an unknown etermlnlgtlc parameter
g1,...,gx will prove useful in the sequel. and © is an open subset ®&*. Assume regularity conditions
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P6-P7, and lett be an unbiased estimator af from the fulfilled for any value of@, [33]. Applying Theorem 1 yields

real measurements = (ci,...,cy)” of (43). Then, the FIM (51) and completes the proof. [ ]
Jy,™P for estimating® from c is given by In the following subsections we draw several conclusions
Ohe\ * o from Theorem 3.
sam ] * —1 o« ]

_ _ _ A. Discrete-Time Noise
where S is the set transformation corresponding to the func- Suppose first thab2 — 0, so that only digital noise is

tions {s"}flv.zl.' I (4.7) holds, th_enlseamp 1S |nvert|ble._ In t_h|5 present. This setting has been analyzed previously [12], [1
case, any fufut(.a—vanance, unbiased estimatdior estimating [41], and we therefore only briefly examine the contrast with
v from ¢ satisfies continuous-time noise. When only digital noise is present,
. Ohg\ ™ [ Oh samps its effects can be surmounted either by increasing the gain
MSE(z,z) > Tr [(8:) (65) J5™) 1] G of the sampling kernels, or by increasing the number of
. o e measurements. These intuitive conclusions can be verified

Proof: In the present setting, the FIN™" is given by from Theorem 3 as follows. Assume that condition (47) holds,

[35] " and consider the modified kerneds (t) = 2s,(t). The set
JEmp — (8“> ! (8“> (52) transformationS corresponding to the modified kernelsds=
90 90 2S5, and sincer? = 0, this implies that the FIM obtained from
where the matri¥ € R¥*V is defined by (45) and the matrixthe modified kernels is given byg™"" = 4J3™". Thus, a
/06 € RN*K is given by sufficient increase in the sampling gain can arbitrarilyéase
Jy"? and consequently reduce the bound (51) arbitrarily close
(‘9“> _ Ok (53) to zero. Similarly, it is possible to increase the number of
96 ) ), 90 samples, for example, by repeating each measurement twice.
with p,, defined in (44). Let S and S denote the transformations corresponding to the
By the definition of the set transformation, thah element o©riginal and doubled sets of measurements. It can thenlyeadi
of the N x N matrix S*S is given by be seen from the definition of the set transformation (2) and
its adjoint (3) thatS.S* = 455*. Consequently, by the same
(579)i; = (Sej, Se;) = (s, ) (54) argument, in the absence of continuous-time noise one can

achieve arbitrarily low error by repeated measurements.

In practice, rather than repeating each measurement, an
increase in sampling rate is often obtained by sampling on
T =0258*S +o2Iy. (55) a denser grid. In this case, the analysis is more complex and
depends on the specific signal family in question. For exampl
in the case of Sl spaces, it has been shown that the error

L Ohg Ohg . Ohg Olin, converges to zero as the sampling rate increases [41], [42].
S*—— =( m,€ 5, )= stn = 87
nk k k

where e; is the ith column of theN x N identity matrix.
Therefore, we have

Similarly, observe that

00 00
(56) B. Continuous-Time Noise

where & is the kth column of theK x K identity matrix. =~ As we have seen, sampling noise can be mitigated by

Thus increasing the sampling rate. Furthermore, digital nose i
on _ 5*%_ (57) inherently dependent on the sampling scheme being used.
00 00 Since our goal is to determine the fundamental performance
Substituting (55) and (57) into (52) yields the requiredresp limits regardless of the sampling technique, we will foceseh
sion (50). and in subsequent sections on continuous-time noise. Thus,
We next demonstrate that if (47) holds, thdi§™ is suppose thavj = 0, so that only continuous-time noise is
invertible. To see this, note that from (50) we have present. In this case, as we now show, it is generally impkessi
Ohe to achieve arbitrarily low reconstruction error, regassleof
N (Tg™?P) /\/<S* (80)) (58) the sampling kernels used; indeed, it is never possible to
outperform the continuous-time CRB of Section VI, which

Now, consider an arbitrary functiofi € R(0he/00). If (47) is typically nonzero. To see this formally, observe firstt tima
holds, thenf is not orthogonal to the subspa&e Therefore, the absence of digital noise, the FIM for estimatihgan be
(f, sn) # 0 for at least one value of, and thus by (3)5* f # written as

0. This implies that *
gome — L (00" g gegy-1 g (e
N (s (Ze)) = wr(2e) ~ oy (59) % \ 99 0
00 B 00 ) ’ 1 [Ohg\™ Ohe
A A (60)
Combined with (58), we conclude thaf(J,"™") = {0}. This o¢

demonstrates thaly™" is invertible, proving Assumption where Ps is the orthogonal projection onto the subspace
P5. Moreover, in the present setting, Assumptions P1-P4 &welt is insightful to compare this expression with the FIM
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Jgont obtained from continuous-time measurements in (3@ndeed, observe that= S*y = S*GO + S*w, and thus
In both cases, a lower bound on the MSE for unbiased . . 5 e 12
estimation ofz was obtained frondy by applying Theorem 1. E{ll# - =[%,} = B{IG(S"G) 'S wl]L, }

Consequently, if it happens thay™ = J5P, then the =E{Tr(G(S*G) 'S ww*S(G*S)"'G*) }
continuous-time bound of Theorem 2 and the sampled bound = Tr(G(S*G) ™! Cov(S*w)(G*S)'G¥).
of Theorem 3 coincide. Thus, if no digital noise is addednthe (63)

it is possible (at least in terms of the performance bourtus) t N ) .
estimators based on the samptewill suffer no degradation NQOtE thatCov(S*w) = Cov(c), which by (55) is equal to
compared with the “ideal” estimator based on the entire sg° 5 Substituting this result into (63) and comparing with
of continuous-time measurements. This occurs if and only (#1) verifies thati achieves the CRB.

R(0he/06) C S; in this case, the projectioRs will have

no effect on the FIMJZ"™, which will then coincide with D. Nyquist-Equivalent Sampling

Jgont of (36). In the remainder of this section, we will discuss

. . . i . We refer to situations in which the dimension of the
several cases in which this fortunate circumstance arises.

