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Abstract—We consider the problem of estimating a deterministic
sparse vector �� from underdetermined measurements��� ��,
where � represents white Gaussian noise and � is a given deter-
ministic dictionary. We provide theoretical performance guaran-
tees for three sparse estimation algorithms: basis pursuit denoising
(BPDN), orthogonal matching pursuit (OMP), and thresholding.
The performance of these techniques is quantified as the �� distance
between the estimate and the true value of ��. We demonstrate
that, with high probability, the analyzed algorithms come close to
the behavior of the oracle estimator, which knows the locations of
the nonzero elements in ��. Our results are non-asymptotic and
are based only on the coherence of �, so that they are applicable
to arbitrary dictionaries. This provides insight on the advantages
and drawbacks of �� relaxation techniques such as BPDN and the
Dantzig selector, as opposed to greedy approaches such as OMP
and thresholding.

Index Terms—Basis pursuit, Dantzig selector, matching pursuit,
oracle, sparse estimation, thresholding algorithm.

I. INTRODUCTION

E STIMATION problems with sparsity constraints have at-
tracted considerable attention in recent years because of

their potential use in numerous signal processing applications,
such as denoising, compression, and sampling [1]. In a typ-
ical setup, an unknown deterministic parameter is
to be estimated from measurements , where

is a deterministic matrix and is a noise vector.
Typically, the dictionary consists of more columns than rows
(i.e., ), so that without further assumptions, is uniden-
tifiable from . The impassé is resolved by assuming that the
parameter vector is sparse, i.e., that most elements of are
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zero. Under the assumption of sparsity, several estimation ap-
proaches can be used. These include greedy algorithms, such as
thresholding and orthogonal matching pursuit (OMP) [2], and
relaxation methods, such as the Dantzig selector [3] and basis
pursuit denoising (BPDN) [4], [5] (also known as the Lasso).
A comparative analysis of these techniques is crucial for deter-
mining the appropriate strategy in a given situation.

There are two standard approaches to modeling the noise
in the sparse estimation problem. The first is to assume that

is deterministic and bounded [6]–[8]. This leads to a worst-
case analysis in which an estimator must perform adequately
even when the noise maximally damages the measurements.
The noise in this case is thus called adversarial. By contrast,
if one assumes that the noise is random, then the analysis aims
to describe estimator behavior for typical noise values [3], [9],
[10]. In this paper, we focus on the random noise scenario. As
one might expect, stronger performance guarantees can be ob-
tained in this setting.

It is common to judge the quality of an estimator by com-
paring its mean-squared error (MSE) with the Cramér-Rao
bound (CRB) [11]. In the case of sparse estimation under
Gaussian noise, it has recently been shown that the unbiased
CRB is identical (for almost all values of ) to the MSE
of the “oracle” estimator, which knows the locations of the
nonzero elements of [12]. Thus, a gold standard for esti-
mator performance is the MSE of the oracle. Indeed, it can be
shown that relaxation algorithms come close to the oracle
when the noise is Gaussian. Results of this type are sometimes
referred to as “oracle inequalities.” Specifically, Candès and
Tao [3] have shown that, with high probability, the distance
between and the Dantzig estimate is within a constant times

of the performance of the oracle. Recently, Bickel et
al. [10] have demonstrated that the performance of BPDN is
similarly bounded, with high probability, by times the
oracle performance, for a constant . However, the constant
involved in this analysis is considerably larger than that of the
Dantzig selector. Interestingly, it turns out that the gap
between the oracle and practical estimators is an unavoidable
consequence of the fact that the nonzero locations in are
unknown [13].

The contributions [3], [10] state their results using the
restricted isometry constants (RICs). These measures of the
dictionary quality can be efficiently approximated in specific
cases, e.g., when the dictionary is selected randomly from an
appropriate ensemble. However, in general it is NP-hard to
evaluate the RICs for a given matrix , and they must then be
bounded by efficiently computable properties of , such as the
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mutual coherence [14]. In this respect, coherence-based results
are appealing since they can be used with arbitrary dictionaries
[15]–[17].

In this paper, we seek performance guarantees for sparse es-
timators based directly on the mutual coherence of the matrix

[18]. While such results are suboptimal when the RICs of
are known, the proposed approach yields tighter bounds than

those obtained by applying coherence bounds to RIC-based re-
sults. Specifically, we demonstrate that BPDN, OMP and thresh-
olding all achieve performance within a constant times of
the oracle estimator, under suitable conditions. In the case of
BPDN, our result provides a tighter guarantee than the coher-
ence-based implications of the work of Bickel et al. [10]. To the
best of our knowledge, there are no prior performance guaran-
tees for greedy approaches such as OMP and thresholding when
the noise is random.

It is important to distinguish the present work from Bayesian
performance analysis, as practiced in [19]–[23], where on top of
the assumption of stochastic noise, a probabilistic model for
is also used. Our results hold for any specific value of (sat-
isfying appropriate conditions), rather than providing results on
average over realizations of ; this necessarily leads to weaker
guarantees. It also bears repeating that our results apply to a
fixed, finite-sized matrix ; this distinguishes our work from
asymptotic performance guarantees for large and , such as
[24], [25].

The rest of this paper is organized as follows. We begin
in Section II by comparing dictionary quality measures and
reviewing standard estimation techniques. In Section III, our
main results are presented in the form of performance guaran-
tees for various sparse estimation algorithms. Subsequently, in
Section IV, these results are compared with previous findings
for different sparse models, including the case of adver-
sarial noise and the random design matrix setting. Finally, in
Section V, the validity of our results is examined by simulation
in practical estimation scenarios.

