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Abstract

We consider the linear regression problem of estimating an unknown, deterministic parameter

vector, observed through colored Gaussian noise. This classical problem is generally solved

using the least-squares (LS) estimator. We explore alternatives to this approach, and demon-

strate analytically that our techniques outperform the LS method in terms of mean-squared

error (MSE).

We begin by presenting blind minimax estimators (BMEs), which consist of a minimax es-

timator on a parameter set which is itself estimated from measurements. We demonstrate an-

alytically that the BMEs dominate the least-squares technique, i.e., they always achieve lower

MSE. Furthermore, we explore the relation of this approach to the James-Stein estimator, and

demonstrate its advantage over various Stein-type methods.

We next consider the problem of finding a linear estimator whose MSE does not exceed a

given maximum. We develop estimators guaranteeing the required error for as large a parame-

ter set as possible and for as large a noise level as possible. We then discuss methods for finding

these estimators and demonstrate that in many cases, the proposed estimators outperform the

LS approach.
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Notation

Throughout the document, scalars are denoted by italicized lowercase letters, as in m; vec-

tors are denoted by boldface lowercase letters, as in x; and matrices are denoted by boldface

uppercase letters, as in A. The ith component of a vector x is denoted xi.

b(x̂, x) Bias of an estimator, defined in (2.7)

Cw Measurement noise covariance matrix

d Effective dimension, defined in (2.22)

diag(v) Diagonal matrix whose diagonal elements are the elements of vector v

E{v} Expectation of a random vector v

G Linear estimator matrix, x̂ = Gy

H System transformation matrix (size n×m)

I Identity matrix

L̂ Parameter robustness, defined in (5.2)

MSE(x̂, x) Mean-squared error, defined in (2.2)

Pr{A} Probability of an event A

Q Defined as H∗C−1
w H

S Parameter set (a set known to contain the parameter vector x)

sgn(a) Sign of a number a (1 if positive, −1 if negative, 0 if zero)

Tr(A) Trace of matrix A

Var(x̂) Variance of a random vector, defined in (2.8)

w Measurement noise with zero mean and known covariance Cw

x Unknown parameter vector (length m)

x̂ Estimate of x from measurements y

x̂EBM Ellipsoidal blind minimax estimator, defined in Section 4.3

x̂JS James-Stein estimator, defined in (2.17)

x̂LS Least-squares estimator, defined in (2.4)
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4 NOTATION

x̂M Minimax estimator, defined in (3.1)

x̂NL Maximum noise level estimator, defined in (5.44)

x̂PS Maximum parameter set estimator, defined in (5.3)

x̂SBM Spherical blind minimax estimator, defined in Section 4.2

y Measurement vector (length n)

ε(x̂, x) Risk function, measuring the discrepancy between x̂ and x

ε0 Mean-squared error of the least-squares estimator, defined in (2.5)

εm Maximum allowed estimation risk, defined in Section 5.1

λmax(A) Largest eigenvalue of a matrix A

λmin(A) Smallest eigenvalue of a matrix A

σ̂2 Noise robustness, defined in (5.43)

A∗ Hermitian conjugate, i.e., transpose and complex conjugate of A

A º 0 Matrix A is positive semidefinite

A º B Matrix A− B is positive semidefinite

A1/2 For A º 0, indicates the unique matrix satisfying (A1/2)2 = A and A1/2 º 0

‖x‖ `2-norm of a vector x, i.e., (x∗x)1/2

‖x‖T T-norm of a vector x, i.e., (x∗Tx)1/2, for some positive-definite matrix T.

0k k-vector containing only zeroes

1k k-vector containing only ones



Chapter 1

Introduction

1.1 Problem Statement

The problem of estimating parameters from noisy measurements has countless applications in

science and engineering. Such estimation problems are typically modelled either in a Bayesian

setting, in which a prior distribution on the parameters is assumed, or in a deterministic setting,

in which no prior exists [1, 2]. Our work focuses on the deterministic estimation problem. We

further assume a linear regression model, in which the measurements y = Hx + w are linear

combinations of the parameter vector x with additive noise w. Here the transformation matrix

H and the noise covariance E{ww∗} are assumed to be known. The success of an estimate x̂

is quantified by its risk, which measures the distance between x̂ and the true value x; the most

common risk function is the mean-squared error (MSE).

The primary difficulty in obtaining low risk is that the risk function typically depends on

the unknown value of the parameter x. Thus, an estimator may obtain low risk for some values

of x, and high risk for other values. Furthermore, no single estimator achieves optimal risk for

all values of x. Nevertheless, a particular estimator can be said to dominate, or improve upon,

a different estimator, if its risk is lower for all values of x. This work is aimed at obtaining novel

estimators which dominate standard solutions to the estimation problem.

1.2 Previous Work

The deterministic estimation problem was first addressed by Gauss and Legendre, who inde-

pendently proposed the least-squares (LS) estimator in the beginning of the 19th century [3, 4].

Several lines of reasoning can be used to support the LS approach. One argument shows

5



6 CHAPTER 1. INTRODUCTION

that the LS estimator minimizes the squared error between the measurements y and the trans-

formed estimate ŷ = Hx̂. It is also well-known that the LS estimator is the maximum likelihood

estimator for Gaussian noise. However, neither of these criteria are directly related to the MSE,

or to any other measure of the distance between x and x̂. Another property of the LS estimator

is that it is the linear, unbiased estimator achieving minimal MSE. However, although linearity

and unbiasedness may be intuitively appealing properties, they have no relation to the primary

goal at hand, namely, achieving low estimation error.

Our work stems from the technique of linear minimax estimation for bounded parameter

sets [5–7]. These minimax estimators are designed for the situation in which the parameter vector

x is known to lie within a bounded parameter set S ; specifically, they minimize the worst-case

risk among all possible values of x within S . Such estimators have been studied extensively in

the past, and closed forms are known for many types of parameter sets and risk functions. We

formalize the usefulness of minimax estimators by providing a conditional dominance theorem,

which states that, for any bounded set S , a minimax MSE estimator achieves lower estimation

error than the LS estimator, for all values of x in S .

Although minimax estimators outperform the LS approach, this may be attributed to the

fact that they are designed for a particular parameter set; this information is not available to the

LS estimator. Similarly, several techniques have been designed for estimation under other spe-

cial cases. For example, Tikhonov regularization [8, 9] was developed for ill-posed problems,

whence the LS estimator is numerically unstable. These techniques are generally inappropriate

as general-purpose replacements of the LS estimator. Indeed, it was long believed that the LS

estimator was admissible, i.e., no estimator could achieve lower MSE for all parameter values.

Surprisingly, the inadmissibility of the LS approach for Gaussian noise was demonstrated by

Stein in 1956, some 150 years after the technique was first introduced [2, 10].

Both the LS approach and Gaussian noise are extremely common in many scientific fields.

Therefore, a technique which improves upon the LS estimator for all values of x, under the

assumption of Gaussian noise, is of great practical importance. During the 1960s and 1970s,

several such estimators were constructed. Early work on so-called LS-dominating estimators

considered the independent, identical-distribution (i.i.d.) case, for which H = I and the noise

is Gaussian and white. Among these, the James-Stein estimator [2,11] is the best-known exam-

ple; another is the Thompson estimator [12,13]. Various extensions of the James-Stein estimator

were later constructed for the non-i.i.d. case of colored Gaussian noise [14–16]. Of these, Bock’s

estimator [15] is quoted most often [17, 18]. However, none of the approaches has become a
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standard alternative to the LS estimator, and they are rarely used in signal processing [18]. One

reason for this is that the estimators are poorly justified and seem counterintuitive, and as such

they are sometimes regarded with skepticism (see discussion following [19]). Another reason

is that many of these approaches (including the James-Stein estimator and Bock’s extension) re-

sult in shrinkage estimators, consisting of a gain factor multiplying the LS estimate. While this

can certainly be used to reduce MSE, such estimators are inappropriate for some applications,

in which a gain factor has no effect on final estimation quality.

1.3 Main Contributions

The thesis originated from the aforementioned conditional dominance theorem, which demon-

strates the advantage of minimax estimation when x is known to belong to a bounded param-

eter set. Our proof of the conditional dominance theorem led us to search for extensions of

the minimax principle, which would be applicable in alternative settings. This resulted in two

extensions of the minimax technique, which form the main body of this work. We refer to these

novel techniques as blind minimax estimation and maximum set estimation.

Blind Minimax Estimation. In our work, we use minimax estimators to obtain novel LS-

dominating estimators, using a simple, intuitive principle called the blind minimax approach

[20–22]. Many blind minimax estimators (BMEs) reduce to Stein-type estimators in the i.i.d.

case, and they continue to dominate the LS estimator in the non-i.i.d. case as well. Unlike

Bock’s estimator, BMEs may be constructed so that they are non-shrinkage, if this is required.

Furthermore, extensive simulations show that BMEs usually outperform Bock’s estimator by a

considerable margin.

Unlike minimax estimation, BMEs do not require the assumption of a parameter set S .

Instead, the blind minimax approach consists of a two-stage estimation process. In the first

stage, the set S is estimated from the measurements. In the second stage, a minimax estimator

for S is used to estimate the parameter itself. The result may be viewed as a simple estimator,

independent of this two-stage construction process. Indeed, our LS-dominance proofs are not

related to the method by which the estimators are generated. In particular, the dominance

results do not depend on the parameter actually lying within the estimated parameter set.

However, the blind minimax technique is useful in that it provides a framework whereby many

different estimators can be generated, and provides insight into the mechanism by which these
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estimators outperform the LS estimator.

Maximum Set Estimation. As a second application of minimax estimation theory, we seek

a linear estimator satisfying given maximum error requirements. The maximum error εm is

a design choice, based on known properties of the system at hand. For example, εm may be

chosen to guarantee a required signal-to-noise ratio (SNR) at the estimator output. In partic-

ular, εm may be chosen to be smaller than the error obtained by the LS estimator. Motivated

by information-gap decision theory [23, 24], we seek a maximum set estimator, namely, a lin-

ear estimator guaranteeing an error not exceeding εm, for as large a range of conditions as

possible [25,26]. Thus, we may seek an estimator achieving the required error for as large a pa-

rameter set as possible; alternatively, we may seek to maximize the noise level for which error

requirements are satisfied. In this way, it is possible to outperform the LS estimator by any de-

sired amount — although choosing excessive error requirements reduces the set of supported

operating conditions.

We demonstrate the relation of this problem to minimax estimation. In particular, we show

that under suitable conditions, any maximum set estimator is also a minimax estimator, and

vice versa. Thus, one can find a maximum set estimator for a given problem by obtaining a

minimax estimator whose worst-case error is εm. This allows us to use the substantial body of

knowledge on minimax estimation in studying maximum set estimators, resulting in closed-

form estimators for many types of maximum set estimation problems.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we review classical results

in estimation theory, including the LS estimator, various Stein-type estimators, and Tikhonov

regularization. Chapter 3 discusses minimax estimation, presenting several known examples

of minimax estimators as well as the aforementioned conditional dominance theorem. Chap-

ter 4 is devoted to blind minimax estimation; it develops several types of BMEs, proves their

dominance over the LS technique, and presents simulations comparing them with other esti-

mators. Finally, Chapter 5 presents the maximum set estimation approach, derives methods

for obtaining closed forms of such estimators, and compares them with the LS estimator.



Chapter 2

Background

In this chapter, we review some preliminary estimation concepts which will be used through-

out the remainder of the work. We begin with a general overview of the parameter estima-

tion problem, defining the setting and objective (Section 2.1). We next discuss the advantages

and limitations of several well-known estimators, including the least-squares estimator (Sec-

tion 2.2), Stein-type estimators (Section 2.3), and Tikhonov regularization (Section 2.4).

2.1 Parameter Estimation

In a parameter estimation problem, one is given an observation vector, from which an unknown

parameter vector must be estimated. To this end, a model describing the relation between

observations and parameters is required. The model typically includes some uncertainties, e.g.,

random noise added to the measurements. Furthermore, some formal estimation goal must be

defined, such as obtaining low mean-squared error. In this section, we provide definitions of

the setting and model in which our work is to take place.

2.1.1 Bayesian vs. Deterministic Estimation

It is helpful to distinguish between two estimation settings: the Bayesian scheme and the de-

terministic (or frequentist) scheme [1, 2]. Although sometimes similar in terminology, these

approaches differ substantively. In the Bayesian model, the parameter vector is random, and

its distribution (called the prior) is usually known. Estimators are judged based on average

performance over different realizations of the parameter. As a result, the quality of an estima-

tor is a number representing its average performance over all possible parameter values; any

two estimators can be compared in this way.