sampling space equals the dimension of the signal space
as “Nyquist-equivalent” sampling schemes. In the previous
section, we saw that Nyquist-equivalent sampling is pdssib
C. Example: Sampling in a Subspace using K samples when the signal lies ini&dimensional sub-
spaceX, and that the resulting system achieves the continuous-
The simplest situation in which samples provide all of thégme CRB. A similar situation occurs when the set of possible
information present in the continuous-time signal is theecasignals X is a subset of am/-dimensional subspacst of
in which z(t) belongs to al-dimensional subspaag of L,. L, with M > K. In this case, it can be readily shown that
This is the case, for example, when the signal lies in a shifR(dhe/06) C M. Thus, by choosingv = M sampling
invariant subspace having a compactly supported generaternels such thaf = M, we again achievdg™t = Jg"?,
(see Section IlI-A). As we have seen above (cf. (48)), in thi'emonstrating that all of the information contentsitas been
scenariadhg /06 is a mapping onto the subspageAssuming captured by the samples. This is again a Nyquist-equivalent
that there is no discrete-time noise, it follows from (60atth scheme, but the number of samples it requires is higher than
the optimal choice of a sampling spaSeis G itself. Such a the number of parameteis defining the signals. Therefore,
choice requiresV = K samples and yielddg™ = Jg™". in this case it is not possible to sample at the rate of innonat
Of course, such an occurrence is not possible if the samplingthout losing some of the information content of the signal
process contributes additional noise to the measurements. In general, the constraint sé& will not be contained in
In some cases, it may be difficult to implement a set @ny finite-dimensional subspace b%. In such cases, it will
sampling kernels spanning the subspaktelt may then be generally not be possible to achieve the performance of the
desirable to choose & -dimensional subspac§ which is continuous-time bound usingny finite number of samples,
close toG but does not equal it. We will now compute theeven in the absence of digital noise. This implies that in the
CRB for this setting and demonstrate that it can be achievawst general setting, sampling above the rate of innovaon
by a practical estimation technique. This will also demmatst often improve the performance of estimation schemes. This
achievability of the CRB in the special case= G. We first conclusion will be verified by simulation in Section IX.
note from (2) and (48) thabhe/00 = G, whereG is the
set transformation corresponding to the generafois < ;. VIII. OPTIMAL SAMPLING FOR LINEAR
Furthermore, it follows from (49) that*G and G*S are RECONSTRUCTIONPROCEDURES
invertible K x K matrices [40]. Using Theorem 3, we thus

find that the CRB is given by In this section, we address the problem of designing a sam-

pling method which minimizes the MSE. One route towards

. this goal could be to minimize the sampled CRB of Theorem 3
MSE(z,z) > o2 TY(G (G*S(5*9)715*G) G*> with respect to the sampling spade However, the CRB is
— 2 T\I‘(G(S*G)—ls*S(G*S)—lG*) . (61) a function of the unknown parameter'vecHJrConseguentIy,

for each value o), there may be a different sampling space

hich minimizes the bound. To obtain a sampling method
It is readily seen that whes = G, the bound (61) reduces‘S bl nimizes . ! sampiing

to Ko, which is (as expected) the continuous-time bourwhich is optimal on average over all possible choice8,oive
ag - . .
e’ . ow make the additional assumption that the parameter vecto
of Theorem 2. WherS # G, the bound (61) will generally 0 p b

i i sam : is random and has a known distribution. Our goal, then, is
be higher thark o2, sinceJ"™® of (60) will exceedJg™ of g

36). In thi . i h stent. Uk to determine the sampling spacethat minimizes the MSE
(36). In this case, it is common to use the consistent, ua 'a%E{ch — |7} within a class of allowed estimators. Note that
estimator [18], [40] 2

the mean is now taken over realizations of both the noige
and the parametef.
& =G(s"G) e (62)  Since 6 is random, the signak(t) is random as well.
To make our discussion general, we will derive the optimal
As we now show, the bound (61) is achieved by this estimateampling functions for estimating a geneconrplex random
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processz(t) (not necessarily having realizations ihof (5)) A. Relation to the Karhunen—-Bee Expansion and Finite-
from samples of the noisy proceg&) = z(t) +w(t). In Se- Dimensional Generalizations

tions VIII-C and IX, we will specialize the results to a sfeci  The problem posed above is closely related to the
type of real-valued FRI signal and obtain explicit expressi karhunen-Léve transform (KLT) [43], [44], which is con-
for the optimal sampling kernels in these scenarios. cerned with the reconstruction of a random signél) from

Let z(¢) denote a zero-mean random process defined oygl noiseless samples. Specifically, one may express in
t € [0, 7o, and suppose that its autocorrelation function  terms of a complete orthonormal basisy (1)}, for L, as

Ry (tn) 2 E{a(t)a” ()} (64 o(0) = 3 (o) () (67

is continuous int and n. Our goal is to estimate(t) based k=1
on a finite numberV' of samples of the signa)(¢) = z() + The goal of the KLT is to choose the functiofigy (1)},
w(t), t € [0,Tp], wherew(t) is a white noise process (notsych that the MSE resulting from the truncation of this serie
necessarily Gaussian) with varianeg which is uncorrelated after N terms is minimal. It is well known that the solution
with z(t). We focus our attention oinear samplingschemes, +tg this problem is given by theV-term truncation of the
i.e., we assume the samples are given by Karhunen—Léve expansion [43], [45].
en = (1, 5n) (65) Since Rx (t,n) is assumed to be continuous in our setting,
n = Yo Sn/- by Mercer’s theorem [45] it possesses a discrete set of eigen

Finally, we restrict the discussion tmear estimationmeth- functions {¢,.(t)}72,, which constitute an orthonormal basis
ods, namely those techniques in which the estimigg is for Lz. These functions satisfy the equations

constructed as Ty
Mk (1) = / R (t, n)dx(n)d, (68)

in which the corresponding eigenvalugg > \s > --- > 0
are nonnegative and are assumed to be arranged in descending
n=1-

important to note that for any given set of sampling funmiorprqer' With thgse functions, (67,) is known as the'Karhunen—
{sn(H)}Y_,, the minimum MSE (MMSE) estimator of () Loéve expansion. It can be easily shown that the firserms

is often a nonlinear function of the measuremefts}_, in this series constitute the beStterm approximation of ()

n=1- H . .
Indeed, typical FRI reconstruction techniques involve t:l—no'?1 an MSEl sense|~_ [45]. Ln other word;, 'P thg hoiseless case,
linear stage. Consequently, restricting the discussidiméar the op_t|ma sampling and reconstruction functions4rg) =
recovery schemes may seem inadequate. However, this Chéﬁ’@@) = Yu(t).

has two advantages. First, as we will see, the optimal linear" ©Ur Setting, we do not have access to samples (of

scheme is determined only by the second-order stati:sticsb(!)’II rat.he_r only t? samp!e; of;heh n0|shy procg$s|). In th||§
2(t) and w(t), whereas the analysis of nonlinear method@S€: 't IS not cleaa priori whether the optimal sampling
necessitates exact knowledge of their entire distributiore- and reconstruction filters coincide or whether they mateh th
tions. Second, it is not the final estimat¢t) that interests Karhunen-Leve expansion of (t).

us in this discussion, but merely the set of optimal sampling The f|3|te-d|men3|gnal analogue if our r;robl%r?& in which
functions. Once such a set is determined, albeit from %3 ¥» @ndw are random vectors taking values i, was

linear recovery perspective, it can be used in conjuncticgﬁalf"ted Y r[]46|], [47]. I;rhe derivation in these wofrkr?, hgwexl/e
with existing nonlinear FRI techniques, though of course tHe ied on the low-rank approximation property of the siregu

optimality guarantees will no longer hold in this case. As wYalue decomposition (SVD) of a matrix. The generalization

will see in Section IX, the conclusions obtained through OLﬂ'f this concept to infinite-dimensional operators is subtid

analvsis appear to apply to FRI techniques in aeneral. Un illl thus be avoided here. Instead, we provide a conceptuall
4 PP ppYy d g 4t ple (if slightly cumbersome) derivation of the optimal

the above assumptions, our goal is to design the samplifj' i q / hod f ) Enal
kernels {s,,(1)}Y_, and reconstruction function, ()} inear sampling and reconstruction method for noisy siginal

n=1 . . .
such that the MSE (8) is minimized. As we will see, it still holds thats,(t) = ¥,(t), but

As can be seen from (65), we assume henceforth that OHW@) = an¥n(t), Wherea,, is a shrinkage factor depending
continuous-time noise is present in the sampling systera. TR the SNR of thenth sample.