The following notation is used throughout the paper. Vectors
and matrices are denoted, respectively, by boldface lowercase
and boldface uppercase letters. The set of indices of the nonzero
entries of a vector is called the support of and denoted

. Given an index set and a matrix , the notation
refers to the submatrix formed from the columns of in-

dexed by . The identity matrix is denoted by . Furthermore,
for any matrix , refers to the matrix transpose, is the
Moore-Penrose pseudoinverse, is the trace, and
is the column span, while and denote the
smallest and largest eigenvalues of . Finally, the norm of a
vector , for , is denoted , while denotes
the number of nonzero elements in .

II. PRELIMINARIES

A. Characterizing the Dictionary

Let be an unknown deterministic vector, and denote
its support set by . Let be the number
of nonzero entries in . In our setting, it is typically assumed

that is much smaller than , i.e., that most elements in are
zero. Suppose we obtain noisy measurements

(1)

where is a known deterministic overcomplete dic-
tionary . We refer to the columns of as the
atoms of the dictionary, and assume throughout our work that
the atoms are normalized such that

(2)

We further assume that is zero-mean white Gaussian noise
with covariance .

For to be identifiable, one must guarantee that different
values of produce significantly different values of . One
way to ensure this is to examine all possible subdictionaries, or
-element sets of atoms, and verify that the subspaces spanned

by these subdictionaries differ substantially from one another.
More specifically, several methods have been proposed to for-

malize the notion of the suitability of a dictionary for sparse es-
timation. These include the mutual coherence [14], the cumula-
tive coherence [9], the exact recovery coefficient (ERC) [9], the
spark [6], and the RICs [3], [7]. Except for the mutual coher-
ence and cumulative coherence, none of these measures can be
efficiently calculated for an arbitrary given dictionary . Since
the values of the cumulative and mutual coherence are quite
close, our focus in this paper will be on the mutual coherence

, which is defined as

(3)

While the mutual coherence can be efficiently calculated di-
rectly from (3), it is not immediately clear in what way is
related to the requirement that subdictionaries must span dif-
ferent subspaces. Indeed, ensures a lack of correlation be-
tween single atoms, while we require a distinction between -el-
ement subdictionaries. To explore this relation, let us recall the
definitions of the RICs, which are more directly related to the
subdictionaries of . We will then show that the mutual coher-
ence can be used to bound the constants involved in the RICs,
a fact which will also prove useful in our subsequent analysis.
This strategy is inspired by earlier works, which have used the
mutual coherence to bound the ERC [9] and the spark [6], [17],
[22]. Thus, the coherence can be viewed as a tractable proxy
for more accurate measures of the quality of a dictionary, which
cannot themselves be calculated efficiently.

By the RICs we refer to two properties describing “good” dic-
tionaries, namely, the restricted isometry property (RIP) and the
restricted orthogonality property (ROP), which we now define.
A dictionary is said to satisfy the RIP [7] of order with pa-
rameter if, for every index set of size , we have

(4)

for all . Thus, when is small, the RIP ensures that
any -atom subdictionary is nearly orthogonal, which in turn
implies that any two disjoint -atom subdictionaries are
well-separated.
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Similarly, is said to satisfy the ROP [3] of order
with parameter if, for every pair of disjoint index sets
and having cardinalities and , respectively, we have

(5)

for all and for all . In words, the ROP re-
quires any two disjoint subdictionaries containing and ele-
ments, respectively, to be nearly orthogonal to each other. These
two properties are therefore closely related to the requirement
that distinct subdictionaries of behave dissimilarly.

In recent years, it has been demonstrated that various prac-
tical estimation techniques successfully approximate from

, if the constants and are sufficiently small [3], [7],
[26], [27]. This occurs, for example, when the entries in are
chosen randomly according to an independent, identically dis-
tributed Gaussian law, as well as in some specific deterministic
dictionary constructions.

Unfortunately, in the standard estimation setting, one cannot
design the system matrix according to these specific rules. In
general, if one is given a particular dictionary , then there is
no known algorithm for efficiently determining its RICs. Indeed,
the very nature of the RICs seems to require enumerating over
an exponential number of index sets in order to find the “worst”
subdictionary. While the mutual coherence of (3) tends to be
far less accurate in capturing the accuracy of a dictionary, it is
still useful to be able to say something about the RICs based
only on . Such a result is given in the following lemma, whose
proof can be found in [28] and [29].

Lemma 1 (Cai, Xu, and Zhang): For any matrix , the RIP
constant of (4) and the ROP constant of (5) satisfy the
bounds

(6)

(7)

where is the mutual coherence (3).
We will apply this lemma in Section III in order to obtain

coherence-based settings from results which use the RICs.

B. Estimation Techniques

To fix notation, we now briefly review several approaches for
estimating from noisy measurements given by (1). The
two main strategies for efficiently estimating a sparse vector are

relaxation and greedy methods. The first of these involves
solving an optimization problem wherein the nonconvex con-
straint is relaxed to a constraint on the norm of
the estimated vector . Specifically, we consider the -penalty
version of BPDN, which estimates as a solution to the
quadratic program

(8)

for some regularization parameter . We refer to the optimiza-
tion problem (8) as BPDN, although it should be noted that some
authors reserve this term for the related optimization problem

(9)

where is a given constant.

Another estimator based on the idea of relaxation is the
Dantzig selector [3], defined as a solution to the optimiza-
tion problem

(10)

where is again a user-selected parameter. The Dantzig se-
lector, like BPDN, is a convex relaxation method, but rather than
penalizing the norm of the residual , the Dantzig se-
lector ensures that the residual is weakly correlated with all dic-
tionary atoms.