9
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The situation is more complex in the frequentist setting, which is the framework we will

adopt in this work. Here, the parameter vector is modelled as a deterministic value. Nothing

is assumed about the parameter in advance; the estimate is based solely on the measurements.

Thus, this is an information-sparse approach. One consequence of this setting is that estimator

performance is difficult to judge: a particular estimator may be suitable for some parameter

values and inaccurate for others. With no way of deciding which condition is more probable,

we cannot combine the differing performance levels to a single value representing estimator

quality. We will return to this point in Subsection 2.3.1, in which a partial ordering among

estimators is defined.

The differences between the Bayesian and deterministic viewpoints are deep, and each is

appropriate in a different scenario. Let us demonstrate this by examining two classical applica-

tions of estimation theory. Consider first the problem of symbol detection in a communication

system. Here, the problem is to estimate the value of a transmitted symbol in a noisy channel.

In this case, possible symbol values and their respective probabilities are completely known,

implying that the Bayesian approach is a suitable model for such problems. On the other hand,

consider the problem of estimating an unknown physical constant, such as the mass of an elec-

tron or the noise figure of a given receiver. There is only one correct value for such quantities,

rather than a spectrum of possible values. It is therefore undesirable to assign a probability

distribution to this parameter, and deterministic estimation techniques should be applied.

Some devout believers of either Bayesian or frequentist philosophies claim that any estima-

tor can be expressed as a solution to a properly stated problem stemming from their approach.

However, an estimator’s mathematical formula is a consequence of the problem setting, and

not vice versa. As we have seen, this setting can inherently be either deterministic or Bayesian.

In the remainder of this work, we consider the deterministic estimation problem. This is done

with the understanding that such a setting is appropriate to many real-world problems, though

certainly not to all problems.

2.1.2 The System Model

Thus far, we have spoken vaguely about the relation between parameters and measurements.

We now turn to explicitly defining this relation in terms of a system model and an estimation

goal.

We restrict our attention to the case in which the measurements y ∈ Cn are described as a
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linear function of the parameters x ∈ Cm with additive noise,

y = Hx + w. (2.1)

Here, H ∈ Cn×m is a known matrix of full rank m, and w is zero-mean additive noise, whose co-

variance Cw is positive-definite and known. Unless otherwise specified, the noise distribution

is unknown; in many cases, however, we will assume that the noise is Gaussian.

The definition of an estimation objective, or goal, is a crucial step of the problem formu-

lation: it often happens that an estimator exhibits excellent performance under one criterion

but achieves poor results when the criterion is changed. An estimation goal is often defined in

terms of a risk function ε(x̂, x), which measures the discrepancy or error1 between the estimate

x̂ and the true parameter value x. In this section, we describe two different risk functions: the

mean-squared error (MSE) and the regret. The choice of a risk function is necessarily a combi-

nation of reasonable requirements and historical prejudice. However, we will attempt to justify,

insofar as possible, the choice of risk functions in this section.

The most commonly used risk function is the MSE, also called squared-error risk. This is

defined as

MSE(x̂, x) = E
{‖x̂− x‖2} , (2.2)

and will be used throughout the majority of this work. Since the parameter vector x is de-

terministic, the expectation is taken only over x̂, and the result is a function not only of the

estimator used, but also of the unknown value of x.

It is also possible to quantify the estimation error using other measures, such as the regret [7],

which is a useful measure of the quality of linear estimators. The regret of an estimator x̂ is

defined as the difference between the MSE of x̂ and the best MSE obtainable using a linear

estimator x̂o = G(x)y which is a function of x. Because we are limiting the discussion to linear

estimators, even an estimator with knowledge of the value of x cannot achieve zero MSE. By

calculating the MSE of x̂o, it can be shown [7] that the regret is given by

Reg(x̂, x) = MSE(x̂, x)− x∗x
1 + x∗H∗C−1

w Hx
. (2.3)

Minimizing the regret is an intuitively appealing method for measuring the quality of linear

estimators, as it attempts to disregard errors resulting from the limitation of linear estimators.

Thus, we shall return to the regret when discussing linear estimators in Chapters 3 and 5.

1An alternative approach, which quantifies the error as expressed in the measurements y, is briefly presented in

Subsection 2.2.3.
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2.2 The Least-Squares Estimator

The problem of estimating a parameter vector from noisy measurements was first addressed in

a modern framework by Gauss and Legendre, who worked independently in the beginning of

the 19th century. Their solution became known as the least-squares (LS) method [1,3,4], and is

given, in our notation, as

x̂LS = (H∗C−1
w H)−1H∗C−1

w y. (2.4)

The LS estimator is, without a doubt, the most common parameter estimation technique used

to this day. It has several convenient properties. One such property is linearity, which allows

efficient computation of the estimate. Another important property is that the MSE achieved by

the LS estimator is constant for all x, and can be calculated from the known matrices H and Cw;

it is given by

ε0 = Tr((H∗C−1
w H)−1). (2.5)

Several lines of reasoning are often cited to justify the use of the LS estimator; these include

the maximum likelihood criterion, the Gauss-Markov theorem, and the measurement error

minimization criterion. Since these arguments are often used to claim “optimality” of the LS

approach, we shall take some time to explore their meaning in depth. In doing so, we note that

estimator choice depends on the estimation goal, and recall our goal of minimizing the MSE.

2.2.1 The Maximum Likelihood Criterion

Given a measurement vector and a proposed estimator, one can calculate the probability of

obtaining the observed measurements under the assumption that the proposed estimator is

correct. The result is referred to as the likelihood of the measurements, and the maximum likeli-

hood (ML) criterion seeks estimators optimizing this value. It is straightforward to show that

for zero-mean Gaussian noise, the ML approach leads to the LS estimator.

The use of likelihood as a figure of merit is convenient, since it quantifies the performance

of an estimator, for a given set of measurements, without requiring knowledge of the true

parameter value. However, for the same reason, the ML criterion is not directly related to the

estimator’s ability to predict parameter values. For example, consider a scalar measurement

y which simply equals x + w, with the noise w having exponential distribution. In this case,

the ML estimate is given by x̂ = y, despite the fact that the true value x is smaller than y with

probability 1. Clearly, the average noise behavior is more relevant than its maximum.
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For symmetrical noise distributions, such as the Gaussian distribution, the ML criterion

can be viewed as a technique for selecting an unbiased estimate, i.e., an estimate whose ex-

pectation equals the true parameter value. Furthermore, in the Gaussian case, the likelihood

depends quadratically on the term y−Hx̂. Thus, finding the ML estimator by differentiating

the likelihood function is equivalent to finding a linear unbiased estimator. We thus proceed to

discuss the Gauss-Markov approach, which specifically seeks linear unbiased estimators.

2.2.2 The Gauss-Markov Theorem

The Gauss-Markov theorem states that the LS estimator achieves minimum MSE within the

class of linear, unbiased estimators. The theorem holds for non-Gaussian noise as well, as long

as the noise covariance matrix Cw is finite and known.

To prove this result, we first note that the MSE of any estimator x̂ is given by

MSE(x̂, x) = ‖b(x̂, x)‖2 + Var(x̂), (2.6)

where

b(x̂, x) = E{x̂} − x (2.7)

is the bias and

Var(x̂) = E
{‖x̂− E{x̂} ‖2} (2.8)

is the variance. For unbiased estimators, b(x̂, x) = 0, so that minimizing the MSE is equivalent

to minimizing the variance. If we further restrict attention to linear estimators by writing x̂ =

Gy, the requirement of zero bias for all x becomes

I−GH = 0. (2.9)

Minimizing the variance of x̂, subject to (2.9), results in the LS estimator. The LS estimator is

therefore referred to as the best linear unbiased estimator, or BLUE [1]. As mentioned earlier, in

the Gaussian case, the linearity restriction can be removed, so that in this case the LS estimator

is also the uniformly minimum variance unbiased (UMVU) estimator [2].

The restriction to zero bias is a crucial step in this construction of the LS estimator. We must

therefore ask whether the unbiasedness restriction is in order. If an estimator is unbiased, then

using the estimator repeatedly, with the same parameter x but with different noise realizations,

results in a set of estimates whose average tends to the true value x. This would have been

a useful property if we were to confront a series of estimation problems, at the end of which
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the estimates are all averaged into a final, combined result. However, if this were truly the

scenario, one would do better by constructing a single estimation problem which combines all

measurements. Thus, the zero bias restriction, although intuitively appealing, is not directly

related to achieving low risk. Indeed, in many cases, it is possible to drastically reduce the

variance by introducing a small bias; by (2.6), this reduces the total MSE. It is still possible to

define one’s problem as the search for the unbiased estimator achieving minimum MSE; but in

light of the above discussion, such a problem statement is somewhat arbitrary.

A different objection to biased estimation is the breaking of symmetry. If we are to add

bias to an estimator, how are we to decide on the desired bias direction? This claim implicitly

assumes that the unbiased solution is also the most “symmetric” in terms of risk. In fact, as

we shall see in Subsection 2.3.2, the unbiased estimator consistently overestimates the true

parameter value, just as the ML estimate in the example of Subsection 2.2.1 was an overestimate

in the case of exponential noise. The answer to this objection, then, is that bias should be used

to decrease, or shrink, the unbiased estimate.

2.2.3 Measurement Error Minimization

Measurement error is the discrepancy between the actual observations and the expected value

of the observations assuming the estimate is accurate. For example, the squared measurement

error is defined as

‖y− ŷ‖2, (2.10)

where ŷ = Hx̂ is the expected observation vector when the parameter equals x̂. This differs

substantively from the risk minimization approach discussed previously, which is defined as

the mismatch between the true (unknown) parameter vector and its estimate.

The LS estimator can be derived from the measurement error criterion by first whitening

the noise. This is done by multiplying (2.1) by C−1/2
w , obtaining

ỹ = H̃x + w̃, (2.11)

where ỹ = C−1/2
w y, H̃ = C−1/2

w H, and w̃ = C−1/2
w w. The result (2.11) is referred to as the

whitened estimation problem, since w̃ is white noise with covariance I, and H̃ remains full-

rank. Thus, ỹ is an alternative measurement vector, which is equivalent to y: any estimator

based on ỹ can be converted to an estimator based on y by first multiplying its measurements

by C−1/2
w . By whitening the noise as in (2.11) and then differentiating (2.10) with respect to x̂, it
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can be shown that the LS estimator is the estimator achieving minimum squared measurement

error.

Measurement error does not directly depend on the unknown parameter x, which makes it

a convenient estimation tool. But the distinction between measurement error and risk is mean-

ingful in the underlying estimation context as well. Measurement error is applicable when the

goal is to obtain a reconstruction of the observations. For example, in an image compression

scheme, we may seek a low-dimensional parameter vector x̂ which reconstructs the observed

image y as closely as possible; the “true” value x is irrelevant. In estimation problems, however,

we wish to find the underlying parameter vector itself, and treat the measurements merely as

chance occurrences from which something about the value of x may be learned.

In an estimation context, then, it is more appropriate to minimize the risk than the mea-

surement error. Unfortunately, measurement error is not necessarily indicative of risk: large

measurement errors may translate to low risk, and vice versa. This is because the system model

(2.1) can cause some measurements to be very loosely dependent on the parameters, for exam-

ple, if a certain row of H contains small values. Minimizing the measurement error would then

result in fitting the observations to the noise vector, rather than fitting them to the parameters.

In some cases, the resulting estimate x̂ is completely unrelated to the parameter x [7]. In effect,

this approach replaces the estimation goal with a simpler, but quite different, objective.

2.3 Stein’s Phenomenon

We have already mentioned the fact that, for Gaussian noise, some estimators achieve lower

MSE than the LS technique, for all values of x. In this section, we adopt the assumption of

Gaussian noise; we discuss these so-called LS-dominating estimators, and attempt to explain

their surprising properties.

2.3.1 Dominance and Admissibility

Estimators achieving optimal MSE for a particular value of x may not perform well for other

values of x. For example, the trivial estimator x̂ = 0 achieves zero MSE when x = 0; lower risk

is clearly not possible. However, x̂ = 0 is obviously a very poor estimator for other values of

x. Since we have no prior information about the likelihood of parameter values, it is entirely

possible that 0 is the true value of x, in which case x̂ = 0 is indeed the optimal estimator. Who

is to say that other estimators should be preferred over it? Any such claim implicitly assumes
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that x 6= 0 is more likely, in some sense, than x = 0, which is prior information we do not have

the luxury of using.

Thus, not all estimators are comparable in terms of MSE performance. However, some esti-

mators are uniformly better than others. For example, the estimator x̂ = −x̂LS, which takes the

LS estimate (2.4) and goes in the opposite direction, obtains higher MSE than the LS estimator,

regardless of the value of x. We say that x̂LS dominates x̂. In general, we have the following

definition.