situation is considerably more complicated in the preserice

digital noise. First, without digital noise, one must cheosB. Optimal Sampling in Noisy Settings

only the subspace spanned by the sampling kernels, as thas explained in Section VII, in the absence of discrete-time
kernels themselves do not affect the performance; this risise, the MSE is not affected by modifications of the sam-
no longer the case when digital noise is added. Secomging kernels which leave the s8t= span{s;(t),...,sny(#)}
digital noise may give rise to a requirement that a particulanchanged. Thus, without loss of generality, we constrain
measurement be repeated in order to average out the nosg(t)}V_; to satisfy

This is undesirable in the continuous noise regime, since

T
the repeated measurement will contain the exact same noise <Sn o2s,, Jr/ Rx(- T)Sm(T)dT> = bmn (69)
bl c I )
0

N
B(t) =) eavnl(t), (66)
n=1

for some set of reconstruction functiods,, (t)}N_;. It is

realization.
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for everym,n = 1,..., N. This can always be done sinceSubstituting (72) and (73) back into (71), we conclude that

the operatorRy : L, — Lo defined by (Ry f)(t) = minimization of the MSE is equivalent to minimization of
fOT Rx(t,7)f(r)dr + o2 f(t) is positive definite. This choice -

is particularly convenient as it results in a set of unceres Z (Un||2 o { <vn,/ Rx (-, T)Sn(T)dT>}) (74)
samples{c, }. Indeed el 0

of constraints (69).

+y  with respect tofs,, () }2_; and{v, (t)}2_,, subject to the set
(my(n)dn i . :
As a first stage, we minimize (74) with respect to the

Bfemc} = E{ ( / ) s:;<7>y<f>d¢> ( / T

T reconstruction functiongv,, (t)}2_,. To this end, we note that
= //O i (TE{y(T)y" (n)} sn(n)drdn the nth summand in (74) is lower bounded by
T T
:// s, (7) R (7, m)sn (n)drdn onl2 = 2]lomll ’/ R (-, 7)sn(7)dr
0 0
+ E{(sn,w) (s, w)" } - 2
T > = R : n d )
= [[ s R sarirdn + 7 s ) - ‘/ x(m)en(r)ar
0 75
=mn- (70) (75)
where we used the Cauchy—-Schwarz inequality and the fact
We are now ready to determine the optimal samplinﬁ'qat min. {z? — 2bz} = —b?. This bound is achieved by
method. We begin by expressing the MSE (8) as choosing .
onlt) = / Ry (t,7)s (7)dr, (76)
0

T T
| {0 - a0P} at = [ B{la(e)?) ae o | o
0 0 thus identifying the optimal reconstruction functions.
Substituting (76) into (74), our goal becomes the maximiza-

9 / R (E{x (0)i(1)} ) dt + / E{|#()?} dt.  tiom of
(7) i

The first term in this expression does not depend on the choice
of {s,(t)}\_, and{v,(t)}\_,, and is therefore irrelevant for with respect to the sampling functions,,(t)}2_,. As we
our purpose. Substituting (66) and (65), and using the faatt t show in Appendix B, the maximum of this expression is
w(t) is uncorrelated withx(t), the second term can be writtenachieved by any set of kernels of the form

as

2

T
/0 Rx (-, 7)sp(7)dT (77)

N
. N su(t) =Y Apn (M +02) 2 un(t), (78)
/ m{E{x*(t)chvn(t)}}dt k=1
0 n=1 whereA is a unitaryN x N matrix and\, andy(t) are the
N T T eigenvalues and eigenfunctions 8. (t,n) respectively (see
= Z 2/0 RJE f*(t)/o y(1)sy (T)dT  vn(t) p dt (68)). In particular, we can choosk = Iy, leading to
n=1
1
al T sp(t) = ———ou(t), n=1,....N.  (79)
= Z 2/ RAE{z" (¢)(x(7) + w(T))} 85 (T)v,(¢) } drdt VAn + 02
”;1 0 From (76), the optimal reconstruction kernels are given by
T
=Yoo [[ REsimRx o0} drds Do M a1 N o
n=1 0 ’Un() \/mwn()7 n (AR A ( )
_ i\f: 2%{<Um /T RX(~,T)Sn(T)dT>} . 72) The following theorem summarizes the result.
n=1 0 Theorem 4. Let z(t), t € [0, T] be a random process whose

. ) N autocorrelation functionRy (¢,n) is jointly continuous int
Similarly, using the fact tha{c, },,—, are uncorrelated and 5.4 1. Assume that(t) = =(t) + w(t), wherew(t) is a

have unit variance (see (70)), the last term in (71) becomeg hite noise process uncorrelated witft). Then, among all

. N 9 N N estimatesi(¢) of x(¢) having the form
E cnn(t) dt = E{c’.cn} (Vm,vn) N T
/o { > } 22 i) = Y val®) / sh(r)y(r)dt (81)
N n=1 0
= Z llon]|?. (73) the MSE(8) is minimized with{s,, (t)}"_, and {v,,(¢t)}2_, of
n=1 (79) and (80) respectively. In these expressiong, and v, (t)



are the eigenvalues and eigenfunctionsp{¢, n) respectively
(see(68)).

Interestingly, the optimal sampling and reconstructiamcfu

14

Furthermore, (83) and (84) imply thdtx = YDW*. Conse-
quently

RxU = UDU*¥ = UD, (88)

tions in our noisy setting are similar to those dictated by th

KLT. The only difference is that in the present scenario, t

nth sample is shrunk by a factor of,/()\, + ¢2) prior to

reconstruction. This ensures that the low-SNR measureme{f?n(t)
do not contribute to the recovery as much as their high—SI\JZI\-'i
counterparts. From the viewpoint of designing the samplif§at spang.

mechanism, however, this difference is of no importance.

As stated above, in practice one would generally favor no ) i
applying stahdétr’e optimal sampling space when less th@nsamples are

linear processing of the samples (namely,

nonlinear FRI techniques) rather than a simple elemeng-wid
shrinkage. Thus, the importance of Theorem 4 for our purpos¥’

is in identifying that the eigenfunctions &fx (¢, 7) remain the
optimal sampling kernels even in the noisy setting.

C. Example: Sampling in a Subspace

To demonstrate the utility of Theorem 4, we now revisit the
situation in whichz(¢) is given by (38) for some set of lin-

H@hich proves the claim.

It is important to emphasize that thd<{ functions

K | spang. Therefore, if one is allowed to take
= K samples, then the optimal choice is a set of kernels
This conclusion is compatible with the CRB
analysis of the previous sections. However, the advantage
Hf the Bayesian viewpoint is that it allows us to identify

llowed. For example, suppose tHat,(¢)} are orthonormal,
d the coefficient§a,,} are uncorrelated. Then the optimal
sampling space is the one spanned byXh&inctions{g, ()}
corresponding to théV largest-variance coefficientsy, }.

A second example demonstrating the derivation of the
optimal sampling kernels will be given in the next section.