Instead of solving an optimization problem, greedy ap-
proaches estimate the support set from the measurements .
Once a support set is chosen, the parameter vector can be
estimated using least-squares (LS) to obtain

on the support set
elsewhere.

(11)

Greedy techniques differ in the method by which the support
set is selected. The simplest method is known as the thresh-
olding algorithm. This technique computes the correlation of
the measured signal with each of the atoms and defines
as the set of indices of the atoms having the highest correla-
tion. Subsequently, the LS technique (11) is applied to obtain
the thresholding estimate .

A somewhat more sophisticated greedy algorithm is OMP
[2]. This iterative approach begins by initializing the estimated
support set to the empty set and setting a residual vector
to . Subsequently, at each iteration , the algorithm
finds the single atom which is most highly correlated with .
The index of this atom, say , is added to the support set, so
that . The estimate at the th iteration
is then defined by the LS solution (11) using the support set .
Next, the residual is updated using the formula

(12)

The residual thus describes the part of which has yet to be ac-
counted for by the estimate. The counter is now incremented,
and iterations are performed, after which the OMP estimate

is defined as the estimate at the final iteration, .
A well-known property of OMP is that the algorithm never
chooses the same atom twice [6]. Consequently, stopping after

iterations guarantees that .
Finally, we also mention the so-called oracle estimator, which

is based both on and on the true support set of ; the
support set is assumed to have been provided by an “oracle.” The
oracle estimator calculates the LS solution (11) for , and
is often used as a gold standard against which the performance
of practical algorithms can be compared.

III. PERFORMANCE GUARANTEES

Under the setting (1), it can be shown [12] that the MSE of any
unbiased estimator of satisfies the Cramér-Rao bound [30]

(13)
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Interestingly, is also the MSE of the oracle estimator men-
tioned above [3]. It follows from the Gershgorin disc theorem
[31] that all eigenvalues of are between
and . Therefore, for reasonable sparsity levels,

is not much larger than , and consequently
(13) is on the order of . Considering that the mean power of

is , it is evident that the oracle estimator has substan-
tially reduced the noise level. In this section, we will demon-
strate that comparable performance gains are achievable using
practical methods, which do not have access to the oracle.

A. -Relaxation Approaches

Review of Previous Results: Historically, performance
guarantees under random noise were first obtained for the
Dantzig selector (10) by Candès and Tao [3]. Their result is de-
rived using the RICs (4)–(5); by applying the bounds of Lemma
1, it is possible to obtain from their work a coherence-based
guarantee. More recently, Cai, Wang, and Xu [15] have shown
that one can obtain a tighter performance guarantee for the
Dantzig selector directly from the mutual coherence, as shown
in the following theorem.

Theorem 1 (Cai, Wang, and Xu): Under the setting (1), as-
sume that

(14)

and consider the Dantzig selector (10) with parameter

(15)

Then, with probability exceeding

(16)

the Dantzig selector satisfies

(17)

Thus, while does not quite reach the performance of the
oracle estimator, it does come within a constant factor multi-
plied by , with high probability. Interestingly, the
factor is an unavoidable result of the fact that the locations of
the nonzero elements in are unknown (see [13, Sec. 7.4, and
the references therein]).

Recently, a performance guarantee has also been demon-
strated for BPDN [10]. Once again, this result is based on
RIC-like properties. Its translation to a coherence-based guar-
antee is given in the following theorem, whose derivation from
[10] is described in Appendix A.

Theorem 2 (Bickel, Ritov, and Tsybakov): Under the setting
(1), assume that

(18)

and consider the BPDN estimator (8) with parameter

(19)

for some . Then, with probability exceeding

(20)

BPDN satisfies

(21)

where

(22)

Coherence-Based Guarantee for BPDN: The constant in
the BPDN performance guarantee (21) is typically much larger
than that given in (17) for the Dantzig selector. The necessary
condition (18) is also more stringent than the requirements for
the Dantzig selector. However, following the experience in the
case of the Dantzig selector, one may hope for substantially
better guarantees to be obtained by directly relying on the mu-
tual coherence. This approach indeed bears fruit, as we now
show. We begin by stating the following somewhat more gen-
eral result, whose proof is found in Appendix B.

Theorem 3: Let be an unknown deterministic vector with
known sparsity , and let , where

is a random noise vector. Suppose that1

(23)

Then, with probability exceeding

(24)

the solution of BPDN (8) is unique, its support is contained
in the true support , and

(25)

To compare this result with the previous theorems, we now
derive from Theorem 3 a result which holds with a probability
on the order of (20). Observe that for (24) to be a high proba-
bility, we require to be substantially smaller
than . This requirement can be used to select a value
for the regularization parameter . In particular, one requires

to be at least on the order of . However,
should not be much larger than this value, as this will increase
the error bound (25). Therefore, it is natural to use

(26)

for some fairly small ; note the encouraging similarity of
this value of to (19). Substituting of (26) into Theorem 3
yields the following result.

Corollary 1: Under the conditions of Theorem 3, let
be a solution of BPDN (8) with given by (26). Then, with
probability exceeding

(27)

1As in [9], analogous findings can also be obtained under the weaker require-
ment � � ������, but the resulting expressions are somewhat more involved.
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the solution is unique, its support is a subset of , and

(28)

To compare the BPDN guarantees of Corollary 1 and The-
orem 2, we first examine the probability (27). This expression
consists of a product of two terms, both of which converge to 1
as the problem dimensions increase. The right-hand term may
seem odd because it appears to favor non-sparse signals; how-
ever, this is an artifact of the method of proof, which requires a
sufficient number of nonzero coefficients for large number ap-
proximations to hold. This right-hand term converges to 1 ex-
ponentially and therefore typically has a negligible effect on the
overall probability of success; for example, for this term
is larger than 0.999.

