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P Conclusions

Signal Model

Yy = Xp + W = Goal: For each sparse x,, find the minimum MSE achievable by any unbiased estimator. High-SNR Performance

: : . = This value is known as the Barankin bound,
White Gaussian noise * For high SNR,

é . ~ L . ~
BB(xp) = %]é’lbf{ MSE(X, xg), where U = {all unbiased x}. Xpmin |2 BB(xo) Xmin I
s + C1exp < 2 <s+Cexp| — 202

P Characterizing the Barankin Bound (BB)

S-sparse, deterministic unknown
X0 € ]RN, |x0llo < S <N =  Computing the BB is not tractable; instead, we will bound it from below and above.

72

@ Smallest nonzero component |Xmin| is the primary
factor affecting performance

Summary Lower Bound < Barankin Bound < Upper Bound = This appears to be the case for biased estimators as well

10

= Analytical characterization of the best
possible MSE performance of unbiased
estimators

Any lower bound on the MSE of unbiased estimators
is also a lower bound on BB.

" Theorem: The Barankin bound is upper-bounded by

= Results provide: ,
" Theorem: Cramér-Rao bound (Ben-Haim and Eldar, 2009)

. . (LI/-.)I oe o
* Understanding of high-SNR performance , s+ (N=8)c2(1—= TT  sa(xo)e) = e . 9
e : - So*, Ixollg =S S\X0)e) |- 67 S - : w16
* Identification of threshold region MSE(X,x0) > ¢ . , BB < (esupp(xo) A S ST S
(No=, |xollp < S = Xollg = S w 25
Ne?, xollp < S e e e
" Theorem: Hammersley-Chapman-Robbins bound * ’
w UnblasedﬂeSS S 0.2 + ( N—-S—1 ) 0.2 P | Xmin |2 /02 where Performance of the maximum likelihood estimator for various parameter
. _ R . / values having a given value of |Xmin |2 /o?
= Unbiased estimator: Ex,{X} = xo for all xo with ||xg|lo < S MSE(X, xg) > Xollg =S (x) & 1 © L (x2442) e WETAY
2 S\X) = / e 2 Sl —5 |tanh|( — |dy
@ The unbiasedness assumption is required for bounds on No=, Xollp < S V2mo? J0 o o Threshold Region Identification
the MSE to be nontrivial. . . .
where |xpin| is the smallest (in magnitude) e
nonzero element in XQ- 0 Analytical upper bound on BB _ o |
" Theorem: In the AWGN model without sparsity Viaximurn fikelihood
constraints, there exists only one unbiased estimator,
namely, X =y. o \
However, with sparsity constraints, there are Ne?—5— o - - i w Analytical \
. ge s : : 2 lower bound on BB \
infinitely many unbiased estimators. \
Actual value of BB —~ i \
O There are many unbiased estimators, so bounds on (N—-1)0? =4 _ “\
their performance are of practical importance. Analytical lower bound = . Oracle / CRB A
N Analytical upper bound
%2 -20 | IIIIH-I‘IlO | é) | 1|0 | 20
. . 3 / -
" Theorem: For the sparse signal model, a uniformly = | ?NR - |
minimum variance unbiased (UMVU) estimator does Low SNR Threshold region  High SNR
not e;lqst. . | P - oL _ = Practical estimators outperform BB at low SNR:
In other words, no estimator unitormly mirumizes the In this case shrinkage is very effective, but is not allowed
mean-squared error (MSE) among all unbiased for unbiased estimators
estimators. ,
So- =1k c e : :
S Y Y B = BB is similar to the performance of practical estimators at
@ Rather than finding the single best estimator, we will 30 20 10 ’ 10 high SNR: Unbiased estimators are optimal in this case
characterize the achievable MSE for every X,,. SNR (dB)

= Threshold region is approximately indicated by BB

= Both lower and upper bounds can be improved numerically.
This yields a more accurate (but numerical) characterization of the BB.