IX. APPLICATION: CHANNEL ESTIMATION
In this section, we focus on a specific application of FRI

early independent functionfy (t)},—, spanning a subspacegjgnals, namely, that of estimating a signal consisting of a

G € Ly. We assume that the coefficiers= {a1,...,ax
form a zero-mean random vector and denote its autocorr

number of pulses having unknown positions and amplitudes

E{'@I, [7], [8]. More precisely, we considereal periodic signals

tion matrix by Rg. In this case, the signal’'s autocorrelatio%(t) of the form (16), which were discussed in Section I1I-C.

function is given by

K K1 =
=D > 9(t)gi (n)(Re)k.e (82)
k=1/¢=1

Consequently, the operataRy : L, — Lo defined by
(Ryh)(t) = fOT R.(t,n)h(n)dn can be expressed as

R, = GRyG", (83)

whereG is the set transformation (2) associated wigh } X, .
Now, let U be a unitary matrix and leD be a diagonal
matrix, such that

UDU* = (G*G)/?Rg(G*G)"/2. (84)

Since the dimension oR(G) is K, the operatorRx has at
most K nonzero eigenvalue§\, } X ;. Let U denote the set
transformation associated with theé eigenfunctions{+,, }V_,
corresponding to thév largest eigenvalues, for someé < K.
Then, it can be shown that

U =G(GEre)"YVU (85)
and the corresponding eigenvalues are

To see this, note that according to (8®)js an isometry, since

U0 = U (G"G)"V2G" G(G*G)"/?U = U'U = 1.
(87)

These arél-periodic pulse sequences, in which i(rea-val-
ued) pulse shapeg(t) is known, but the amplitude&a,} and
delays{t,} are unknown. After analyzing periodic signals of
this type, we will also compare estimation performance is th
case with the semi-periodic family (17), and attempt to aipl
the empirically observed differences in stability betwéesse
two cases.

By defining theT-periodic functionh(t) = > ., g(t —
nT'), we can writex(t) of (16) as

L
x(t) =Y arh(t —to). (89)
=1
Our goal is now to estimate(¢) from samples of the noisy
processy(t) of (6). As before, we will assume that only
continuous-time noise is present in the system. Sing¢ is
T-periodic, it suffices to recover the signal in the regjoyir].
In particular, we would like to identify the optimal samgin
kernels for this setting, and to compare existing algorghm
with the resulting CRB in order to determine when the optimal
estimation performance is achieved.
Let

1
. 7
T<h7‘Pk>7 ke

be the Fourier series 0f(t), where gy (t) = ¢/27*/T, The
Fourier series of:(¢) is then given by

hi =

(90)

L

5 .
(z,0r) = hi E age” )T,
=1

a 1

keZ.
T S

Ty, (91)
Llet K = {k € Z : h, # 0} denote the indices of the
nonzero Fourier coefficients df(t). Suppose for a moment

that K is finite. It then follows from (91) that:(¢) also has
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a finite number of nonzero Fourier coefficients. Conseqyentand the corresponding eigenvalues are
the setX of possible signals:(¢) is contained in the finite-

dimensional subspacét = span{py}rex. Therefore, as An = Lo T|h,|?, n €. (94)
explained in Section VII-D, choosing th¥ = || sampling ) - - - -
kernels {s,(t) = e~72™/T} _ results in a sampled CRB Since h(t) is real h_, = h’ sc that |h,| = |h_,|. Corse

which is equivalent to the continuous-time bound. This ltestduently A, = A, anc thus ar equiclent se of eigerfunc-
is compatible with recent work demonstrating successful pdions is
formance of FRI recovery algorithms using exponentials as
sampling kernels [7]. o(t) = V1T, (95)
Note, however, that this is a “Nyquist-equivalent” samglin n(t) =+/2/T cos(2mnt/T), n €N, (96)
n(t)

scheme, i.e., the number of samples requiféd= |K| is — /2/T sin(2mnt/T eN 97
potentially much higher than the number of degrees of freedo /T sin2mnt/T), n ’ ©7)

2L in the signalz(t) (see Section VII-D). This provides aTherefore, the optimal set f sampling functions is
theoretical explanation of the empirically recognized: fhat
sampling above the rate of innovation improves the perfor- sp(t) = el TPt =1
mance of FRI techniques in the presence of noise [7], [8],
a fact which stands in contrast to the noise-free performaror, equialently,
guarantees of many FRI algorithms.

Moreover, if there exists an infinite number of nonzero So(t) =1,
coefficientshy, then in general the set will not belong to - N-—-1
any finite-dimensional subspace. Consequently, it will et Sn(t) = cosapnt/T), m=1,..., 2
possible in this case for an algorithm based on a finite numberg war () = sin(2mpnt/T), 1 =1 N-1
of samples to achieve the performance obtainable from the "+ = " ’ A
complete signay(t). This occurs, for example, whenever the

ulse of (16) is time-limited. In such cases, any increase i.
pulsey(t) of (16) y ccefficient |hpn| anc we assume for simplicity thar N is odd

the sampling rate will potentially continue to reduce theBCR
although the sampled CRB will converge to the asymptot@N¢ thal the DC compcnen [ho| is one of the IV larges ccet-

value of pr, 02 in the limit as the sampling rate increases. [CI€NtS- _ _
The above analysis again lends credence to the recently

proposed time-delay estimation technique of Gedalyahu. et a
A. Choosing the Sampling Kernels [7], which makes use of complex exponentials as sampling
functions. A disadvantage of this algorithm is that it can

An important question in the current setting is how tQ ly handle a set of exponents with successive frequencies
choose the sampling kernels so as to achieve the best m)ssqt?ljy P d '
ile for general pulses, the indices of thelargest Fourier

performance under a limited budget of samples. This Canefﬂments may be sporadic. As we will see in Section IX-C,

be done via the Bayesian analysis provided in Section VI
: I . lis limitation may result in deteriorated performance loé t
Assume, for example, that the time delays};, are inde- . :
algorithm in some cases.

pendently drawn from a uniform distribution over the intdrv
[0, T]. Furthermore, suppose that the amplitudes}’_, are
mutually uncorrelatereal zero-mean random variables whic% ;

: ) . Computing the CRB
are independent of the time delays and have variafc&hen, puting

....,N, (98)

(99)

Here we denotec by p,, the index of the nth larges Fourier

Having identified the optimal sampling kernels (99), we

Rx(t,7) = E{w( ) ()} would now like to compute the CRB for estimatingt) from
the resulting samples. In order to compare these results wit
= ZE{aka,}E{h t—tp)h* (T —to)} the continuous-time CRB, we assume that no digital noise
1e=1 is added in the sampling process. However, the calculations

described below can be adapted without difficulty to situadi
h(t —te)h™ (1 —to)} containing both continuous-time and digital noise.
We define the parameter vector

||
Mn

1 =
2 *
- L? h(t = t)h™(r = te)dty 0= (ay,...,ap,t1,...,t)7" (100)
2 2 j2Ek(t—7)
=% L%“”“' € (92) whose length isK' = 2L. Theorem 3 provides a two-step
€

process for computing the CRB of the signelt) from its
where we used Parseval's theorem. It is easily verified frosamples. First, the FINI,"™ for estimatingé is determined.
the above expansion that the eigenfunctionsigf(t,7) are Second, the formula (51) is applied to compute the CRB.
given by While Theorem 3 also provides a means for calculafiffg'”,

it is more convenient in the present setting to derive the FIM
, neZ (93) directly. This can be done by calculating the expectatiops