The left-hand side of (27) tends to 1 polynomially as
increases. This is a slightly lower rate than that of Theorem 2;
however, this difference is compensated for by a correspond-
ingly lower multiplicative factor of in the error bound
(28), as opposed to the factor in previous results. In any
case, for any of the theorems to hold, must increase much
more quickly than , so that these differences are negligible.

Whereas the probability of success of Corollary 1 is compa-
rable to that of Theorem 2, the required sparsity level (23) in the
proposed guarantee is substantially better than that of previous
results. Furthermore, the constant (25) in the new result is also
much smaller than that of the previous BPDN guarantee (21).
Thus, it appears that the direct application of the mutual coher-
ence is successful in obtaining tighter performance guarantees.

What can be learned by comparing the guarantees for BPDN
and the Dantzig selector? In some respects, the BPDN result ap-
pears stronger; in particular, the probability of success in Corol-
lary 1 is better than that of Theorem 1, and the resulting guar-
antee has somewhat smaller constants. On the other hand, the
sparsity requirements of Theorem 1 are somewhat less strin-
gent. Choosing the most accurate guarantee (and, consequently,
the preferred estimator) will thus depend on the specifics of the
setting under consideration. One such specific example will be
presented in Section V.

B. Greedy Approaches

The performance guarantees obtained for the -relaxation
techniques required only the assumption that is sufficiently
sparse. By contrast, for greedy algorithms, successful estimation
can only be guaranteed if one further assumes that all nonzero
components of are somewhat larger than the noise level. The
reason is that greedy techniques are based on a LS solution for
an estimated support, an approach whose efficacy is poor un-
less the support is correctly identified. Indeed, when using the
LS technique (11), even a single incorrectly identified support
element may cause the entire estimate to be severely incorrect.
To ensure support recovery, all nonzero elements must be large
enough to overcome the noise.

To formalize this notion, denote and
define

(29)

A performance guarantee for both OMP and the thresholding
algorithm is then given by the following theorem.

Theorem 4: Let be an unknown deterministic vector with
known sparsity , and let , where

is a random noise vector. Suppose that

(30)

for some constant . Then, with probability at least

(31)

the OMP estimate identifies the correct support of
and, furthermore, satisfies

(32a)

(32b)

If the stronger condition

(33)

holds, then with probability exceeding (31), the thresholding
algorithm also correctly identifies and satisfies (32).

The performance guarantee (32) is better than that provided
by Theorem 1 and Corollary 1. However, this result comes at
the expense of requirements on the magnitude of the entries of

. Our analysis thus suggests that greedy approaches may out-
perform -based methods when the entries of are large com-
pared with the noise, but that the greedy approaches will deterio-
rate when the noise level increases. As we will see in Section V,
simulations also appear to support this conclusion.

It is interesting to compare the success conditions (30)
and (33) of the OMP and thresholding algorithms. For given
problem dimensions, the OMP algorithm requires , the
smallest nonzero element of , to be larger than a constant
multiple of the noise standard deviation . This is required
in order to ensure that all elements of the support of will
be identified with high probability. The requirement of the
thresholding algorithm is stronger, as befits a simpler approach:
In this case must be larger than the noise standard devi-
ation plus a constant times . In other words, one must be
able to separate from the combined effect of noise and
interference caused by the other nonzero components of .
This results from the thresholding technique, in which the entire
support is identified simultaneously from the measurements.
By comparison, the iterative approach used by OMP identifies
and removes the large elements in first, thus facilitating the
identification of the smaller elements in later iterations.

IV. COMPARISON WITH RELATED ESTIMATION SETTINGS

The difficulty of an estimation problem naturally depends on
the strength of the assumptions in the underlying model. We now
compare the results of the previous section with prior perfor-
mance guarantees for sparse estimation algorithms in different
settings.

The equation describes a variety of situations,
depending on what is assumed to be known about , , and
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. The focus in this paper is on the frequentist estimation set-
ting, wherein the known matrix and the unknown parameter
vector are both deterministic, and the noise is Gaussian
and white. In the following, we compare the performance guar-
antees obtained for this setting with known results for other sce-
narios. This comparison emphasizes that better performance can
be guaranteed if a more detailed model is assumed. We note
that many of the results cited in this section are obtained up to
an unknown numerical constant, and consequently the discus-
sion herein likewise performs qualitative comparisons based on
asymptotic rates.

Adversarial Noise: In the adversarial or bounded noise sce-
nario, the noise is assumed to be deterministic and unknown,
and to have a bounded norm, . The matrix and
the unknown vector are also deterministic. Since no prob-
abilistic information is assumed about , one must perform a
worst-case analysis, namely, in this case guarantees for an esti-
mator ensure that is small for all noise realizations
and all feasible values of . Consequently, adversarial perfor-
mance guarantees are relatively weak, and indeed no denoising
capability can be ensured for any known algorithm.