Definition 2.1. An estimator x̂1 is said to dominate an estimator x̂2 if

MSE(x̂1, x) ≤ MSE(x̂2, x) for all x,

MSE(x̂1, x) < MSE(x̂2, x) for some x.
(2.12)

If the stronger condition

MSE(x̂1, x) < MSE(x̂2, x) for all x (2.13)

also holds, we say that x̂1 strictly dominates x̂2.

If x̂1 dominates x̂2, then one would prefer the use of x̂1 over x̂2. Hence, given a particular

estimator, an important question is whether it can be dominated. We thus have the following

definition.

Definition 2.2. An estimator x̂1 is said to be inadmissible if there exists some estimator which

dominates it. Otherwise, x̂1 is said to be admissible.

The trivial estimator x̂ = 0 is admissible, since no substantially different estimator2 can

achieve zero MSE at x = 0. Surprisingly, however, the LS estimator turns out to be inadmis-

sible [10]. Thus, it is of interest to characterize the class of admissible estimators, and to find

estimators which dominate the LS estimator.

The study of admissibility is sometimes restricted to the set of linear estimators, i.e., esti-

mators of the form x̂ = Gy. A linear admissible estimator is one which is not dominated by

any other linear estimator. A simple rule characterizes the class of such estimators [27], and,

given any linear inadmissible estimator, it is possible to construct a linear admissible alter-

native which dominates it [28]. However, the problem of admissibility is considerably more

intricate when the linearity restriction is removed; generally, admissible estimators are either

2There are other estimators which achieve zero MSE at x = 0: any estimator which returns 0 with probability 1

satisfies this property. However, no such estimator improves upon the trivial estimator, neither at the point x = 0

nor at any other point; thus, the estimator x̂ = 0 is admissible.
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trivial (e.g., x̂ = 0) or exceedingly complex [16, 29, 30]. As a result, much research has focused

on finding simple nonlinear techniques which dominate the LS estimator. A review of these

results is presented in the following subsections.

Despite the difficulty in obtaining practical admissible estimators, there are several inter-

esting theoretical results concerning admissibility. One important example is the following [2,

Theorem 5.2.4].

Theorem 2.1. Suppose x̂ is the unique Bayes estimator for some given prior distribution. Then, x̂ is an

admissible estimator.

Theorem 2.1 ties together two seemingly unrelated worlds: the Bayesian and deterministic

estimation problems. The theorem can be intuitively explained as follows. In a deterministic

setting, we have no knowledge of the prior distribution of x. This setting can thus be viewed as

one in which all priors are possible, and it is thus impossible to prefer one prior over another.

In this view, dominance is obtained only when one estimator is better than another, for all

possible priors. If a particular estimator is the unique optimum for a certain prior, then it

cannot be dominated, and hence it is admissible.

An immediate consequence of Theorem 2.1 is the admissibility of x̂ = 0, since it is the

unique Bayes estimator for the prior given by Pr{x = 0} = 1. However, no prior yields the LS

estimator as a Bayes estimator; indeed, we will now present an estimator which dominates x̂LS.

2.3.2 The James-Stein Estimator

Consider a simple deterministic estimation problem, in which

y = x + w, (2.14)

where y is an observation vector, x is unknown, and w is i.i.d. Gaussian noise with zero mean

and known variance σ2. We refer to this problem as the i.i.d. case of our system model (2.1)

(note, however, that in addition to i.i.d. noise, this version assumes H = I).

The system (2.14) describes an everyday situation in which a set of parameters is measured,

and the measurements obtained have independent noise. Since the noise has zero mean, it is

very reasonable to use the measurements themselves as an estimate of the parameters. This is

the approach of the LS estimator, which becomes simply x̂LS = y in the i.i.d. case. As a result,

there was considerable shock and disbelief when Stein demonstrated in 1956 that, in terms of
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MSE, this approach is suboptimal [10]. The result became known as Stein’s phenomenon.3

Stein’s idea stemmed from an odd property of the expectation of ‖y‖2. It is straightforward

to show that

E
{‖y‖2} = ‖x‖2 + mσ2, (2.15)

where m is the length of the vectors y and x. Thus, the average squared norm of the vector y is

larger than the squared norm of the vector x; the LS estimate is consistently an overestimate of

the true parameter values. Stein therefore proposed to decrease the LS estimator by a factor of
‖y‖2−mσ2

‖y‖2 . The resulting Stein estimator is given by

x̂S =
(

1− mσ2

‖y‖2

)
y. (2.16)

Estimators such as x̂S, which consist of a scalar multiplying x̂LS, are referred to as shrinkage

estimators.

Although (2.16) turns out to be a rather good estimator, it should be noted that the original

reasoning provided by Stein is somewhat vague. In particular, it is the squared norm of x which

is overestimated by a factor of 1− mσ2

‖y‖2 . Thus, Stein’s argument would seem to suggest that a

shrinkage factor of
√

1− mσ2

‖y‖2 is more appropriate. We will present alternative justifications for

Stein’s estimator later in this section, and in Chapter 4.

James and Stein [11] later showed that (2.16) dominates the LS estimate when m ≥ 4. They

also presented an improved estimator,

x̂JS =
(

1− (m− 2)σ2

‖y‖2

)
y, (2.17)

and showed that this so-called James-Stein estimator dominates the Stein estimator, and dom-

inates the LS estimator for all m ≥ 3. Stein [10] had previously shown that the LS estimator is

admissible when m ≤ 2.

This leads to what is perhaps the most counterintuitive consequence of Stein’s phe-

nomenon: When three or more unrelated parameters are measured, their total MSE can be

reduced by using a combined estimator such as the James-Stein estimator; whereas when each

parameter is estimated separately, the LS estimator is admissible. This quirk has caused some

to sarcastically ask whether, in order to estimate the speed of light, one should jointly estimate

tea consumption in Taiwan and hog weight in Montana. The response is that the James-Stein

estimator always improves upon the MSE as defined in (2.2), i.e., the sum of the expected errors

3In fact, Stein assumed the variance σ2 is unknown and estimated from the measurements. We ignore this point

to simplify the presentation.
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of each component. Therefore, the total MSE in measuring light speed, tea consumption and

hog weight would improve by using the James-Stein estimator. However, any particular com-

ponent (such as the speed of light) would improve for some parameter values, and deteriorate

for others. Thus, although the James-Stein estimator dominates the LS estimator when three

or more parameters are estimated, any single component does not dominate the respective

component of the LS estimator [19].

The conclusion from this hypothetical example is that measurements should be combined

if one is interested in minimizing their total MSE. For example, it is reasonable to combine

channel tap measurements in a channel estimation scenario, as the goal is to minimize the

total channel estimation error. Conversely, it is probably not reasonable to combine channel

estimates of different users (in different locations), since no user would want their channel

estimate to deteriorate in order to improve the average network performance.

In light of these counterintuitive results, it is not surprising that the James-Stein estimator

drew considerable criticism from the statistics community in the 1960s and 1970s. For instance,

many claimed that Stein’s phenomenon is a result of some oddity of the MSE objective, or of

the particular problem setting used. However, Brown [31] has shown that the LS estimator is

inadmissible for a variety of risk functions. Stein’s result has also been generalized to many

other estimation settings, some of which are discussed in Subsection 2.3.3.

Like all new ideas, it took some time for the validity of Stein’s phenomenon to gain credi-

bility. Although the results of James and Stein are accepted today, they are still rarely applied

to practical problems. Perhaps one reason for this is the lack of an intuitive explanation of the

phenomenon. Apart from Stein’s vague ‖y‖2 argument described above, the only intuitive ar-

gument directly supporting the James-Stein estimator was provided by Efron and Morris [32].

They used an empirical Bayes approach to derive the James-Stein estimator, as follows. Sup-

pose we are to estimate x in a Bayesian framework (Subsection 2.1.1), and suppose that x is

known to have an i.i.d. Gaussian prior distribution with mean 0 and variance τ2. The Bayesian

estimator minimizing the MSE is then given by the shrinkage estimator

x̂B =
τ2

σ2 + τ2 y. (2.18)

If τ2 is unknown, it can be estimated from measurements, in what is called an empirical Bayes

approach. This is done by conditioning on τ2 and then estimating its value. When y is condi-

tioned on τ2, it is distributed as N(0, (σ2 + τ2)I), so that ‖y‖2 conditioned on τ2 is distributed

as (σ2 + τ2)χ2
m. Using the fact that, for m ≥ 3, the inverse moment of a χ2

m variate is given by



20 CHAPTER 2. BACKGROUND

E
{

1/χ2
m
}

= 1/(m− 2) [17, Section 6.3], we have

E
{

1− (m− 2)σ2

‖y‖2

}
=

τ2

σ2 + τ2 . (2.19)

Thus, 1− (m−2)σ2

‖y‖2 is an unbiased estimate for the shrinkage factor of (2.18). Substituting this

estimated shrinkage factor yields the James-Stein estimator (2.17).

As we shall see in Section 2.4, a similar empirical Bayes argument can be applied to the

non-i.i.d. case, resulting in a generalized Tikhonov estimator. However, the resulting estimator

no longer dominates the LS approach. To our knowledge, no researcher other than Efron and

Morris has used empirical Bayes reasoning for justifying non-i.i.d. LS-dominating estimators.

The result of Efron and Morris does provide an intuitive derivation of the James-Stein es-

timator. However, the choice of the unbiased estimator (2.19) is somewhat arbitrary; the em-

pirical Bayes approach generally makes use of a maximum likelihood estimate, rather than an

unbiased estimate [2]. By differentiating the conditional pdf of y given τ2, it is straightforward

to show that the maximum likelihood estimate of τ2 is given by 1
p‖y‖2 − σ2. Substituting this

estimate into (2.18) yields the Stein estimator (2.16), rather than the James-Stein estimator.

One may also question the use of the normal prior of x as a basis for this derivation. Follow-

ing the discussion of Subsection 2.1.1, we seek an estimator designed to work for deterministic

parameters about which nothing is known a priori. The normal prior assumption, even when

its variance is unknown, introduces a significant amount of additional information about the

prior: not only the fact that it is likely close to zero, but also a description of the probabili-

ties of obtaining larger values. In Chapter 4, we present an alternative approach for deriving

Stein-type estimators, using the blind minimax concept.

2.3.3 Other LS-Dominating Estimators

Since the introduction of the James-Stein estimator, considerable research has gone into im-

proving it and extending its use. The following is a review of the major contributions to this

field.

The Positive-Part Estimator. The first improvement of the James-Stein estimator was pro-

vided by Baranchik [33], and became known as the positive-part estimator. Baranchik was

bothered by the fact that the shrinkage factor of x̂JS (2.17) is sometimes negative, i.e., in some

cases the James-Stein estimator inverts the sign of the LS estimate. However, even noisy mea-

surements are still more likely to be correct than their inverse. Baranchik formalized this notion
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in the following theorem.

Theorem 2.2 (Positive-Part Estimator). Consider the i.i.d. estimation problem (2.14), and let x̂ =

f (y) y be any estimator such that Pr{ f (y) < 0} > 0. Then, the positive part estimator x̂+ = f+(y) y

dominates x̂, where f+(y) = max( f (y), 0).

Thus, whenever an estimator inverts the sign of the LS estimator, its performance can be im-

proved by replacing the negative shrinkage with zero. The positive-part James-Stein estimator

then becomes

x̂PJS =
(

1− (m− 2)σ2

‖y‖2

)

+
y, (2.20)

where (·)+ = max(·, 0). By Theorem 2.2, x̂PJS dominates x̂JS.

The positive-part estimator demonstrates a weakness of the James-Stein estimator, but its

solution is somewhat ad-hoc. One would expect a well-behaved estimator to inherently avoid

negative shrinkage, rather than require an external mechanism for maintaining nonnegative

shrinkage. Furthermore, the positive-part estimator creates an unwanted non-differentiability

in the estimator. In Chapter 4, we present several estimators derived using the blind minimax

technique, which inherently guarantee positive shrinkage.