M

ej%nt
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of (44) and applying (52). In our setting,, = (z, §,,) are

given by 1072
Tp, +T_p, N -1 Gedalyahu et al.
Mn:%v nzov"'aT Sampled CRB s
P N_1 10_4 — — — Continuous-time CRB @
_ Pn —Pn _ I T
‘Ltn+%—27j, n—l,...,T (101) t
where{z, } are the Fourier coefficients af(t). These coeffi- W -6
cients depend in turn on the parameter veépas shown in g0
(91). Substitutingu,, into (52) yields a closed-form expression Nyquist rate
for J;""P. Since the resulting formula is cumbersome and not
very insightful, it is not explicitly written herein. 10
To obtain the sampled CRB, our next step is to compute
the 2L x 2L matrix 10 . . .
ho\* 7 Oh 0 100 200 300 400 500
M e (5899) <8806> . (102) Number of samples, N

(a) The pulsey(t) is a filtered Dirac withd01 Fourier coefficients.
The functionhg : R?* — L, maps a given parameter vectbr

to the resulting signat(¢) as defined by (89). Differentiating
this function with respect t@#, we find that the operator

Ohg /00 : R2L — L, is defined by 107 : : : :
9h Gedalyahu et al.
0 _ Sampled CRB = i
<30> V= vlh(t o tl) T VLh(t - tL) 10_4 - - - Continuous-time CRB e ]
—VL_Halh/(t—tl)—-'-—VgLath(t—tL) t
(103)
9 10°
for any vectorv € R?L. s
One may now compute thi&th element ofM as Nyquist rate
My — o (P10 (D0 o _ [ Oho, Oho
=%\ o0 90 )"~ \ 90 ° 90 /-
(104) 0 - . .
Thus, each element &1 is an inner product between two of 0 100 200 300 400 500
the terms in (103). To calculate this inner product numdgica Number of samples, N

for a given functionh(t), it is more convenient to USe (b) The pulseg(t) contains401 nonzero Fourier coefficients which decrease
Parseval’s theorem in order to convert the (continuoug}timmonotonically with the frequency.

inner product to a sum over Fourier coefficients. For example

in the casel < i,k < L, we have

T -2
Mik = /0 h(t - ti)h* (t - tk)dt ° Gedalyahu et al. T
B L el B[]
nez 0 % ]
=T |y P92 beton/T 1 <k < L. (105)
nez é 10°

An analogous derivation can be carried out whieor k& are
in the complementary range + 1,...,2L.

Finally, having calculated the matricdg™" and M, the 10t
CRB for sampled measurements is obtained using (51). We \
are now ready to compare this bound to the performance of = |- — — — = ———=——
practical estimators in some specific scenarios. 10

Nyquist rate

0 100 200 300 400 500
Number of samples, N

C. Effect of the Pulse Shape

In Fig. 2, we document several experiments comparing the i »
- . . . . Fig. 2. Comparison of the CRB and the performance of a praa&tahator,

CRB with the time-delay estimation technique of Gedalyahyl™, function of the number of samples.

et al. [7]. Specifically, we sampled the signa(t) of (16)

using a set of exponential kernels, and used the matrix penci

(c) The pulsey(t) is a filteredrect(-) with 401 Fourier coefficients.
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method [48] to estimate(t) from the resulting measurementsthe SNR of the measurements decreases witlh. As can
Since we are considering only continuous-time noise, apply be seen, this has a negative effect on the performance of the
an invertible linear transformation to the sampling kesrteds algorithm, which is not designed for high noise levels. ke
no effect on our performance bounds (see Section VII). Thecluding low-SNR measurements causes the MSE not only
various kernels suggested in [7] amount to precisely such ndepart from the CRB, but eventually even to increase as
invertible linear transformation, and the same perforreanmore noisy samples are provided. In other words, one would
bound applies to all of these approaches. Moreover, undkr better to ignore the high-frequency measurements than to
the continuous-time noise model, it can be shown that thefeed them to the recovery algorithm. Yet information is diga
techniques also exhibit the same performance. For the sapnesent in these high-frequency samples, as indicated oy th
reason, the performance reported here is also identicdleto tontinual decrease of the CRB with increasiNg Thus, our
method of Vetterli et al. [2]. analysis indicates that improved estimation techniquesilsh

In our experiments, a signal containidg= 2 pulses was be achievable in this case, in particular by careful utila
constructed. The delays and amplitudes of the pulses wefdow-SNR measurements.

chosen randomly and are given by The adverse effect of low-SNR measurements is exacerbated
if, for a given N, one does not choose th€ largest Fourier
a1 = 0.3204, 1 = 0.6678, coefficients. This is demonstrated in Fig. 2(c). Here, the
as = 0.6063, to = 0.9863. (106) results of a similar experiment are plotted, in whith =

Psinc(nP/T), —200 < k < 200. These are the01 lowest-
Modifications of these parameters does not appear to sfgequency Fourier coefficients of a rectangular pulse Hgavin
nificantly affect the reported results, except when the timgidth P. In this case, the Fourier coefficients are no longer
delays are close to one another, a situation which will honotonically decreasing wittt|. Consequently, the sampling
discussed in depth in Section IX-D. The pulsg) consisted kernelss,, (t) = e/2™/T with n € {—|N/2|,...,|N/2]} do
of [K| = 401 nonzero Fourier coefficients at positioks = not correspond to th&/ largest Fourier coefficients, and thus
{-200,...,200}. The CRB is plotted as a function of theare not optimalal leas from a lineal recovery peispetive.
number of samplesV, where the sampling kernels are givenin particular, for the chosen parametefsys| = |h_o5| are
by s,,(t) = >/ with n € {~|N/2],...,[N/2]}. Thisis considerably smaller than the rest of the coefficients. When
done because the matrix pencil method requires the sampligg > 50, the corresponding measurements are included,
kernels to have contiguous frequencies. causing the MSE to deteriorate significantly.

In Fig. 2(a), we chosé, = 1 for —200 < k& < 200 and
h, = 0 elsewhere; these are the low-frequency components
of a Dirac delta function. The noise standard deviation w&s Cl0osely-Spaces Pulses
o. = 1075, In this case, for a fixed budget df samples, It is well-known that the estimation of pulse positions
any choice ofN exponentials having frequencies in the rangeecomes ill-conditioned when several of the pulses ardddca
—200 < k < 200 is optimal according to the criterion of close to one another. Intuitively, this is a consequencenef t
Section VIII. As expected, the sampled CRB achieves tlowerlap between the pulses, which makes it more difficult to
continuous-time bound<{s? when N > |K|. However, the identify the precise location of each pulse. However, owlgo
CRB obtained at low sampling rates is higher by several srdés to estimate the signal(¢) itself, rather than the positions
of magnitude than the continuous-time limit. This indicteof its constituent pulses. As we will see, for this purpose th
that the maxim of FRI theory, whereby sampling at the raeffect of closely-spaced pulses is less clear-cut.
of innovation suffices for reconstruction, may not alway&iho To study the effect of pulse position on the estimation error
in the presence of mild levels of noise. Indeed, if no noisge used a setup similar to the one of Fig. 2(b), with the
is added in the present setting, then perfect recovery canfbBowing differences. First, a higher noise levelaf = 103
guaranteed using as few & = 4 samples; yet even in thewas chosen. Second, the signal consisted.of 2 pulses,
presence of mild noise, our bounds demonstrate that perfaith the first pulse at position; = 0.5. The position of the
mance is quite poor unless the number of samples is increasedond pulse was varied in the rarjges, 0.7] to demonstrate
substantially. This result may provide an explanation fu t the effect of pulse proximity on the performance. The sgttin
previously observed numerical instability of FRI techrégu was otherwise identical to that of Section IX-C. In partaml
[2], [7], [8]. recall thatT = 1.