Typical “stability” results under adversarial noise guarantee
that if the mutual coherence of is sufficiently small, and if

is sufficiently sparse, then the distance between and its es-
timate is on the order of the noise magnitude. Such results can
be derived for algorithms including BPDN, OMP, and thresh-
olding. Consider, for example, the following theorem, which is
based on the work of Tropp [9, Sec. IV-C].2

Theorem 5 (Tropp): Let be an unknown deterministic
vector with known sparsity , and let ,
where . Suppose the mutual coherence of the dic-
tionary satisfies . Let denote a solution of
BPDN (8) with regularization parameter . Then, is
unique, the support of is a subset of the support of , and

(34)

Results similar to Theorem 5 have also been obtained [6], [7],
[15], [26] for the related -error estimation approach (9), as
well as for the OMP algorithm [6]. Furthermore, the technique
used in the proof for the OMP [6] can also be applied to demon-
strate a (slightly weaker) performance guarantee for the thresh-
olding algorithm.

In all of the aforementioned results, the only guarantee is that
the distance between and is on the order of the noise
power . As expected, these results are much weaker than those
obtained in Section III for the frequentist setting. Indeed, in the
frequentist setting, which differs only in the adoption of the
Gaussian distribution for the noise, typical performance guar-
antees ensure that is on the order of , while
the average noise power is , which is much larger. This dif-
ference is due to the fact that results in the adversarial context

2Tropp considers only the case in which the entries of � belong to the
set ������. However, since the analysis performed in [9, Sec. IV-C], can
readily be applied to the general setting considered here, we omit the proof
of Theorem 5.

must take into account values of which are chosen so as to
cause maximal damage to the estimation algorithm.

Random Design Matrix: Whereas the adversarial setting
assumes less about the signal and consequently provides weak
guarantees, incorporating further probabilistic assumptions can
provide much more optimistic assurances of the achievable per-
formance than those obtained in our setting. For example, a
common setting in the compressed sensing literature assumes
that the matrix is known, but chosen randomly from an appro-
priate ensemble. The primary advantage of such an assumption
is that with high probability, the RICs of the resulting matrix
will be low, and performance guarantees obtained based on the
use of the RICs are typically sharper than those based on the
mutual coherence.

Specifically, suppose that the entries of are chosen from a
white Gaussian distribution and are then normalized to satisfy
(2). Also suppose that is deterministic and that is white
Gaussian noise, as in our setting. Then it can be shown that, with
high probability, the Dantzig selector achieves an error on the
order of as long as the sparsity level is on the order
of [3]. Comparable results can also be demon-
strated for OMP,3 and in this case near-oracle performance is
asymptotically guaranteed with high probability when is no
larger than about [25], [32].

The guarantees of Section III are much weaker than these
random-matrix results. Indeed, to obtain near-oracle perfor-
mance guarantees, the results of Section III all require the
sparsity level to be on the order of . However, for any
matrix we have [33, Thm.2.3]

(35)

Making the reasonable assumption that , it follows that,
at best, our frequentist results hold with sparsity levels on the
order of . This is not nearly as strong as the random matrix
results, for which the number of nonzero entries in is allowed
to come within a log factor of the number of measurements .

The difference between the random and deterministic ma-
trix guarantees should not, however, be interpreted to mean that
the proposed performance guarantees can be substantially im-
proved. Rather, it indicates that truly better performance should
be expected in the random matrix setting. Indeed, there exist
suitably chosen deterministic matrices and vectors for
which is on the order of , wherein reasonable algorithms
completely fail to recover [21]. In these constructions, the
value of fails to meet the requirements for the theorems of
Section III by no more than a small multiplicative constant. It
follows that any performance guarantee based solely on the mu-
tual coherence of cannot guarantee performance for sparsity
levels higher than .

V. NUMERICAL RESULTS

In this section, we describe a number of numerical experi-
ments comparing the performance of various estimators to the

3As in any analysis of a greedy algorithm, the OMP result requires some fur-
ther assumptions on the SNR and, in particular, on the value of �� � relative
to the noise power.
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Fig. 1. Median estimation error for practical estimators (gray regions) compared with performance guarantees (solid lines) and the oracle estimator (dotted line).
The gray regions report the range of performances observed for 8 different values of the unknown parameter vector � . For the Dantzig selector, both the guarantee
of Candes and Tao [3] and that of Cai, Wang, and Xu (Theorem 1) are plotted. For OMP, performance is only guaranteed for � � �����, while for thresholding,
nothing can be guaranteed for the given problem dimensions. (a) Dantzig selector. (b) BPDN. (c) OMP. (d) Thresholding.

guarantees of Section III. Our first experiment measured the me-
dian estimation error, i.e., the median of the squared distance
between and its estimate. The median error is intuitively ap-
pealing as it characterizes the “typical” estimation error, and
it can be readily bounded by the performance guarantees of
Section III.

Specifically, we chose the two-ortho dictionary
, where is the 512 512 identity matrix and is the

512 512 Hadamard matrix with normalized columns. The
RICs of this dictionary are unknown, but the coherence can be
readily calculated and is given by . Consequently,
the theorems of Section III can be used to obtain performance
guarantees for sufficiently sparse vectors. In particular, in our
simulations we chose parameters having a support of size

. The smallest nonzero entry in was and
the largest entry was . To obtain guarantees on the
median error, for each of the theorems of Section III a value
of was chosen such that the resulting error bound holds with

probability 1/2 or greater.4 Under these conditions, applying
the theorems of Section III yields the bounds

(36)

We have thus obtained guarantees for the median estimation
error of the Dantzig selector, BPDN, and OMP. Under these
settings, no guarantee can be made for the performance of the
thresholding algorithm. Indeed, as we will see, for some choices
of satisfying the above requirements, the performance of the

4In particular, the results for the Dantzig selector (Theorem 1) and OMP (The-
orem 4) can only be used to yield guarantees holding with probabilities of ap-
proximately 3/4 and higher. These are, of course, also bounds on the median
error.
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thresholding algorithm is not proportional to . To ob-
tain thresholding guarantees, one requires a narrower range be-
tween and .