Bock’s Estimator. Thus far, the Stein phenomenon has been discussed under the assumption

of i.i.d. measurements (2.14). Stein’s results have since been extended to a variety of other

scenarios. Among these, we are particularly interested in the non-i.i.d. linear estimation model

(2.1). The most common estimator for the non-i.i.d. case was developed by Bock [15], who

proposed the use of

x̂Bock =

(
1− d− 2

x̂∗LSH∗C−1
w Hx̂LS

)
x̂LS. (2.21)

Here d (referred to as the effective dimension) is defined as

d =
ε0

εmax
, (2.22)

where ε0 is given by (2.5) and εmax is the largest eigenvalue of (H∗C−1
w H)−1. The effective

dimension d is a measure of the number of independent measurements in the system; for ex-

ample, in the i.i.d. case d simply reduces to the number of parameters, m. Furthermore, x̂Bock

reduces to x̂JS in the i.i.d. case; techniques exhibiting this property are referred to as extended

James-Stein estimators. However, apart from the similarity to the James-Stein technique, no

justification is provided for the particular choice of the shrinkage factor in (2.21).
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Non-Shrinkage Estimators. Bock’s estimator is a shrinkage estimator, i.e., it consists of a

scalar multiplying the LS estimate. However, in the non-i.i.d. case, x̂LS is distributed with

mean x and variance (H∗C−1
w H)−1, i.e., some elements of x̂LS have higher variance than others.

Thus, several researchers [14, 16] have proposed extended James-Stein estimators which are

non-shrinkage in the non-i.i.d. case. The question is then whether high-variance eigenvalues

of x̂LS should be shrunk more than low-variance components, or vice versa.

Efron and Morris [14] consider the somewhat simpler case in which H = I and Cw =

diag(σ2
1 , · · · σ2

m). Thus, the noise elements are independent but not identically distributed. The

proposed estimator shrinks high-variance measurements closer to zero. This is justified using

empirical Bayes reasoning similar to the one presented in Subsection 2.3.2. However, the esti-

mator can only be calculated by iteratively solving a set of nonlinear equations; furthermore,

dominance of the LS estimator is not guaranteed.

By contrast, Berger [16,34] considers a class of estimators, the simplest of which is given by

x̂Berger = x̂LS − d− 2
x̂∗LSx̂LS

H∗C−1
w Hx̂LS, (2.23)

where the effective dimension d is given by (2.22). This estimator is shown to dominate the

LS estimator. However, x̂Berger has the odd property that low-variance eigenvalues of x̂LS are

shrunk more than high-variance eigenvalues. This is counterintuitive since the LS estimator

performs well precisely in those cases for which the variance is low; Berger [34, p. 367] remarks

on this point, but provides no explanation for the choice of the estimator (2.23).

We are thus left with the ironic situation in which there is disagreement as to whether high-

variance components should be shrunk more [14] or less [16]. This controversy demonstrates

the fact that some estimators are justified solely on the fact that they dominate the LS estimator,

without giving ample consideration to the selection of a shrinkage factor. We will return to this

issue when discussing non-shrinkage blind minimax estimators in Section 4.2.

The Thompson Estimator. As we have seen, a variety of estimators based on the James-Stein

approach have been constructed and shown to dominate the LS estimator. This certainly indi-

cates a deficiency of the LS technique. However, it does not necessarily indicate that the James-

Stein approach is paramount [35]. The James-Stein estimator is simply the first LS-dominating

estimator discovered; it is possible that some totally different estimator performs even better.

Although there exist several improvements of the James-Stein estimator [16,29,30], they are

often too complex for practical use. On the other hand, there is a wide and largely unexplored
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class of LS-dominating estimators unrelated to the James-Stein approach. While these do not

generally dominate the James-Stein estimator, it is quite possible that a simple LS-dominating

estimator exists which performs better than the James-Stein estimator under most conditions.

One class of LS-dominating estimators for the i.i.d. case was discovered by Baranchik [13].

The Thompson estimator, given by

x̂Th =
( ‖y‖2

‖y‖2 + mσ2

)
y, (2.24)

belongs to this class, and is of particular interest to us. Curiously, when Thompson proposed

this estimator [12], he did not think that it might dominate the LS estimator; indeed, he wrote,

“We do not hope [. . . ] to best uniformly the [LS estimator], but to obtain an estimator which is

better near the natural origin though possibly worse farther away.” Thompson was apparently

unaware of the work of James and Stein. Nevertheless, x̂Th dominates the LS estimator when

m ≥ 4, and turns out to be a serious competitor of the James-Stein estimator. As we shall see

in Chapter 4, Thompson’s estimator can be derived within the blind minimax framework, in

which it can also be extended to the non-i.i.d. case.

2.4 Tikhonov Regularization

Independently of the development of Stein-type estimators, many researchers in applied fields

became aware of deficiencies of the LS estimator. A variety of more or less ad-hoc alternatives

were proposed as a result of these experiences. Generally, these alternatives were not shown to

dominate the LS estimator; rather, they were intended to improve estimation quality in specific

scenarios, and were empirically observed to outperform the LS technique. Of these approaches,

the most common is Tikhonov regularization [8], also referred to as ridge regression [9].

Tikhonov regularization is intended for ill-posed problems, i.e., problems in which H∗C−1
w H

is nearly singular. The matrix H∗C−1
w H is guaranteed to be positive-definite (and hence invert-

ible), since H is full-rank and Cw is positive-definite (see Subsection 2.1.2). However, H∗C−1
w H

may contain eigenvalues which are very close to zero. In such cases, the LS estimator (which

depends on the term (H∗C−1
w H)−1) causes severe amplification of measurement noise. In ef-

fect, an ill-posed setting is one in which the SNR of at least one parameter is extremely low; as

we have seen in Subsection 2.3.2, the LS approach results in overestimation in such conditions.

Tikhonov viewed the LS estimator from a measurement error point of view (see Subsec-

tion 2.2.3). He proposed to combine the squared measurement error criterion with a restraint
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on the norm of the estimate. The problem is then to obtain an estimator x̂ which minimizes4

‖y−Hx̂‖2 + α2‖x̂‖2, (2.25)

where α > 0 specifies the weight of the norm objective relative to the measurement error objec-

tive. This regularization parameter must be chosen empirically, and a variety of rules of thumb

are used to select its value.

Differentiating (2.25) with respect to x̂ results in the Tikhonov regularization estimator

x̂T =
(
H∗C−1

w H + α2I
)−1H∗C−1

w y. (2.26)

The term α2I increases each of the eigenvalues of H∗C−1
w H by α2. This improves the condition-

ing of H∗C−1
w H + α2I, and its inverse can be accurately calculated.

Rather than increase each eigenvalue of H∗C−1
w H equally, regularization can also be

achieved by adding any positive-definite matrix. This results in the generalized Tikhonov reg-

ularization, given by

x̂T =
(
H∗C−1

w H + αT
)−1H∗C−1

w y, (2.27)

where T is positive-definite. This approach can be derived by replacing the criterion (2.25) with

‖y−Hx̂‖2 + α2x̂∗Tx̂, (2.28)

where x̂∗Tx̂ can be viewed as a weighted norm of x̂.

The generalized Tikhonov regularization is often justified in a Bayesian framework. Sup-

pose that the parameter vector x is known to be distributed normally with zero mean and

covariance T−1. In this setting, the estimator minimizing the MSE (in the Bayesian sense) is

known as the Wiener filter, and is given by (2.27), with α = 1.

This Bayesian justification is reminiscent of the empirical Bayes approach used to derive

the James-Stein estimator (Subsection 2.3.2). The similarity immediately suggests an empirical

Bayes extension of Tikhonov regularization: One could estimate the value of α and substitute

this result into (2.26). In Subsection 2.3.2, we demonstrated that a certain technique for esti-

mating α results in the James-Stein estimator in the i.i.d. case. Applying this approach in the

non-i.i.d. case would seem to result in a generalization of the James-Stein result, which will be

referred to as “blind” Tikhonov regularization. Indeed, this approach is often used in practice

for solving ill-posed problems, although it appears that the relation to the James-Stein approach

has not previously been noted.

4As with the derivation of Subsection 2.2.2, we first whiten the noise using (2.11).
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There are several methods for empirically estimating the parameters T and α from mea-

surements. If nothing is known about the parameter x, one possibility is to assume that the

elements of x are i.i.d., and to estimate their variance σ2
x . In (2.27), this implies T = I and

α = 1/σ2
x . Optimally, one would like to use the mean square value of the parameters xi as

an approximation of the variance σ2
x . However, since x is unknown, σ2

x can be estimated as

the mean square value of the elements of x̂LS; in other words, σ2
x = ‖x̂LS‖2/m, where m is the

length of the vector x. This results in the estimator

x̂(1)
T =

(
H∗C−1

w H +
m

‖x̂LS‖2 I
)−1

H∗C−1
w y. (2.29)

The derivation of x̂(1)
T assumed that the parameters x are i.i.d. An alternative is to as-

sume instead that the variance of x is proportional to the variance of the noise w, which im-

plies T = H∗C−1
w H. In an analogy to the previous derivation, one may then estimate α as

m/x̂∗LSH∗C−1
w Hx̂LS. Substituting these values into (2.27) results in the shrinkage estimator

x̂(2)
T =

x̂∗LSH∗C−1
w Hx̂LS

m + x̂∗LSH∗C−1
w Hx̂LS

x̂LS. (2.30)

Unfortunately, the resulting estimators do not dominate the LS technique, i.e., in some cases

lower MSE is achieved with the LS estimator than with either of the proposed estimators x̂(1)
T

and x̂(2)
T . This is demonstrated in Subsection 4.5.3, where the Tikhonov regularization is com-

pared to other extensions of the James-Stein approach.
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Chapter 3

Minimax Estimation

The results of this work are motivated by minimax estimators designed for a bounded parame-

ter set. In the following, we define and derive these estimators, and present several well-known

properties of minimax estimators, as well as some new results. These provide the basis for the

approaches of Chapters 4 and 5.

3.1 Problem Statement

The deterministic estimation model presented in Subsection 2.1.2 does not assume any prior

knowledge of the values of the parameter vector x. In the minimax model, we still do not

assume any statistical model for x; however, we do assume that x lies within some known,

bounded parameter set S . For example, it may be known that the total power of all parameters

is bounded, or that no parameter can exceed some universal maximum.

When x is known to lie in a given parameter set, one may seek an estimator to optimize

performance for the worst possible value within the parameter set. Performance may be mea-

sured according to any given risk function ε(x̂, x) (Subsection 2.1.2). An estimator achieving

this requirement is called minimax. The following definition formalizes this concept.

Definition 3.1. Let E be a class of estimators, let S be a compact subset of the parameter space,

and let ε(x̂, x) be a risk function. An estimator x̂M ∈ E is said to be E -minimax (over the set S)

if, for any other estimator x̂ ∈ E ,

sup
x∈S

ε(x̂M, x) ≤ sup
x∈S

ε(x̂, x). (3.1)

Ideally, we would like to characterize a minimax estimator within the class of all estimators.

However, in general, it is very difficult to find such estimators. Instead, in many cases one seeks

27
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to minimize the worst-case risk among all affine estimators

x̂(y) = Gy + x0, (3.2)

where G ∈ Cm×n and x0 ∈ Cm are constant. Alternatively, one may minimize the worst-case

risk among all linear estimators

x̂(y) = Gy. (3.3)

In many cases, we will be interested in a parameter set S which is symmetric about the

origin, i.e.,

x ∈ S ⇒ −x ∈ S . (3.4)

In such cases, one would expect a reasonable estimator to be symmetric about the origin as

well. In particular, one would expect a linear minimax estimator to perform as well as any

affine minimax estimator. This is, indeed, the case when the risk function is the MSE, as shown

by the following proposition.

Proposition 3.1. Let x̂a = Gy + x0 be an affine minimax MSE estimator over the parameter set S ,

and assume S satisfies (3.4). Then, x̂b = Gy is also an affine minimax estimator.

Proof. The MSE of an affine estimator is given by

MSE(x̂ = Gy + x0, x) = E
{‖GHx + Gw + x0 − x‖2}

= E{w∗G∗Gw}+ ‖GHx− x + x0‖2

= Tr(GCwG∗) + ‖(I−GH)x− x0‖2.

(3.5)

Assume by contradiction that x̂b = Gy is not minimax. We then have

max
x∈S

MSE(Gy, x) > max
x∈S

MSE(Gy + x0, x). (3.6)

Using (3.5) and denoting A = I−GH, we obtain

max
x∈S

‖Ax‖2 > max
x∈S

‖Ax− x0‖2. (3.7)

Thus, there exists x1 ∈ S such that

∀x ∈ S , ‖Ax1‖2 > ‖Ax− x0‖2. (3.8)

Since S is symmetric about the origin, (3.8) holds for both x = x1 and x = −x1, yielding

‖Ax1‖2 > ‖Ax1‖2 + ‖x0‖2 − 2x∗0Ax1,

‖Ax1‖2 > ‖Ax1‖2 + ‖x0‖2 + 2x∗0Ax1.
(3.9)

Combining these two equations, we obtain ‖x0‖2 < 0, which is a contradiction; therefore, x̂b is

minimax.
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Thus, when S is symmetric about the origin, an affine minimax MSE estimator may be

found by optimizing over all linear estimators.