As a further observation, we note that in this scenario, The results of this experiment are plotted in Fig. 3, which
existing algorithms come very close to the CRB. Thus, ttgbcuments both the values of the sampled CRB and the actual
previously observed improvements achieved by oversamplivSE obtained by the estimator of Gedalyahu et al. [7]. The
are a result of fundamental limitations of low-rate samglin continuous-time CRB is also plotted, although, as is ewiden
rather than drawbacks of the specific technique used. from Theorem 2, this bound is a function only of the number of

The same experiment is repeated in Fig. 2(b) with a pulparameters determining the signal, and is therefore wtafle
having Fourier coefficientg;, = 1/(1 + 0.01%2). Since the by the proximity of the pulses.

Fourier coefficients decrease with|, in this case our choice Several different effects are visible in Fig. 3. First, astivo
of low-frequency sampling kernealigns with the choice dic- pulses begin to come closer, both the CRB and the observed
tatec by the lineal recovery anaysis of Sedion VIII. However, MSE increase by several orders of magnitude; this occurs
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10" - - - - - - - to be unbiased, it is required that the mean estimate, asdrag
Gedalyahu et al. over noise realizations, will converge to the true value: @,
L T Sameled e8| which has a form similar to that of Fig. 4(b). The expectation
of an estimator reconstructing a single pulse will not hdnee t
form of two closely-spaced pulses; such an estimator is thus
necessarily biased. In other words, the discrepancy obderv
here results from the fact that in this case, biased tecksiqu
outperform the best unbiased approach.

MSE

E. Non-Periodic and Semi-Periodic Signal Models

As we have seen above, the reconstruction of signals of the
form (16) in the presence of noise is often severely hampered
when sampled at or slightly above the rate of innovation.
Rather than indicating a lack of appropriate algorithms, in
Fig. 3. Compé;fisor) betvaeﬁn thfi‘ CRB and theTEerfC_)rmatnqe oLf digrac many cases this phenomenon results from fundamental limits
e oy ety 1% e ol 7.2 on the abilty to recover such signals from noisy measure-
function of the position of the second pulse. ments. A similar effect was demonstrated [7], [8] in the non-
periodic (or finite) pulse stream model (14). In fact, if ose i
allowed to sample a non-periodic pulse stream with arlyitrar
sampling kernels, then by designing kernels having suffityie
large time-domain support, one can capture all or most of the
A energy in the signal. This setting then essentially becomes

equivalent to a periodic signal model (16) in which the perio
is larger than the effective support of the pulse stream: cane
imagine that the signal repeats itself beyond the sampled re
gion, as this would not affect the measurements. Conselguent
it is not surprising that the non-periodic model demonstat
substantial improvement in the presence of oversamplihg [8

On the other hand, some types of FRI and union of subspace
signals exhibit remarkable noise resilience, and do noeapp
to require substantial oversampling in the presence ofenois

t [5], [27]. As we now show, the CRB can be used to verify that
(b) The spacing between the pulse®i61. such phenomena arise from a fundamental difference between
families of FRI signals.

As an example, we compare the CRB for reconstructing the
periodic signal (16) with the semi-periodic signal (17).cRé
that in the former case, each period consists of pulses fpavin
when [t; — t| is between abou.15 and 0.03. (Of course, ynknown amplitudes and time shifts. By contrast, in thestatt
the precise distances at which these effects occur depefghal, the time delays are identical throughout all pesjdmiit
on the pulse width and other parameters of the experimenhg amplitudes can change from one period to the next.

This level of proximity is demonstrated in Fig. 4(a). At this \hile these are clearly different types of signals, an ef-
stage, the overlap between the pulses is sufficient to makegit was made to form a fair comparison between the re-
more difficult to estimate their positions accurately, b t construction capabilities in the two cases. To this end, we
separation between the pulses is still large, so that they ghose an identical pulsg(t) in both cases. We selected the
not mistaken for a single pulse. signal segmenf0, Ty], whereT; = 1, and chose the signal

As the pulses draw nearer each other, they begin to resempédgameters so as to guarantee an identigalocal rate of
a single pulse located at, +t2)/2 (see Fig. 4(b)). Depending innovation. We also used identical sampling kernels in both
on the noise level, at some point the estimation algorithth wiettings: specifically, we chose the kernels (99) which mmeas
indeed identify the two pulses as one. Since our goal is fiee N lowest frequency components of the signal.
estimatex(t) and not the pulse positions, such an “error” To simplify the analysis and focus on the fundamental
causes little deterioration in MSE. This is visible in Fig. 3ifferences between these settings, we will assume in this
as the region in which the MSE of the practical algorithrgection that the pulsegt) are compactly supported, and that
ceases to deteriorate and ultimately decreases. the time delays are chosen such that pulses from one period do

Interestingly, the CRB does not capture this improvement itot overlap with other periods. In other words, if the suppor
performance. This failure is due to the fact that the CRB apf ¢(¢) is given by][t,, ], then we require
plies only to unbiased estimators, while the strategyadtiliin )

[7] becomes biased for closely-spaced pulses. For an d@stima méln{té} >t, and m?X{té} <T —tp. (107)

x(t)

t

(a) The spacing between the pulseg$)ig4.

x(t)

Fig. 4. Demonstration of the different levels of overlap betw pulses.
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00— 2 parameters determine the subspace while the remaining

L I i Szmp:zg gig, 22:1?:1'2 ziggiilsi o _18 p(_';\_ram_eters set the Iocation_ in the supspace. E\_/ident_ly,
100F et Ol gnat | identification of the subspace is challenging, especiatly i
. \ the presence of noise, but once the subspace is determined,
0 \ 3 the remaining parameters can be estimated using a simple
o \ linear operation (a projection onto the chosen subspace).
& 10 ¢ \ ; Consequently, if many of the unknown parameters identiéy th
- \ position within a subspace, estimation can be performed&mor
0 \ 1 accurately. This may provide an explanation for the diffieee
- \ between the two examined signal models.
087 N - ] As further evidence in support of this explanation, we recal
9 =~ e from Section IlI-C that the multiband signal model (19) can
0 Ty 40 60 80 100 120 140 160 180 200 also be viewed as a union of subspaces. Here, again, the
Number of samples, N parametergw, }~_, determining the subspace (i.e., the utilized

frequency bands) are far fewer than the paramefer$n]|}
Fig. 5. Comparison between the CRB for a periodic signal (1) asemi- selecting the point within the subspace (i.e., the contént o
periodic signal (17). each frequency band). In support of the proposed explanatio
highly noise resistant algorithms can be constructed fer th
. N . recovery of multiband signals [27], [29]. An even more
Spemﬁcally, we chose the pulget) used n F'g' 2(b), which oy ireme case is the single subspace setting, exemplified by
is compactly s_upportgd to & high approximation. _shift-invariant signals (Section IlI-A). In this case, aff the
For the periodic signal, we chose = 10 pulses with gjgnal parameters are used to determine the position vttiin
random delays and amplitudes, picked so as to satisfy g possible subspace. As we have seen in Section VII-C, in

condition (107). A period of” = 1 was selected. This implies s case Nyquist-equivalent sampling at the rate of intiosa
that the signal of interest is determineddly = 20 parameters gchieves the continuous-time CRB.