The RIC-based BPDN guarantee of Theorem 2 is not appli-
cable in the present setting; however, by comparing the BPDN
guarantees of Theorems 2 and 3, it is evident that the latter is
substantially tighter, even when the conditions for both theo-
rems hold. It is also interesting to note that by applying Lemma
1 to the (RIC-based) Dantzig selector guarantee of Candès and
Tao [3], one can obtain for the current setting

(37)

This result is again looser than (36), once again demonstrating
that considerable improvement in performance guarantees is
possible by direct use of the mutual coherence.

To measure the actual median error obtained by various esti-
mators, 8 different parameter vectors were selected. These
differed in the distribution of the magnitudes of the nonzero
components within the range and in the loca-
tions of the nonzero elements. For each parameter , a set of
measurement vectors were obtained from (1). The estimation
algorithms of Section II-B were then applied to each measure-
ment realization. For the Dantzig selector, was selected using
(15), and for BPDN, was chosen as the smallest value such
that the probability of success (27) would exceed 1/2. The me-
dian over noise realizations of the distance was then
computed for each estimator. This process was repeated for 10
values of the noise variance in the range .
The results are plotted in Fig. 1 as a function of . The perfor-
mance guarantees (36)–(37) are also plotted.5

It is evident from Fig. 1 that some parameter vectors are more
difficult to estimate than others. Indeed, there is a large variety
of parameters satisfying the problem requirements, and it is
likely that some of them come closer to the theoretical limits
than the parameters chosen in our experiment. This highlights
the importance of performance guarantees in ensuring adequate
performance for all parameter values. On the other hand, it is
quite possible that further improvements of the constants in the
performance bounds are possible. For example, the Dantzig se-
lector guarantee is almost 50 times higher than the worst of the
examined parameter values.

In practice, it is more common to measure the MSE of an
estimator than its median error. Our next goal is to determine
whether the behavior predicted by our theoretical analysis is also
manifested in the MSE of the various estimators. To this end, we
conducted an experiment in which the MSEs of the estimators
of Section II-B were compared. In this simulation, we chose the
two-ortho dictionary , where is the 256 256
identity matrix and is the 256 256 Hadamard matrix with
normalized columns.6 Once again, the RICs of this dictionary
are unknown. However, the coherence in this case is given by

5The guarantee (37) actually requires a slightly different value of � , but this
difference has a negligible effect on performance and is ignored.

6Similar experiments were performed on a variety of other dictionaries, in-
cluding an overcomplete DCT and a matrix containing Gaussian random entries.
The different dictionaries yielded comparable results, which are not reported
here.

Fig. 2. MSE of various estimators as a function of the SNR. The sparsity level
is � � � and the dictionary is a 256� 512 two-ortho matrix.

, and consequently, the relaxation guarantees of
Section III-A hold for .

We obtained the parameter vector for this experiment by
selecting a 5-element support at random, choosing the nonzero
entries from a white Gaussian distribution, and then normalizing
the resulting vector so that . The regularization pa-
rameters and of the Dantzig selector and BPDN were chosen
as recommended by Theorem 1 and Corollary 1, respectively;
for the latter, a value of was chosen. The MSE of each
estimate was then calculated by averaging over repeated real-
izations of and the noise. The experiment was conducted for
10 values of the noise variance and the results are plotted in
Fig. 2 as a function of the signal-to-noise ratio (SNR), which is
defined by

(38)

To compare this plot with the theoretical results of Section III,
observe first the situation at high SNR. In this case, OMP,
BPDN, and the Dantzig selector all achieve performance which
is proportional to the oracle MSE (or CRB) given by (13).
Among these, OMP is closest to the CRB, followed by BPDN
and, finally, the Dantzig selector. This behavior matches the
proportionality constants given in the theorems of Section III.
Indeed, for small , the condition (30) holds even for large

, and thus Theorem 4 guarantees that OMP will recover the
correct support of with high probability, explaining the
convergence of this estimator to the oracle. By contrast, the
performance of the thresholding algorithm levels off at high
SNR; this is again predicted by Theorem 4, since, even when

, the condition (33) does not always hold, unless
is not much smaller than . Thus, for our choice of ,
Theorem 4 does not guarantee near-oracle performance for the
thresholding algorithm, even at high SNR.

With increasing noise, Theorem 4 requires a corresponding
increase in to guarantee the success of the greedy al-
gorithms. Consequently, Fig. 2 demonstrates a deterioration of
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Fig. 3. MSE of various estimators as a function of the support size �. The noise
standard deviation is � � ���� and the dictionary is a 256� 512 two-ortho
matrix.

these algorithms when the SNR is low. On the other hand, the
theorems for the relaxation algorithms make no such assump-
tions, and indeed these approaches continue to perform well,
compared with the oracle estimator, even when the noise level
is high. In particular, the Dantzig selector outperforms the CRB
at low SNR; this is because the CRB is a bound on unbiased
techniques, whereas when the noise is large, biased techniques
such as an penalty become very effective. Robustness to noise
is thus an important advantage of -relaxation techniques.

It is also interesting to examine the effect of the support size
on the performance of the various estimators. To this end, 15

support sizes in the range were tested. For each
value of , random vectors having nonzero entries were
selected as in the previous simulation. The dictionary was the
256 512 two-ortho matrix defined above; as in the previous
experiment, other matrices were also tested and provided similar
results. The standard deviation of the noise for this experiment
was . The results are plotted in Fig. 3.