The restriction to affine estimators reduces the dimensionality of the problem by requiring

the form (3.2). As a result, identification of an affine minimax estimator can often be stated as a

convex optimization problem, and in many cases closed-form estimators can be derived. Some

known minimax estimators are given in the next section. We will be particularly interested in

minimax MSE estimators (i.e., estimators minimizing the worst-case MSE (2.2) within the set

S) and in minimax regret estimators (which minimize the worst-case regret (2.3)).

3.2 Examples of Minimax Estimators

In this section, we present several known results relating to minimax estimation [5–7]. These

provide convenient closed forms for affine minimax estimators, for spherical and ellipsoidal

parameter sets. The minimax estimators described in this section will be used in the derivations

of Chapters 4 and 5.

3.2.1 Minimax MSE Estimators

We begin by studying the affine minimax MSE estimator for a spherical parameter set centered

on the origin. A simple closed form for this estimator is given by the following theorem.

Theorem 3.2. Consider the linear estimation model (2.1), and let S = {x : ‖x‖2 ≤ L2} be a spherical

parameter set centered on the origin. Then, the unique affine minimax MSE estimator for the set S is

given by

x̂ =
L2

L2 + ε0
x̂LS, (3.10)

where x̂LS is the LS estimator (2.4) and ε0 is given by (2.5). The maximum MSE obtained by this

estimator over the set S is given by (
L2

L2 + ε0

)
ε0. (3.11)

Proof. The minimax estimator for the set S was shown in [6, Th. 1] to equal (3.10). We now

show that the worst-case error of this estimator is given by (3.11). The bias (2.7) of x̂ is given by

b(x̂, x) = E{x̂− x} = (β− 1)x, (3.12)

where β = L2

L2+ε0
. Furthermore, the variance (2.8) of x̂ is given by

Var(x̂) = Tr(GCwG∗) = β2ε0. (3.13)
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Since the MSE is the sum of the variance and the squared norm of the bias (2.6), we have that

for any x ∈ S ,

MSE(x̂, x) = β2ε0 + (1− β)2‖x‖2. (3.14)

Clearly, the maximum of (3.14) within S is obtained for ‖x‖2 = L2. The maximum MSE is

therefore given by β2ε0 + (1− β)2L2, which is equivalent to (3.11).

As shown by Theorem 3.2, the minimax estimator for a spherical parameter set is a shrink-

age estimator, i.e., it consists of a scalar shrinkage factor multiplying the LS estimate. This

is no longer the case when the parameter set is ellipsoidal, as demonstrated by the following

theorem, a proof of which may be found in [6, Th. 1].

Theorem 3.3. Consider the linear estimation model (2.1), and let S = {x : x∗Tx ≤ L2} be an

ellipsoidal parameter set centered on the origin, for some positive-definite matrix T. Suppose that T and

H∗C−1
w H have the same eigenvector matrix, so that H∗C−1

w H = VΣV∗ and T = VΛV∗, where V is

unitary, Σ is diagonal with diagonal elements σ1, σ2, . . . σm, and Λ is diagonal with diagonal elements

λ1 ≥ λ2 ≥ · · · ≥ λm. Then, the unique affine minimax MSE estimator for the set S is given by

x̂ = V∗ diag(0k, 1m−k)V(I− αT1/2)x̂LS, (3.15)

where

α =
∑m

i=k+1
λ1/2

i
σi

L2 + ∑m
i=k+1

λi
σi

(3.16)

and k is the smallest integer such that 0 ≤ k ≤ m− 1 and αλ1/2
k+1 < 1. The maximum MSE obtained by

this estimator over the set S is given by

m

∑
i=k+1

1− αλ1/2
i

σi
. (3.17)

A simple closed form of the minimax MSE estimator can be obtained for any ellipsoidal

parameter set, if the parameter set is small enough to guarantee a certain SNR threshold. This

is stated formally in the following theorem, the proof of which may be found in [28, Section IV-

B.3].

Theorem 3.4. Consider the linear estimation model (2.1), and let S = {x : x∗Tx ≤ L2} be an

ellipsoidal parameter set centered on the origin, for some positive-definite matrix T. Let Q = H∗C−1
w H,

and suppose

λmin

(
Q−1(QT−1Q)1/2

)
≥ α (3.18)
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where

α =
Tr

(
(Q−1TQ−1)1/2)

L2 + Tr(Q−1T)
. (3.19)

Then the unique affine minimax MSE estimator for the set S is given by

x̂ = (I− α(Q−1TQ−1)1/2Q)Q−1H∗C−1
w y. (3.20)

3.2.2 Minimax Regret Estimators

As discussed in Subsection 2.1.2, the regret is useful when dealing with linear estimators, since

it attempts to disregard errors resulting from the limitations of linear estimation. We will use

this risk function in Chapter 5, which deals with the linear estimation setting. The following

theorem asserts that minimax regret estimators can be calculated efficiently, for a large class of

ellipsoidal parameter sets. The proof of this theorem may be found in [7, Th. 1]. Note that our

notation differs somewhat from that of [7]; in particular, we define r = s/L2.

Theorem 3.5. Consider the linear estimation model (2.1), and let S = {x : x∗Tx ≤ L2} be an

ellipsoidal parameter set centered on the origin, for some positive-definite matrix T. Suppose that T and

H∗C−1
w H have the same eigenvector matrix, so that H∗C−1

w H = VΣV∗ and T = VΛV∗. Here V is

unitary, Σ is diagonal with diagonal elements σi, and Λ is diagonal with diagonal elements λi. Then,

the linear minimax regret estimator is given by

x̂ = VDV∗x̂LS, (3.21)

where D is a diagonal matrix whose diagonal elements d = (d1, . . . dm)T are the solution to the convex

optimization problem

min
τ,d

τ (3.22)

s.t.





F1(d) ≤ τ (a)

F2(d, r) ≤ τ ∀ r ∈ R. (b)

Here,

F1(d) =
m

∑
i=1

d2
i

σi
, (3.23)

F2(d, r) =
m

∑
i=1

d2
i

σi
+ L2

m

∑
i=1

(1− di)2ri − L2 ∑m
i=1 ri

1 + L2 ∑m
i=1 σiri

, (3.24)

and

R =

{
r : ri ≥ 0,

m

∑
i=1

λiri = 1

}
. (3.25)

In (3.22), the optimal value of τ is the worst-case regret.
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It is worth noting that, in many special cases, simpler forms have been derived for the

minimax regret estimator. In particular, closed forms are available for the case T = I [7, Th. 3]

and for the case T = H∗C−1
w H [7, Th. 2].

3.2.3 Noncentral Estimation

In the previous subsections, several examples of affine minimax estimators were provided. All

of these examples were based on parameter sets which are symmetrical around the origin, and

hence the resulting minimax estimators were linear. These results can be extended to parameter

sets centered on any constant point x0, as demonstrated by the following proposition.

Proposition 3.6. Consider the linear estimation model (2.1) and any risk function ε(x̂, x). Let S be a

bounded parameter set, and let S + x0 be a shifted parameter set given by

S + x0 = {x + x0 : x ∈ S}, (3.26)

for some constant x0. Suppose x̂M(y) is an affine minimax estimator over the set S and for the risk

function ε(x̂, x). Then, an affine minimax estimator for the set S + x0 is given by

x̂′M(y) = x̂M(y−Hx0) + x0. (3.27)

Proof. For any estimator x̂,

sup
x∈S+x0

‖x̂− x‖2 = sup
x∈S+x0

‖x̂− x0 − (x− x0)‖2 = sup
ξ∈S

‖ξ̂ − ξ‖2, (3.28)

where we defined ξ = x− x0 and ξ̂ = x̂− x0. Hence, finding an estimator x̂′M which minimizes

the worst-case risk within S + x0 is equivalent to finding an estimator ξ̂ which minimizes the

worst-case risk within S . However, since y = Hx + w, we have

y−Hx0 = Hξ + w. (3.29)

Thus, y − Hx0 may be viewed as observations of the parameter vector ξ under the standard

linear regression model (2.1); it follows that the estimator ξ̂ which minimizes the worst-case

risk within S is given by

ξ̂(y) = x̂M(y−Hx0), (3.30)

and substituting x̂ = ξ̂ + x0 proves the proposition.
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As an example, consider the sphere S = {x : ‖x − x0‖2 ≤ L2}. Use of Theorem 3.2 and

Proposition 3.6 immediately shows that the minimax estimator in this case is given by

x̂ =
L2

L2 + ε0
x̂LS +

ε0

L2 + ε0
x0. (3.31)

This result is a weighted average between the sphere center x0 and the LS estimate x̂LS. When

the radius L tends to zero, the “prior knowledge” x0 has more weight. Contrariwise, when

L → ∞, the LS estimate takes precedence. A generalization of this averaging effect occurs

for all ellipsoidal minimax MSE and minimax regret estimators, as shown by the following

proposition.

Proposition 3.7. Let S = {x : (x− x0)∗T(x− x0) ≤ L2} be an ellipsoidal parameter set, where T is

any positive-definite matrix and x0 is any constant. Consider as a risk function either the MSE or the

regret. Then, the unique affine minimax estimator is given by

x̂M = Bx̂LS + (I− B)x0, (3.32)

where B is some m×m matrix.

Proof. Consider first the case x0 = 0. In this case, the set S is symmetrical about the origin, and

hence x̂0
M is linear. Furthermore, the risk depends on x̂M = Gy only through the forms GH

and Tr(GCwG∗). It has been shown [6, Prop. 1] that for such risk functions, the linear minimax

estimator has the form x̂0
M = Bx̂LS, for some m×m matrix B.

In the case x0 6= 0, Proposition 3.6 ensures that an affine minimax estimator is given by

x̂′M = B(H∗C−1
w H)−1H∗C−1

w (y−Hx0) + x0 = Bx̂LS + (I− B)x0, (3.33)

which completes the proof.

3.3 Conditional Dominance

When the parameter vector x is known to belong to some bounded set S , one would expect an

affine minimax MSE estimator x̂M to perform at least as well as the LS estimator x̂LS. In fact, as

we demonstrate in the following theorem, the MSE performance of x̂M is better than that of x̂LS,

for all values of x in S [20].

Theorem 3.8. Let S be a bounded parameter set, and let x̂M be an affine minimax MSE estimator for

the parameter set S . Then, the MSE of x̂M is lower than the MSE of the LS estimator (2.4), for all x ∈ S .
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Since performance improvement is not guaranteed for all values of x, this theorem does not

prove dominance of x̂M in the usual sense of Definition 2.1; in fact, neither of the estimators

dominates the other. However, improvement is guaranteed as long as the prior information

x ∈ S holds. We refer to this state of affairs as “conditional dominance.”

Proof of Theorem 3.8. For any bounded S , there exists a finite r such that S is bounded within

the sphere {x : ‖x‖ ≤ r}. By Theorem 3.2, the affine minimax MSE estimator for this sphere is

x̂r =
r2

r2 + ε0
x̂LS. (3.34)

Furthermore, by Theorem 3.2, the maximum MSE obtained by this estimator within the set S
is (

r2

r2 + ε0

)
ε0, (3.35)

which is smaller than ε0, the MSE of the LS estimator. From (3.1), it follows that

MSE(x̂M, x) ≤ MSE(x̂r, x) < ε0 for all x ∈ S , (3.36)

which concludes the proof.



Chapter 4

Blind Minimax Estimation

In this chapter, we present a framework for generating a wide class of low-complexity, LS-

dominating estimators, which are constructed from a simple, intuitive principle, called the

blind minimax approach [20–22]. This approach is used as a basis for selecting and generating

estimators tailored for given estimation problems. Many blind minimax estimators (BMEs)

reduce to Stein-type estimators or extended Stein-type estimators (Subsection 2.3.2). Thus, we

show analytically that the proposed estimators always achieve lower MSE than the LS estimator.

Throughout the chapter, the assumption of Gaussian noise will be adopted.

4.1 The Blind Minimax Approach

Blind minimax estimators are based on the minimax approach (Chapter 3). As we have seen

(Theorem 3.8), for any bounded parameter set S , the affine minimax estimator over S achieves

lower MSE than the LS estimator, as long as x ∈ S . However, this improvement may be

attributed to the fact that the minimax estimator presupposes knowledge of the set S , while

the LS approach makes no such assumptions. In this chapter, we develop a technique which

dominates the LS estimator without assuming any prior information regarding the parameter

set x. We assume only that the linear model (2.1) holds, that the risk function is the MSE, and

that the noise w is Gaussian. Under these conditions, we propose the following two-stage

technique.

Definition 4.1. A blind minimax estimator (BME) is an estimator constructed as follows.