(L amplitudes and. time delays).

To construct a semi-periodic signal with the same number
of parameters, we chose a period Bf = 1/9 containing
L = 2 pulses. The segmeno, 7y] then contains precisely In this paper, we studied the inherent limitations in recov-
M =9 periods, for a total oR0 parameters. While it may ering FRI signals from noisy measurements. We derived a
seem plausible to require the same number of periods fntinuous-time CRB which provides a lower bound on the
both signals, this would actually disadvantage the petiodichievable MSE of any unbiased estimation method, regesdle
approach, as it would require the estimation of much mogg the sampling mechanism. We showed that the rate of
closely-spaced pulses. innovation pr, is a lower bound on the ratio between the

The CRB for the periodic signal was computed as explainedterage MSE achievable by any unbiased estimator and the
in Section IX-B, and the CRB for the semi-periodic signal canoise variancer?, regardless of the sampling methothis
be calculated in a similar fashion. The results are comparsgnds in contrast to the noise-free interpretatiopgfas the
with the continuous-time CRB in Fig. 5. Note that since thminimum sampling rate required for perfect recovery.
number of parameters to be estimated is identical in bothasig We next examined the CRB for estimating an FRI signal
models, the continuous-time CRB for the two settings coifrom a discrete set of noisy samples. We showed that the
cides. Consequently, for a large number of measuremems, gampled bound is in general higher than the continuous-time
sampled bounds also converge to the same values. Howe@®B, and approaches it as the sampling rate increases. In
when the number of samples is closer to the rate of innovatiaggeneral, the rate which is needed in order to achieve the
the bound on the reconstruction error for the semi-periodiontinuous-time CRB is equal to the rate associated with
signal is much lower than that of the periodic signal. Athe smallest subspace that encompasses all possible signal
mentioned above, this is in agreement with previously regabr realizations. In particular, if a signal belongs to a unidn o
findings for the two types of signals [2], [5], [7]. subspaces, then the rate required to achieve the contiuous

To find an explanation for this difference, it is helpful tdime bound is that associated with the sum of the subspaces.
recall that both signals can be described using the union lofsome cases, this rate is finite, but in other cases the sum
subspaces viewpoint (see Section IlI-C). Each of the siggnalovers the entire spade and no finite-rate technique achieves
in this experiment is defined by precis&y parameters, which the CRB.
determine the subspace to which the signal belongs and thé consequence of these results is that oversampling can
position within this subspace. Specifically, the valuesha t generally improve estimation performance. Indeed, oueexp
time delays select the subspace, and the pulse amplitu@aents demonstrate that sampling rates much higher ghan
define a point within this subspace. Thus, in the above sare required in certain settings in order to approach thienapt
ting, the periodic signal containg) parameters for selecting performance. Furthermore, these gains can be substantial:
the subspace andl0 additional parameters determining thesome cases, oversampling can improve the MSE by several
position within it; whereas for the semi-periodic signahlyo orders of magnitude. We showed that the CRB can be used to

X. SUMMARY
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determine which estimation problems require substantiai-o Choosingh, = —C~'B*h;, we have that(h1, Bha),,, =

sampling to achieve stable performance. As a rule of thumb,<B*h1,C‘1B*h1>Hl, which is real sinceC~! is self-

it appears that for union of subspace signals, performasiceadjoint. It follows from (113) that

improved at low rates if most of the parameters identify the 1

position within the subspace, rather than the subspack. itse (1, Aha)yy, — <h1,BC B h1>H1 20 (114)

Our analysis can also be used to identify cases in which g@yich leads to (111), as required. -

existing algorithm comes close to the CRB, implying that

better approaches can be constructed. In particular, insed-€mma 2. Let 7, and H, be two Hilbert spaces and let

that existing algorithms do not deal well with measuremeft; -, ) be a probability space. Let : €2 — H; and v :

sets having a wide dynamic range. Q — H, be random variables, and suppose the expectations
Lastly, we addressed the problem of choosing the sampliiguu”}, E{uv*}, and E{vv*} exist as linear operators as

kernels. This was done by adopting a Bayesian framework, @gfined in(108) If E{vv*} is invertible, then

that an optimality criterion can be rigorously defined. dsan Efuw = Eduo™) (Efoo* V)~ Efvu* 115
generalization of the KLT, we showed that the optimal kesnel {u™} = Buo™} (E{ve"}) {ou’}- (115)
are the eigenfunctions of the autocorrelation function hef t Proof: Let us denoted = E{uu*}, B = E{uv*}, and

signal. In the context of time-delay estimation, these &n C' = E{vv*} and define the linear operatdf : H; x Hay —
are exponentials with appropriately chosen frequenciés T#H; x H, as in (110). From (108), for anj; € #H; and
choice coincides with recent FRI techniques [5]. ho € Ho we have

h h
APPENDIXA <(h;> M <h;>>
7‘[1><7‘[2

PROOF OFTHEOREM 1
. . . L . = (h1, A1)y, + 2R [(h1, Bha)y, | + (ha, Cha)y,,
The following notation will be used within this appendix. )
Let #, and #, be two measurable Hilbert spaces, and ZE{|<h1»U>H1| + 2R [(h1, u)qy, (v, h2)gy,]

let (Q,.%, P) be a probability space. Consider two random b 2
variablesu : Q — H; andv : Q — H,. Then, the notation + ’< 2’”>H2| }
E{uv*} will be used to denote the linear operatds — #, —Ed(hy w)e + (v h 2
such that, for anyi; € H; andhy € Ho, {H bty + (0 2| }

> 0. (116)
<h17E{U'U*}h2>H1 = E{<h1,u>H1 <U7h2>H2} (108) ) . .
Thus M is a psd operator. Invoking Lemma 1 yields (115), as

if the expectation exists for alt; and hs. required. ™
We begin by stating two general lemmas which will be of \we are now ready to prove Theorem 1.
use in the proof of Theorem 1. Proof of Theorem 1: Throughout the proof, le® be
Lemma 1. Let %, and H, be two Hilbert spaces, and 2 fixed parameter_and consider all functions as implicitly
consider the operators dependent o). Define the random variables
A:Hy — H, uw:Q—H: u(w) = &(y(w)) — he, (117)
B :Hy = Hy, v:Q— RE: v(w):%o(y(w)). (118)
C: HQ — 7‘[2. (109)

We then have the linear operatofgvv*} : RX — RE,
SupposeC' is self-adjoint and invertible. Define the productg{y,*} : % — 7, andE{uv*} : RX — %, which satisfy
Hilbert space#; x Hs in the usual manner, and suppose the

operator M : Hy x Hs — H1 x Ho defined by E{vo*} = Jo, (119)
Y <h1> - (Ah1 +Bh2> (110 (i, E{uu™} ;) = E{{pi, u) <g,1%'>}7 (120)
ho B*hy + Chy <cpi,E{uv*}ej> ZE{<%,u>Ogge(y)}, (121)
is positive semidefinite (psd). Then, J
. where{¢,, }.cz denotes a complete orthonormal basis Far
A= BCB (111) The operatof£{uu*} can be thought of as the covariance of

in the sense that thé(, — #, operator A— BC—'B* is psd. z, and is well-defined since, by (32}, has finite variance.
Indeed, we have
Proof: Since M is psd, we have for any; € #H; and

ha € Ho Y (o E{uu} i) = E{[|& — hel7,} <00 (122)