Aforementioned, the mutual coherence of the dictionary is
1/16, so that the proposed performance guarantees apply only
when is quite sparse . Nevertheless, Fig. 3 demon-
strates that the estimation algorithms (with the exception of the
thresholding approach) exhibit a graceful degradation as the
support of increases. At first sight this would appear to mean
that the performance guarantees provided are overly pessimistic.
For example, it is possible that the RICs in the present set-
ting, while unknown, are fairly low and permit a stronger anal-
ysis than that of Section III. It is also quite reasonable to ex-
pect, as mentioned above, that some improvement in the the-
oretical guarantees is possible. However, it is worth recalling
that the performance guarantees proposed in this paper apply
to all sparse vectors, while the numerical results describe the
performance averaged over different values of . Thus it is
possible that there exist particular parameter values for which
the performance is considerably poorer than that reported in
Fig. 3. Indeed, there exist values of and for which BPDN

yields grossly incorrect results even when is on the order
of [21]. However, identifying such worst-case parameters
numerically is quite difficult; this is doubtlessly at least part
of the reason for the apparent pessimism of the performance
guarantees.

VI. CONCLUSION

The performance of an estimator depends on the problem set-
ting under consideration. As we have seen in Section IV, under
the adversarial noise scenario, the estimation error of any al-
gorithm can be as high as the noise power; in other words, the
assumption of sparsity has not yielded any denoising effect. On
the other hand, when both the noise and the design matrix are
random, practical estimators come close to the performance of
the oracle estimator. In this paper, we examined a middle ground
between these two cases, namely the setting in which and
are deterministic but the noise is random. As we have shown,
despite the fact that less information is available in this case, a
variety of estimation techniques are still guaranteed to achieve
performance close to that of the oracle estimator.

Our theoretical and numerical results suggest some conclu-
sions concerning the choice of an estimator. In particular, at
high SNR values, it appears that the greedy OMP algorithm
has an advantage over the other algorithms considered herein.
In this case the support set of can be recovered accurately
and OMP thus converges to the oracle estimator; by contrast,
relaxations have a shrinkage effect which causes a loss of ac-
curacy at high SNR. This is of particular interest since greedy
algorithms are also computationally more efficient than relax-
ation methods. On the other hand, the relaxation techniques,
and particularly the Dantzig selector, appear to be more effec-
tive than the greedy algorithms when the noise level is signifi-
cant: in this case, shrinkage is a highly effective denoising tech-
nique. Indeed, as a result of the bias introduced by the shrinkage,

-based approaches can even perform better than the oracle es-
timator and the Cramér–Rao bound.

APPENDIX A
PROOF OF THEOREM 2

To prove the theorem, we will adapt [10, Theorem 7.2 and
Lemma 4.1] to the present setting, and then apply the coherence
bounds of Lemma 1. Note that the normalization of the matrix

differs between the present paper and that of [10], and con-
sequently the results stated herein differs by a factor of from
the original.

We begin by recalling the definition of the “restricted eigen-
value condition” of [10]. Let

(39)

where denotes the subvector of indexed by the elements of
the set , is the complement of the set , and contains the
indices of the largest elements in which are not contained in

. If , then the matrix is said to satisfy the restricted
eigenvalue condition with parameter . Note that

, since one could, for example, choose and
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, whereupon it follows from (2) that the objective
function in (39) equals 1.

Using this definition, the following result follows directly
from [10, Theorem 7.2].

Theorem 6 (Bickel, Ritov, and Tsybakov): Under the setting
(1), assume that the restricted eigenvalue condition
holds for some . Consider the BPDN estimator (8) with given
by (19) and choose . Then, with probability exceeding

, we have

(40)

From [10, Lemma 4.1], it follows that a sufficient condition
for to hold is , where and
are the RICs defined in Section II-A. Applying the bounds of
Lemma 1, it follows that holds if (18) holds. Fur-
thermore, from [10, Lemma 4.1], we have that in this case

(41)

from which, again by applying Lemma 1, we obtain

(42)

Since decreasing does not violate the bound (40), our co-
herence-based bound must choose given by (22). Defining

and choosing , we obtain the probability
of success (20) and the bound (21). Thus we have translated the
results of Bickel et al. to the coherence-based Theorem 2.

APPENDIX B
PROOF OF THEOREM 3

The proof is based closely on the work of Tropp [9]. From the
triangle inequality

(43)

where is the oracle estimator. Our goal is to separately
bound the two terms on the right-hand side of (43). Indeed, as
we will see, the two constants and in (25) arise,
respectively, from the two terms in (43).

Beginning with the term , let denote the
-vector containing the elements of indexed by , and sim-

ilarly, let denote the corresponding subvector of . We
then have

(44)

where we have used the fact that has full column rank,
which is a consequence [34] of the condition (23). Thus,

is a Gaussian random vector with mean and covariance
.

For future use, we note that the cross-correlation between
and is

(45)

where we have used the fact [35, Th. 1.2.1] that for any matrix

(46)

Since is Gaussian, it follows that and

are statistically independent. Fur-
thermore, because depends on only through

, we conclude that

is statistically independent of
(47)

We now wish to bound the probability that
. Let be a normalized Gaussian random variable,

. Then

(48)

where denotes the maximum singular value of the matrix
. Thus, , where is the min-

imum singular value of . From the Gershgorin disc theorem
[31, p.320], it follows that . Using (23),
this can be simplified to , and therefore

(49)

Combining with (48) yields

(50)

Observe that is the sum of independent normalized
Gaussian random variables. The right-hand side of (50) is
therefore , where is the cumulative distribu-
tion function of the distribution with degrees of freedom.
Using the formula [36, Sec. 16.3] for , we have

(51)

where is the regularized Gamma function

(52)

decays exponentially as , and it can be
seen that

for all (53)
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We thus conclude that the event

(54)

occurs with probability no smaller than . Note that the
same technique can be applied to obtain bounds on the proba-
bility that , for any . The only
difference will be the rate of exponential decay in (53). How-
ever, the distance between and is usually small compared
with the distance between and , so that such an approach
does not significantly affect the overall result.