1. A parameter set S is estimated from the measurements;

2. A minimax estimator designed for S is used to estimate the parameter vector x.

35
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The resulting algorithm may be viewed as a simple estimator, independent of this two-

stage construction process. Indeed, our LS-dominance proofs are independent of the method

by which the estimators are generated. In particular, the dominance results do not depend on

the parameter actually lying within the estimated parameter set. However, the blind minimax

technique provides a framework whereby many different estimators can be generated, and

provides insight into the mechanism by which these estimators outperform the LS estimator.

Blind minimax estimators differ in the method by which the parameter set S is estimated.

In general, the LS estimate x̂LS is used in some way in this procedure. As a preliminary (and

unsuccessful) example, suppose we define the set S as a sphere of some constant radius L

centered on x̂LS, i.e.,

S = {x : ‖x− x̂LS‖2 ≤ L2}. (4.1)

The minimax estimator for a sphere centered on a constant point x0 is given by (3.31). The blind

minimax estimator in this case is then obtained by substituting x̂LS for x0 in (3.31). Unfortu-

nately, this estimator simply reduces to x̂LS itself, so that our preliminary example provides no

advantage over the LS estimator. This is a result of the fact that a minimax estimator centered

on x0 is a weighted average between x0 and x̂LS; thus, when x̂LS is substituted for x0, the LS

estimate is obtained. Furthermore, as demonstrated by Proposition 3.7, a generalized average

between x̂LS and x0 is obtained for ellipsoidal parameter sets as well. Clearly, then, the choice

of a parameter set centered on x̂LS yields no improvement over the LS estimator. However,

other blind minimax constructions prove to be very effective, as demonstrated in the following

sections.

4.2 The Spherical Blind Minimax Estimator

As we have seen in Section 4.1, blind minimax estimators differ in the method by which the

parameter set is estimated. In the following, we use a spherical parameter set centered on the

origin,

S = {x : ‖x‖2 ≤ L2}, (4.2)

where the sphere radius L2 is estimated from the measurements. (Later in this section, we will

extend the results to sets centered on any constant point.) As we have seen in Theorem 3.2, for

any constant value of L2, the unique affine minimax estimator is defined by the closed form

(3.10). The spherical BME (SBME) will have the same form, with L2 estimated from measure-

ments.
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As an estimate of L2, we seek a value as close as possible to ‖x‖2: a smaller value would

exclude the true vector x from the parameter set, while a larger value would yield an overly

conservative estimator. Since x is unknown, a natural alternative is to use x̂LS instead. Thus,

we propose to estimate L2 as ‖x̂LS‖2. The SBME is then given by

x̂SBM =
‖x̂LS‖2

‖x̂LS‖2 + ε0
x̂LS. (4.3)

In the i.i.d. case, the SBME reduces to the well-known Thompson estimator. Under suitable

conditions, Thompson’s technique is known to strictly dominate the LS estimator, meaning

that it achieves lower MSE for all values of x. However, the SBME is equally well-defined for

the non-i.i.d. case. As we shall see, the SBME strictly dominates the LS estimator in the non-

i.i.d. case, and can thus be viewed as a generalization of Thompson’s results. In Section 4.4

we will demonstrate that the blind minimax approach can be used to derive generalizations of

additional well-known methods, including Stein’s estimator.

Up to this point, we have arbitrarily chosen the parameter set to be centered on the origin.

The result was a weighted average between the LS estimate and the origin. The weight given

to the LS estimate may be viewed as a restraint, which lessens the effect of measurement noise.

As we shall see, the proposed BMEs outperform the LS estimator, illustrating the fact that the

LS estimator is an overestimate. However, the choice of a parameter set centered on the origin

is completely arbitrary; BMEs may be constructed around any constant center point x0 [17].

This would result in a weighted average between the LS estimator and x0, which may be useful

if the parameter vector is expected to lie near a particular point. Thus, the “off-center” SBME

is given by

x̂ =
( ‖x̂LS‖2

‖x̂LS‖2 + ε0

)
x̂LS +

(
ε0

‖x̂LS‖2 + ε0

)
x0. (4.4)

All dominance results continue to hold for the off-center estimators as well. In the sequel, we

assume x0 = 0 merely for the sake of notational simplicity.

The following theorem demonstrates that the SBME is guaranteed to outperform the LS

estimator in terms of MSE.

Theorem 4.1. Suppose d > 4, where the effective dimension d is given by (2.22). Then, the SBME

strictly dominates the LS estimator.

Note that the SBME is a special case of the estimator

x̂b =
(

1− ε0

b + x̂∗LSx̂LS

)
x̂LS, (4.5)
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in which b = ε0. Thus, rather than proving Theorem 4.1, we prove the following, more general

proposition, which will also be used in Section 4.4.

Proposition 4.2. Suppose d > 4, where the effective dimension d is given by (2.22). Then, the estimator

(4.5) dominates the LS estimator, for any b ≥ 0.

The proof of Proposition 4.2 makes use of the following result, known as Stein’s lemma.

In essence, Stein’s lemma is a restatement of the law of integration by parts, formulated for a

useful special case. The proof of a slightly more general version of Stein’s lemma may be found

in [2, Th. 1.5.15].

Lemma 4.3 (Stein). Let v̂ ∼ Np(v, I), and let g(v̂) be a differentiable function such that

E
{∣∣∣ ∂g(v̂)

∂v̂i

∣∣∣
}

< ∞ for all i. Then,

E
{

∂g(v̂)
∂v̂i

}
= −E{g(v̂)(vi − v̂i)} . (4.6)

Proof of Proposition 4.2. We will prove that x̂b strictly dominates x̂LS for any b ≥ 0. First, note

that the MSE of x̂b is given by

MSE(x̂b, x) = E
{‖x− x̂b‖2}

= E
{(

(x− x̂LS) +
ε0x̂LS

b + x̂∗LSx̂LS

)∗ (
(x− x̂LS) +

ε0x̂LS

b + x̂∗LSx̂LS

)}

= ε0 + E
{

ε2
0x̂∗LSx̂LS

(b + x̂∗LSx̂LS)2

}
+ 2E

{
ε0

b + x̂∗LSx̂LS
x̂∗LS(x− x̂LS)

}
,

(4.7)

where ε0 is defined by (2.5). Define

Q = H∗C−1
w H, (4.8)

and denote the eigenvalue decomposition of Q by VΛV∗, so that V is unitary and Λ =

diag(λ1, . . . λm). Define v̂ = V∗Q1/2x̂LS and v = V∗Q1/2x. Note the following relations be-

tween v̂ and x̂LS:

v̂∗Λ−1v̂ = x̂∗LSx̂LS,

v̂∗Λ−1v = x̂∗LSx,

v̂∗Λ−2v̂ = x̂∗LSQ−1x̂LS.

(4.9)

Using these properties, we now evaluate the third term in (4.7), obtaining

E
{

ε0

b + x̂∗LSx̂LS
x̂∗LS(x− x̂LS)

}
= E

{
ε0

b + v̂∗Λ−1v̂
v̂∗Λ−1(v− v̂)

}

= E

{
ε0

b + v̂∗Λ−1v̂

p

∑
i=1

λ−1
i v̂i(vi − v̂i)

}

= ε0

p

∑
i=1

λ−1
i E

{
v̂i(vi − v̂i)

b + v̂∗Λ−1v̂

}
.

(4.10)
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Let

gi(v̂) , v̂i

b + v̂∗Λ−1v̂
, (4.11)

and note that v̂ is distributed normally with mean v and covariance I. We can thus apply

Lemma 4.3 to obtain

E
{

ε0

b + x̂∗LSx̂LS
x̂∗LS(x− x̂LS)

}
= −ε0 ∑

i
λ−1

i E

{
1

b + v̂∗Λ−1v̂
− 2

λ−1
i v̂2

i

(b + v̂∗Λ−1v̂)2

}

= −ε0E

{
Tr(Λ−1)

b + v̂∗Λ−1v̂

}
+ 2ε0E

{
v̂∗Λ−2v̂

(b + v̂∗Λ−1v̂)2

}

= −ε0E
{

Tr(Q−1)
b + x̂∗LSx̂LS

}
+ 2ε0E

{
x̂∗LSQ−1x̂LS

(b + x̂∗LSx̂LS)2

}
.

(4.12)

Substituting this result back into (4.7), we have

MSE(x̂b, x) = ε0 + E
{

ε2
0x̂∗LSx̂LS

(b + x̂∗LSx̂LS)2

}
− 2ε0E

{
ε0

b + x̂∗LSx̂LS

}
+ 4ε0E

{
x̂∗LSQ−1x̂LS

(b + x̂∗LSx̂LS)2

}

= ε0 + E

{
ε0

b + x̂∗LSx̂LS

(
ε0

x̂∗LSx̂LS

b + x̂∗LSx̂LS
− 2ε0 + 4

x̂∗LSQ−1x̂LS

b + x̂∗LSx̂LS

)}
.

(4.13)

Since b ≥ 0,

MSE(x̂b, x) ≤ ε0 + E

{
ε0

b + x̂∗LSx̂LS

(
ε0x̂∗LSx̂LS

x̂∗LSx̂LS
− 2ε0 + 4

x̂∗LSQ−1x̂LS

x̂∗LSx̂LS

)}

≤ ε0 + E
{

ε0

b + x̂∗LSx̂LS
(−ε0 + 4εmax)

}
,

(4.14)

where εmax is the largest eigenvalue of Q−1. Note that d = ε0/εmax. Furthermore, if ε0 > 4εmax,

then the expectation is taken over a strictly negative range, and hence MSE(x̂b, x) is always

lower than ε0. As a result, x̂b strictly dominates x̂LS when d > 4.

As we have shown, in terms of MSE, the SBME outperforms the LS estimator, providing

us with a first example of the power of blind minimax estimation. The SBME is a shrinkage

estimator, i.e., it consists of the LS estimator multiplied by a gain factor smaller than one. The

SBME thus illustrates the fact that the LS technique tends to be an overestimate, and shrinkage

can improve its performance. However, in some applications, such as image reconstruction,

a gain factor has no effect on the end result. In the next section, we use the blind minimax

approach to develop a non-shrinkage estimator, which also dominates the LS estimator.

4.3 The Ellipsoidal Blind Minimax Estimator

Occasionally, one must use the MSE in place of a more accurate error measure, which may

be overly complex or difficult to quantify. For example, in communication systems, one is
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often interested in minimizing the bit error rate (BER). However, BER minimization techniques

are generally too computationally expensive to be practical. In many situations, one chooses

instead to minimize the MSE between the transmitted and reconstructed symbols [36]. This

is done in the hope that low MSE provides low BER. However, MSE and BER are not always

directly related. In the previous section, it was shown that SBMEs achieve lower MSE than the

LS estimator. Yet in a binary communication system, only the signs of the estimated elements

are used to evaluate the received bits. Since the SBMEs are shrinkage estimators, they yield the

same sign as the LS estimator. Thus, in a binary communication system, the BER obtained by

SBMEs is identical to the BER of the LS estimator.

Shrinkage estimators are therefore not applicable to all estimation problems. In this sec-

tion, we develop a non-shrinkage estimator by considering ellipsoidal, rather than spherical,

parameter sets as the basis for the blind minimax technique. In some situations, this estimator

also outperforms the SBME in terms of MSE.

As we have seen in Subsection 2.3.3, not all elements of the least-squares estimate x̂LS are

equally trustworthy, and several researchers have proposed shrinking each measurement sep-

arately according to its variance. However, there has been disagreement as to whether high-

variance components should be shrunk more or less, and little justification has been given to

either choice.

The blind minimax approach provides a natural framework for resolving these disputes. To

see this, note that x̂LS = x + u, where u ∼ Nm(0, Q−1), and Q is given by (4.8). The SBME was

constructed by using ‖x̂LS‖2 as an estimate for ‖x‖2. However, since the noise u is colored, it is

sensible to first whiten the noise, obtaining

Q1/2x̂LS = Q1/2x + ũ, (4.15)

where ũ ∼ Nm(0, I). One may then estimate ‖Q1/2x‖2 as ‖Q1/2x̂LS‖2, obtaining the ellipsoidal

BME (EBME). Such an estimate can be readily incorporated into the blind minimax framework

by using an ellipsoidal parameter set, S = {x : x∗Qx ≤ L2}, rather than the spherical param-

eter set of the SBME; here, L2 would be estimated as x̂∗LSQx̂LS. The ellipsoidal parameter set is

elongated in directions of low noise, resulting in lower shrinkage for those directions, and thus

resolving the aforementioned dilemma. In the i.i.d. case, Q = I, and the estimator reduces to

the SBME.

Theorem 3.3 provides a closed form for minimax estimators of an ellipsoidal parameter set.