) ) D

ha ha) [ 1, wats so thatE{uu*} is not only well-defined, but a trace class
operator. FurthermoreE{vv*} = Jp is well-defined and
invertible by Assumption P5. The operati{uv*} is thus

(h1, Ah1)y, +2%R [(hl, Bhg)HJ + (h2,Cha),,, > 0. (113) also well-defined by virtue of the Cauchy-Schwarz inequalit

which implies
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To prove the theorem, we will show that On the other hand, note that the2Ehet derivative)hg /06

Ohe of (31) coincides with the &eaux derivative ofig. In other
E{uv*} = 58 (123) words, for any vectow € R¥, we have
and then obtain the required result by applying Lemma 2. To %v = lim M. (130)

demonstrate (123), observe that 00 =0 £

It follows that

B)
(pi, E{uv™} e;) = E{<<pi7u> loggj(y)} <<pi, %f;;ej> = %. (131)
J

= / (i, 2(y) — he) L opy; O)p(y; 0) Py, (dy) SinceE{uv*} and(0hg/00)* are both linear operators, (129)
p(y:0) 96, and (131) imply that the two operators are equal, demonstrat
_ / (01, 2(y) — he) Tim p(y; 0 + Aej) — p(y; 6) P, (dy). INg (123). Applying Lemma 2 and using the results (119) and
v A0 A 0 (123), we have
(124) .
E{(3 — ho)(i — he)*} = (210 g1 (Oho 132
By Assumption P4, for any sufficiently small > 0 we have {(& = ho)(& — he)"} = 00 Jo 90 | (132)
. p(y; 0 + Aej) —p(y; 0) As we have seen, the left-hand side of (132) is trace class, an
(@i, &(y) — he) A thus so is the right-hand side. Taking the trace of both sides
< (i, 2(y) — he)| aly, 0). (125) of the equation, we obtain
oh Ohg\ ™
Let us demonstrate that the right-hand side of (125) is abso- E{||# — he|*} > Tr ((é);> J,t (809) > (133)
lutely integrable. By the Cauchy—Schwarz inequality, o ) )
) which is equivalent to (33), as required. [ ]
(/ (@i, 2(y) — ho) q(y,G)Poo(dy)> APPENDIXB
MAXIMIZATION OF (77)
~ 2
< / (i 2(y) — he)|” Po, (dy) - /q2(y30)P90(dy)' The task of maximizing (77) is most easily accomplished

(126) by optimizing the coordinates of,(t) in the orthonormal

) ) ) o i basis forL, [0, T'] generated by the eigenfunctions®k (¢, 7).
The rightmost integral in (126) is finite by virtue of (29). ASSpecificaIIy, the functions, () can be written as
for the remaining integral, we have

/ (o1, () — ho)[? Poy (dy)
< / 1(y) — holl® Poy (dy)

sal) =S af (v +02) P, (134)
k=1

with {4 (¢)}32, and {\;}32, of (68). (The coefficients
(A& +02)~1/2 are inserted since they simplify the subsequent

@ X analysis.) Now, by Mercer's theorenRx (¢,77) can be ex-

2 [ Q@)+ Iral)? Poy(a) pressed as

® [ _ *

< [ 15 Paydy) + ol [ Paolat) Rx(tn) = 2 AV (), (1s5)

R 1/2 where the convergence is absolute and uniform. Therefore
w2l ([ 1) PP (i) ;

© /Rx(t,T)Sn(T)dT

2 oo aery oo .
where we have used the triangle inequality in (a), the Cadachy = / S ap (e +02) 2 en(r) > Aetbe(t) 7 (7)dr
Schwarz inequality in (b), and the assumption (32) théias 0 k=1 =1
finite energy in (c). We conclude that (125) is bounded by = . Ak 136
an absolutely integrable function, and we can thus apply the I;% (s + 02)% Vi (t), (136)

dominated convergence theorem to (124), obtaining o
and consequently, by Parseval's theorem, (77) is given by

. 9 5
(o Bluo'yes) = 5 [ (00d(0)) s 6) Pay () N | :
i ) > / / Rx (t,7)s,(T)d7| dt
— (@i he) 55~ / p(y;0) P, (dy). (128) n=170 [0 )
i N T | oo /\k
The second integral in (128) equals 1 and its derivative is = Z/O Zak O+ 2)%@[’1« t)| dt
therefore 0. Thus we have ";1 k=1 kT 0
OE{(¢;, i (i, h NNz M
(01, Ef{uv*} e;) = {{p 7fc(y)>} _0{p | o) (129) = Zka\?Awfﬂ. (137)
00, 00, n=1k=1 ¢
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Similarly, using (134) and (136), we have A*A = Iy, which is equivalent toA A*

objective in (141) can be expressed as

= In. Now, the

m) Ak
// DRx(t,)sn(r)drdt = Zak o) A A + 02 Z o] 2 A (A*AA}
(138) Lo la R vl
and by (134) =Tr{AA"A}
T 0_2 =Tr{A}, (144)
af/ S (t)s Zak (ag’) (139) C
0 A +o which is independent oA. Therefore, we conclude that any

set of orthonormal sequencés’ } ez, n = 1,.

.., N, whose
Combining (138) and (139), the set of constraints (69) [Sements vanish for every > N is optimal.

translated to

=6mn (140)

(oo}
> aft(ag)’
k=1

for everym,n = 1,...,
now been reduced to

(1]
N. Consequently, our problem has |5

3
maxnz:l;| k‘Q)\ to 2 S.t. Zak ak :5m,n- []
(141) (4]

We now show that the sequencgs}} which solve (141)
must satisfyaj = 0 for everyk > N andn =1,...,N. To  [g]

see this, assume to the contrary thathie sequence satisfies
ay # 0 for somel > N. We can then replace this sequence[6]
by a sequencéa} } ez satisfying

o> +a} 1<k<N (7]
lar> =40 k=1t (142)
la|? N < kandk # ¢ (8]

N
where ;" ai = |a}|? (to ensure thab", ,|a}|* = .
Such a set of coefficientsu, }&_, can always be found since
the N-term truncation of the remainingé — 1 sequences [10]
cannot spanC¥. With this sequence, theth summand in

the objective of (141) becomes [11]
~n|2 2
;ozklA e ZI e +02 [12]
2 A2 [13]
2 k _ n|2 /4
;ak)\kJrag | Ao + 02
S M A (S )
k=1 k=1 [15]
e 2
=> \a"|27>\k (143) [16]
k Ak + 0_2 b

el
I

1
[17]
where we used the fact tha, > A\, for every k < ¢ and

that22/(a + ) is @ monotone increasing function effor all
z > 0. This contradicts the optimality dfe} } .cz. Therefore,
the set of sequences maximizing (141) satisfy = 0 for
everyk > N andn=1,...,N.

It remains to determine the optimal values of the fifst [,
elements of each of th%¥ sequence$a} }rcz, n=1,...,N.
For this purpose, leA denote theV x N matrix whose entries
are Ay , = af and letA be a diagonal matrix with\,, , =
A2/(A\ + 02). Then, the constraint (140) can be written as

(18]

(19]
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