The above calculations provided a bound on the first term
in (43). To address the second term , define the
random event

(55)

where is the th column of . It is shown in [9, App. IV-A]
that

(56)

If indeed occurs, then the portion of the measurements
which do not belong to the range space of are small, and
consequently it has been shown [9, Cor. 9] that, in this case, the
solution to (8) is unique, the support of is a subset of

, and

(57)

Since both and are nonzero only in , this implies that

(58)

The event depends on the random variable only through
. Thus, it follows from (47) that is statis-

tically independent of the event (48). The probability that both
events occur simultaneously is therefore given by the product of
their respective probabilities. In other words, with probability
exceeding (24), both (58) and (54) hold. Using (43) completes
the proof of the theorem.

APPENDIX C
PROOF OF THEOREM 4

The claims concerning both algorithms are closely related.
To emphasize this similarity, we first provide several lemmas
which will be used to prove both results. These lemmas are all
based on an analysis of the random event

(59)

where

(60)

and . Our proof will be based on demonstrating that
occurs with high probability, and that when does occur, both
thresholding and OMP achieve near-oracle performance.

Lemma 2: Suppose that . Then, the event
of (59) occurs with a probability of at least (31).

Proof: The random variables are jointly
Gaussian. Therefore, by’idák’s lemma [37, Th. 1]

(61)
Since , each random variable has mean zero and
variance . Consequently,

(62)

where is the Gaussian tail
probability. Using the bound

(63)

we obtain from (62)

(64)

where

(65)

When , the bound (31) is meaningless and the theorem
holds vacuously. Otherwise, when , we have from (61)
and (64)

(66)

where the final inequality holds for any and .
Substituting the values of and and simplifying, we obtain
that holds with a probability no lower than (31), as required.

The next lemma demonstrates that, under suitable conditions,
correlating with the dictionary atoms is an effective method
of identifying the atoms participating in the support of .

Lemma 3: Let be a vector with support
of size , and let for some noise vector

. Define and as in (29), and suppose that

(67)

Then, if the event of (59) holds, we have

(68)

If, rather than (67), the stronger condition

(69)
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is given, then, under the event , we have

(70)

Proof: The proof is an adaptation of [6, Lemma 5.2]. Be-
ginning with the term , we have, under the event

(71)

On the other hand, when holds,

(72)

Together with (71), this yields

(73)
Thus, under the condition (67), we obtain (68). Similarly, when

holds, we have

(74)

Again using (71), we obtain

(75)
Consequently, under the assumption (69), we conclude that (70)
holds, as required.

The following lemma bounds the performance of the oracle
estimator under the event . The usefulness of this lemma stems
from the fact that, if either OMP or the thresholding algorithm
correctly identify the support of , then their estimate is iden-
tical to that of the oracle.

Lemma 4: Let be a vector with support ,
and let for some noise vector . If the event
of (59) occurs, then

(76)

Proof: Note that both and are supported on , and
therefore

(77)

where is the subvector of nonzero entries of . We thus
have, under the event ,

(78)

where, in the last step, we used the definition (59) of and the
fact that , which was demonstrated
in Appendix B. This completes the proof the lemma.

We are now ready to prove Theorem 4. The proof for the
thresholding algorithm is obtained by combining the three
lemmas presented above. Indeed, Lemma 2 ensures that the
event occurs with probability at least as high as the required
probability of success (31). Whenever occurs, we have by
Lemma 3 that the atoms corresponding to all have strictly
higher correlation with than the off-support atoms, so that
the thresholding algorithm identifies the correct support ,
and is thus equivalent to the oracle estimator as long as
holds. Finally, by Lemma 4, identification of the true support

guarantees the required error (32).
We now prove the OMP performance guarantee. Our aim is to

show that when occurs, OMP correctly identifies the support
of ; the result then follows by Lemmas 2 and 4. To this end
we employ the technique used in the proof of [6, Th. 5.1]. We
begin by examining the first iteration of the OMP algorithm, in
which one identifies the atom whose correlation with is
maximal. Note that (30) implies (67), and therefore, by Lemma
3, the atom having the highest correlation with corresponds to
an element in the support of . Consequently, the first step
of the OMP algorithm correctly identifies an element in .

The proof now continues by induction. Suppose we are cur-
rently in the th iteration of OMP, with , and assume
that atoms from the correct support were identified in all
previous steps. Referring to the notation used in the definition of
OMP in Section II-B, this implies that

. The th step consists of identifying the atom which is
maximally correlated with the residual . By the definition of

, we have

(79)

where . Thus , so that
is a noisy measurement of the vector , which has a sparse
representation consisting of no more than atoms. Now, since

(80)
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it follows that at least one nonzero entry in is equal to the
corresponding entry in . Consequently

(81)

Note that the model (79) is precisely of the form (1), with
taking the place of the measurements and taking the
place of the sparse vector . It follows from (81) and (30)
that this model satisfies the requirement (67). Consequently, by
Lemma 3, we have that under the event ,

(82)

Therefore, the th iteration of OMP will choose an element
within to add to the support. By induction it follows that
the first steps of OMP all identify elements in , and since
OMP never chooses the same element twice, the entire support

will be identified after iterations. This completes the proof
of Theorem 4.
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