By substituting the value of L2 into this closed form, we obtain the following expression for the
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EBME.

Proposition 4.4 (Closed-Form EBME). Let VΛV∗ be the eigenvalue decomposition of Q, so that V

is unitary, Λ = diag(λ1, . . . λm), and λ1 ≥ · · · ≥ λm. The EBME is then given by

x̂EBM = V diag(0k, 1m−k)V∗
(

I− αQ1/2
)

x̂LS, for x̂LS 6= 0 (4.16a)

x̂EBM = 0, for x̂LS = 0. (4.16b)

Here

α =
∑m

i=k+1 λ−1/2
i

x̂∗LSQx̂LS + m− k
, (4.17)

and k is the smallest integer 0 ≤ k ≤ m− 1 such that

α < λ−1/2
k+1 . (4.18)

Proof. In the case x̂LS = 0, we are to find the linear minimax estimator for the set S = {0}.

Clearly the linear minimax estimator in this case is x̂ = 0. For all other values of x̂LS, we are to

find the linear minimax estimator for the set S = {x : x∗Qx ≤ L2}, where L2 = x̂∗LSQx̂LS > 0.

Substituting this value of L2 into Proposition 1 of [6] yields (4.16a).

We note that it is always possible to find a value k which satisfies (4.18). In particular, for

k = m− 1, we have

α =
λ−1/2

m
x̂∗LSQx̂LS + 1

, (4.19)

and since x̂∗LSQx̂LS > 0, this satisfies the requirement (4.18).

While the closed form of the EBME appears somewhat more intimidating than that of the

SBME, the computational complexities of the two estimators are comparable. The major differ-

ence is the calculation of the value k, for which m divisions are required. Like the SBME, the

EBME also dominates the LS estimator under suitable conditions, as shown in the following

theorem.

Theorem 4.5. Suppose Tr(Q−1/2) > 4ε1/2
max, where ε1/2

max is the largest eigenvalue of Q−1/2, and Q is

given by (4.8). Then, the EBME strictly dominates x̂LS.

The proof of Theorem 4.5 is based on an analogy between the diagonal matrix diag(0k, 1m−k)

in (4.16a) and Baranchik’s positive-part modification of the James-Stein estimator (see Sub-

section 2.3.3). Baranchik proposed using a shrinkage factor of 0 whenever the James-Stein

estimator uses negative shrinkage, and showed that the resulting positive-part estimator domi-

nates the James-Stein estimator. Although the EBME is not a shrinkage estimator, it resembles
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Baranchik’s modification. To see this, consider the estimator x̂0 obtained by removing the term

diag(0k, 1m−k) from (4.16a),

x̂0 = (I− αQ1/2)x̂LS

= V diag
(

1− αλ1/2
1 , · · · 1− αλ1/2

m

)
V∗x̂LS. (4.20)

Since α ≥ λ−1/2
i for all i ≤ k, this would introduce negative componentwise shrinkage for the

first k eigenvectors of V. Thus, the using the EBME inherently guarantees positive shrinkage,

and does not require one to resort to post factum modifications such as those proposed by

Baranchik. The following proposition, which is a generalization of Baranchik’s result, asserts

that the MSE can be reduced by eliminating this negative shrinkage.

Proposition 4.6 (Generalized Positive-Part Estimator). Let x̂ be any estimator of the form x̂ =

VDV∗x̂LS, where D is a diagonal matrix, whose diagonal elements di are functions of the random

variable x̂∗LSQx̂LS. Suppose at least one of the elements di is negative with nonzero probability. Then, x̂

is dominated by the generalized positive-part estimator

x̂+ = VD+V∗x̂LS, (4.21)

where D+ is a diagonal matrix with diagonal elements di+ = max(0, di).

Proof. Our proof follows that of Baranchik [33]. We will show that MSE(x̂)−MSE(x̂+) is non-

negative for all x, and positive for any value of x whose elements are all nonzero.

MSE(x̂)−MSE(x̂+) = E
{‖x̂− x‖2}− E

{‖x̂+ − x‖2}

= E
{‖x̂‖2 − ‖x̂+‖2}− 2E{x̂∗x− x̂∗+x}

= E
{

x̂∗LSV(D2 −D2
+)V∗x̂LS

}

− 2E{x̂∗LSV(D−D+)V∗x} . (4.22)

Since d2
i − d2

i+ ≥ 0 for all i, the first term in (4.22) is nonnegative. Hence, to prove the propo-

sition, it suffices to show that E
{

x̂∗LSV(D−D+)V∗x
}

is nonpositive for all x, and negative for

values x with nonzero elements.

To this end, define z = V∗x and ẑ = V∗x̂LS. We note that ẑ ∼ Nm(z, Λ−1), so that the

elements of ẑ are statistically independent. To calculate E
{

x̂∗LSV(D−D+)V∗x
}

, we condition

on x̂∗LSQx̂LS, obtaining

E{x̂∗LSV(D−D+)V∗x} = E{E{ẑ∗(D−D+)z|ẑ∗Λẑ}}

= E

{
m

∑
i=1

(di − di+)E{ẑizi|ẑ∗Λẑ}
}

,
(4.23)
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where we used the fact that x̂∗LSQx̂LS = ẑ∗Λẑ, and that di and di+ are deterministic when

conditioned on x̂∗LSQx̂LS. For each i, we further condition on |ẑi|, to obtain

E{x̂∗LSV(D−D+)V∗x} = E

{
m

∑
i=1

(di − di+)E
{

ẑizi
∣∣ẑ∗Λẑ, |ẑi|

}
}

= E

{
m

∑
i=1

(di − di+)|ẑizi|E
{

sgn(ẑizi)
∣∣ẑ∗Λẑ, |ẑi|

}
}

. (4.24)

Since ẑi ∼ N(zi, λ−1
i ), we have that, for any zi 6= 0,

Pr
{

sgn(ẑi) = sgn(zi)
∣∣ẑ∗Λẑ, |ẑi|

}
> Pr

{
sgn(ẑi) 6= sgn(zi)

∣∣ẑ∗Λẑ, |ẑi|
}

. (4.25)

This is because, given |ẑi|, we have that either ẑi = zi or that ẑi = −zi. From the pdf of ẑi it is

evident that the latter option has lower probability. It follows that E{sgn(ẑizi)|ẑ∗Λẑ, |ẑi|} ≥ 0,

with strict inequality for zi 6= 0. Therefore, all terms in (4.24) are nonnegative, except for

(di − di+), which is nonpositive. As a result, (4.24) (and hence (4.22)) is nonpositive for all x, so

that the MSE of x̂+ is never higher than that of x̂.

We must also show that, for some x, (4.24) is strictly negative. To this end, we choose x

for which all elements are nonzero; as a result, all terms in (4.24) are strictly positive with

probability 1, except for (di − di+). The latter term is negative when di < 0 and zero otherwise.

Since di is negative with nonzero probability for at least one value of i, we conclude that for the

chosen value of x, (4.24) is strictly negative, completing the proof of Proposition 4.6.

This generalization of positive part estimation is now used to prove Theorem 4.5.

Proof of Theorem 4.5. In calculating the MSE of x̂EBM, we ignore the case x̂LS = 0, since this case

occurs with zero probability. We must therefore show that, for x̂LS 6= 0, the estimator (4.16a)

strictly dominates the LS estimator. To do this, we show that x̂0 of (4.20) strictly dominates the

LS estimator. The result then follows from Proposition 4.6, since x̂EBM is the positive part of x̂0.

Denoting s = ∑m
i=k+1 λ−1/2

i , the MSE of x̂0 is given by

MSE = E

{∥∥∥∥x− x̂LS +
sQ1/2x̂LS

x̂∗LSQx̂LS + m− k

∥∥∥∥
2}

= ε0 + E
{

s2x̂∗LSQx̂LS

(x̂∗LSQx̂LS + m− k)2

}

+ 2E
{

s(x− x̂LS)∗Q1/2x̂LS

x̂∗LSQx̂LS + m− k

}
. (4.26)



44 CHAPTER 4. BLIND MINIMAX ESTIMATION

We now define v̂ = V∗Q1/2x̂LS and v = V∗Q1/2x. Using this notation, the third term in (4.26)

may be written as

A3 , E
{

s(x− x̂LS)∗Q1/2x̂LS

x̂∗LSQx̂LS + m− k

}

= E

{
s(v− v̂)∗Λ−1/2v̂

v̂∗v̂ + m− k

}

=
m

∑
i=1

λ−1/2
i E

{
s(vi − v̂i)v̂i

v̂∗v̂ + m− k

}
, (4.27)

where we have used the fact that v̂ ∼ Nm(v, I). Let

gi(v̂) =
sv̂i

v̂∗v̂ + m− k
, (4.28)

noting that k is implicitly dependent on v̂, and that s is implicitly dependent on k. Thus, gi(v̂)

is discontinuous for some values of v̂, namely, those values for which α = λ−1/2
i . However,

these values of v̂ occur with probability zero; for all other values, k (and hence s) are constant

for sufficiently small changes in v̂. Thus,

∂gi(v̂)
∂v̂i

= s
v̂∗v̂ + m− k− 2v̂2

i
(v̂∗v̂ + m− k)2 with probability 1, (4.29)

and E
{∣∣∣ ∂gi(v̂)

∂v̂j

∣∣∣
}

< ∞ for all j. Using Lemma 4.3, we have

E
{

s(vi − v̂i)v̂i

v̂∗v̂ + m− k

}
= −E

{
s

v̂∗v̂ + m− k− 2v̂2
i

(v̂∗v̂ + m− k)2

}
. (4.30)

Combining (4.30) with (4.27), we obtain

A3 = −
m

∑
i=1

λ−1/2
i E

{
s

v̂∗v̂ + m− k− 2v̂2
i

(v̂∗v̂ + m− k)2

}

= E

{
− s Tr(Q−1/2)

v̂∗v̂ + m− k
+ 2s

v̂∗Λ−1/2v̂
(v̂∗v̂ + m− k)2

}

= E

{
− s Tr(Q−1/2)

x̂∗LSQx̂LS + m− k
+ 2s

x̂∗LSQ1/2x̂LS

(x̂∗LSQx̂LS + m− k)2

}
. (4.31)

We note that k < m, so that x̂∗LSQx̂LS + m− k ≥ 0. Hence

A3 ≤ E

{
s

x̂∗LSQx̂LS + m− k

(
−Tr(Q−1/2) + 2

x̂∗LSQ1/2x̂LS

x̂∗LSQx̂LS

)}

≤ E
{

s
x̂∗LSQx̂LS + m− k

(
−Tr(Q−1/2) + 2ε1/2

max

)}
, (4.32)

where ε1/2
max is the largest eigenvalue of Q−1/2. Substituting this result back into (4.26), and

using the fact that s ≤ Tr(Q−1/2), yields

MSE ≤ ε0 + E

{
s
(−Tr(Q−1/2) + 4ε1/2

max
)

x̂∗LSQx̂LS + m− k

}
. (4.33)



4.4. RELATION TO STEIN-TYPE ESTIMATION 45

If Tr(Q−1/2) > 4ε1/2
max, then the expectation above is negative, so that x̂0 (and hence x̂EBM) strictly

dominate the LS estimator.

Thus far, we have presented two examples of blind minimax estimators which dominate

the LS method. Both estimators were extensions of Thompson’s technique to the non-i.i.d. case.

In the next section, we demonstrate that other blind minimax estimators extend different LS-

dominating techniques, notably Stein’s estimator and Baranchik’s positive-part improvement.

4.4 Relation to Stein-type Estimation

In Section 4.2, the SBME (4.3) was constructed by using L2 = ‖x̂LS‖2 as an estimate of ‖x‖2.

However, the fact that shrinkage estimators such as the SBME dominate the LS estimator in-

dicates that x̂LS is in fact an overestimate of x. It is arguably more accurate to use a smaller

estimate than ‖x̂LS‖2. In particular, it is readily shown that

E
{‖x̂LS‖2} = ‖x‖2 + ε0. (4.34)

Hence, one may opt to use

L2 = ‖x̂LS‖2 − ε0 (4.35)

as an estimate of ‖x‖2. It is important to note that such a value of L2 cannot be used for minimax

estimation, since L2 is negative with nonzero probability; a parameter set with negative radius

is undefined. However, substituting (4.35) into a minimax estimator, as per the blind minimax

approach, can still lead to well-defined estimators. In particular, substituting (4.35) into the

spherical minimax estimator (3.10) yields the balanced BME

x̂BBM =
(

1− ε0

‖x̂LS‖2

)
x̂LS. (4.36)

A striking property of the balanced BME is that it reduces to Stein’s estimator [10] in the

i.i.d. case. Both estimators are well-defined unless x̂LS = 0, an event which has zero probability.

Furthermore, the balanced BME extends Stein’s estimator, in that it continues to dominate the

LS estimator for the non-i.i.d. case, under suitable conditions. This is shown by the following

theorem.

Theorem 4.7. Suppose ε0/εmax > 4, where ε0 is given by (2.5), εmax is the largest eigenvalue of Q−1,

and Q is given by (4.8). Then, the balanced BME (4.36) strictly dominates the LS estimator.

Proof. The theorem follows by substituting b = 0 in Proposition 4.2.
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A well-known drawback of Stein’s estimator is that it sometimes causes negative shrinkage,

i.e., the shrinkage factor in (4.36) is negative with nonzero probability. This is known to increase

the MSE [33]. From the blind minimax perspective, this negative shrinkage is a result of the

fact that L2 can become negative. Thus, it is natural to replace (4.35) with

L2 =
[‖x̂LS‖2 − ε0

]
+ (4.37)

where [a]+ = max(a, 0). Substituting this value of L2 into the spherical minimax estimator

yields the positive-part BME, given by

x̂PBM =
(

[‖x̂LS‖2 − ε0]+
[‖x̂LS‖2 − ε0]+ + ε0

)
x̂LS. (4.38)

Note that when ‖x̂LS‖2 − ε0 < 0, the estimator x̂PBM equals 0; in all other cases, x̂PBM = x̂BBM.

Thus, (4.38) may be written as

x̂PBM =
[

1− ε0

‖x̂LS‖2

]

+
x̂LS. (4.39)

In other words, x̂PBM is the positive part of the balanced BME. Specifically, in the i.i.d. case,

x̂PBM is the positive-part correction of Stein’s estimator. In the i.i.d. case, Baranchik [33] demon-

strates that x̂PBM dominates x̂BBM. An interesting question for further research is whether the

dominance property holds in the non-i.i.d. case as well.

As we have seen, Stein’s estimator can be viewed as a blind minimax estimator in which L2

is estimated in an unbiased way, as in (4.35). The result is that L2 is negative with nonzero prob-

ability; this adversely affects performance, by introducing negative shrinkage. Although L2 can

be corrected by zeroing out all negative values, as in (4.37), this results in a non-differentiable

function, and improvement is not guaranteed for the non-i.i.d. case. Rather than introduce this

correction mechanism, we propose the use of the direct estimates of L2 presented in the previ-

ous sections. These estimate L2 as a non-negative values, and thus inherently avoid negative

shrinkage. In the next section, we compare the estimators of Sections 4.2 and 4.3 with other

extended Stein estimators.

4.5 Numerical Results

Estimator performance generally depends on a number of operating conditions, including the

effective dimension, the signal-to-noise ratio (SNR), the eigenvalues λ1, . . . λm of Q = H∗C−1
w H,

and the value of the unknown parameter vector x. Several computer simulations were imple-

mented to test the effect of these conditions on performance. The simulations were also used
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Figure 4.1: MSE vs. SNR for a typical operating condition: effective dimension 5.1, m = n = 15.

to compare the BMEs with commonly used estimators, including the LS estimator, Bock’s esti-

mator (2.21), and Tikhonov regularization (2.26).

4.5.1 Comparison with the LS Approach

The theorems of Sections 4.2 and 4.3 ensure that the BMEs achieve lower MSE than the

LS estimator, but do not guarantee that this improvement is substantial. To measure this

performance gain, we first chose a typical scenario, in which the number of parameters m

and the number of measurements n were both 15. The system matrix H was chosen as

diag(1, 1, 1, .5, .3, .2, .2, .2, .2, .1, .1, .1, .1, .05, .05), and the parameter vector was chosen randomly

as a zero-mean, unit-variance i.i.d. Gaussian vector. The noise was i.i.d. with variance σ2 chosen

to achieve the desired SNR. Estimates of the MSE were calculated for a range of SNR values

by generating 3000 random realizations of noise and parameter vectors per SNR value. The

results are plotted in Figure 4.1.

It is evident from this figure that substantial improvement in MSE can be achieved by using

BMEs in place of the LS estimator: in some cases the MSE of the LS estimator is more than

five times the MSE of the BMEs. The performance gain is particularly noticeable at low and

moderate SNR. At infinite SNR, the LS estimator is known to be optimal in terms of MSE [1],
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Figure 4.2: Estimator(s) achieving lowest MSE, among the five estimators tested (m = n = 10)

and all other estimators converge to the value of the LS estimate; as a result, performance gain

is smaller at high SNR. However, significant improvement on the order of 10–20% may still be

achieved even at SNR values of 5–10 dB.

4.5.2 Comparison with Bock’s Estimator

Different settings call for the use of different estimators, as no single estimator is optimal under

all operating conditions. To demonstrate this, estimator MSE was measured for various SNRs

and effective dimensions. The parameter vector for this simulation was randomly chosen from

an i.i.d. normal distribution. The number of measurements and the number of parameters were

both equal to 10. The system matrix H was equal to I, and the noise covariance matrix Cw was

diagonal, with diagonal elements c1 = 1, c2 = 0.5, and c3 = · · · = c10 = t, where t was

chosen to obtain the desired effective dimension. The simulation was repeated for 20 different
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Figure 4.3: Estimator MSE vs. condition number; m = n = 10, SNR 0 dB

effective dimensions in the range 1.5 to 10, and for 20 different SNR values in the range –15 dB

to 15 dB. For each operating condition, the MSE of each estimator was calculated. Figure 4.2

displays the estimator achieving lowest MSE among those tested; when two or more estimators

achieve MSE within 5% of the lowest value, this is indicated by their combined pattern. The LS

technique is outperformed by all others in this simulation, so it is not displayed in the figure.

Figure 4.2 demonstrates that the BMEs significantly outperform Bock’s estimator under a

very wide range of operating conditions. It is notable that the BMEs continue to outperform

Bock’s estimator and the LS estimator at effective dimensions of 2–4; the dominance results of

Sections 4.2 and 4.3 only apply to effective dimensions above 4. This demonstrates the fact that,

although sufficient conditions for dominance are provided by the aforementioned theorems, it

may be possible to prove dominance for stronger conditions as well.

As noted previously, at high SNR, all estimators converge to the LS estimator and their

performance is similar. However, for most operating conditions, the SBME is the optimal esti-

mator among those tested; its improvement is significant particularly at low effective dimen-

sions. This is indicative of a more subtle limitation of the EBME, namely, its sensitivity to the

condition number1 of Q; this limitation is also present in Bock’s estimator. The EBME makes

1The condition number of a matrix is defined as the ratio between its largest and smallest eigenvalues.
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use of an ellipsoid of the form {x : x∗Qx ≤ L2}, which becomes eccentric when the condition

number of Q is large. As a result, a slight increase in the measurements along a narrow axis

of the ellipse greatly increases the radius in the wide axes. This causes the corresponding pa-

rameters to be estimated with negligible shrinkage, thus reducing the improvement over the

LS estimator. Bock’s estimator suffers from the same effect, since its shrinkage factor is also a

function of x̂∗LSQx̂LS. Only the SBMEs, whose parameter set estimates are based on the value

x̂∗LSx̂LS, continue to perform well for high condition numbers.

This effect is demonstrated in Fig. 4.3. Here, the settings are identical to those of Fig. 4.2,

except that the SNR is constant and equals 0 dB, and the noise covariance matrix contains

fourteen eigenvalues equal to 1, and an additional small eigenvalue whose value is modified

to control the condition number. Thus, the condition number is changed with little influence

on the effective dimension. As expected, the performance of the EBME and Bock’s estimator

deteriorates when high condition numbers are used, while the SBME is hardly affected by the

change. Fortunately, both the effective dimension and the condition number depend only on

the system matrix H and the noise covariance Cw, which are known in advance; therefore, an

informed choice may be made for any given estimation problem.

4.5.3 Comparison with Tikhonov Regularization

Several methods for obtaining nonlinear estimators derived from Tikhonov’s technique were

presented in Section 2.4. These include the estimators x̂(1)
T of (2.29) and x̂(2)

T of (2.30). The

derivation of these “blind Tikhonov estimators” is similar to the empirical Bayes justification

of the James-Stein estimator; thus, one could hope that they provide improvement over the LS

estimator.

Unfortunately, the blind Tikhonov estimators do not dominate the LS estimator; as with the

original Tikhonov regularization, they perform poorly for high SNR values. To illustrate this,

we performed a simulation in which the MSE of various estimators were compared to those

of x̂(1)
T and x̂(2)

T . A setting identical to that of Figure 4.2 was used. To demonstrate the fact

that the Tikhonov regularization does not dominate the LS estimator, it is sufficient to find a

particular value of x for which the MSE is larger than ε0. In Figure 4.4, we plot the MSE of the

Tikhonov regularization for various values of x chosen in the direction of the maximum noise

eigenvector, i.e., x is proportional to the maximum eigenvalue of H∗C−1
w H−1. For compari-

son, the MSE of the LS estimator and Bock’s estimator, is also plotted. It is evident from this

figure that the Tikhonov regularization is inadequate at high SNR, as it performs worse than
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Figure 4.4: Tikhonov regularization does not dominate the LS estimator

the LS estimator. Both Tikhonov estimators converge to the LS approach at infinite SNR, but

consistently obtain higher MSE than the LS estimator for SNR values about 0 dB. This makes

them unattractive candidates for replacing the LS technique, as one would not want to improve

low-SNR performance at the expense of poor performance for high SNR.

4.6 Discussion

The blind minimax approach is a general technique for using minimax estimators in situations

for which no parameter set is known. We considered an application of this concept to the

Gaussian linear regression model. Two novel estimators were proposed: an estimator based on

a spherical parameter set, and one based on an ellipsoidal parameter set. In Sections 4.2 and

4.3, these estimators were shown to dominate the LS estimator. Thus, in any application which

makes use of a LS estimator, the MSE performance can be improved by using a BME instead.

Furthermore, in Section 4.4, we demonstrated that Stein’s estimator, as well as its positive part

modification, can be derived and generalized using the blind minimax framework.

It can readily be shown that the dominance condition of the SBME (Theorem 4.1) is weaker
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than the dominance condition of the EBME (Theorem 4.5), i.e., the conditions for SBME dom-

inance hold whenever the conditions for EBME dominance hold. The dominance condition of

Bock’s estimator (Subsection 2.3.3) is still weaker2. This would seem to indicate that Bock’s

estimator is superior to the proposed estimators. Yet the results of Section 4.5 demonstrate that

the opposite is true: the BMEs usually outperform Bock’s estimator — even in cases where their

performance is not guaranteed by Theorems 4.1 and 4.5. Thus, while dominance theorems are

useful in providing sufficient conditions for improving on the LS estimator, they are ill-suited

for comparing LS-dominating estimators. This conclusion is significant since estimators are

sometimes chosen by maximizing the range of conditions for which dominance is guaranteed.

It seems that other analytical tools are required for comparing LS-dominating estimators. For

example, it may be possible to prove that BMEs dominate Bock’s estimator, for some problem

settings.

The choice between the different BMEs is application-dependent. As explained in Sec-

tion 4.5, the SBME outperforms the other estimators tested in most SNR ranges, and is par-

ticularly useful when dealing with system matrices have a high condition number. These re-

sults may be used to select an estimator depending on the problem setting, since the effective

dimension and condition number may be calculated in advance from the problem setting.

A more fundamental difference is that the SBME and Bock’s estimator are shrinkage esti-

mators, while the EBME is not. Thus, in applications where the only goal is minimization of the

MSE, the SBME may be preferred for its robustness and simplicity. For example, the SBME is an

excellent estimator of system parameters, such as autoregression (AR) coefficients. However, in

certain applications, MSE minimization is only a nominal goal which approximates some other

error criterion. In some of these cases, a shrinkage estimator has no impact on the actual objec-

tive. For example, if the vector x is an image which is to be reconstructed, its subjective quality

is not affected by multiplying the entire estimate by a scalar. Likewise, in a binary receiver, the

sign of x must be determined, but the sign does not change when the estimate is shrunk. In

such applications, the SBME (and Bock’s estimator) have no effect on the final result, whereas

the EBME can be used to improve performance. Other difficulties with shrinkage estimators

were discussed in Subsection 2.3.3.

In this chapter, we have explored the idea of blind minimax estimation, whereby one uses

2A simple change to the SBME (adding −2 to the numerator) changes its dominance condition to that of Bock’s

estimator, without significantly affecting its performance. However, we have been unable to derive this modifica-

tion using the blind minimax approach, and thus prefer the simpler form of the SBME used in the paper.
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linear minimax estimators whose parameter set is itself estimated from measurements. This

simple concept was examined in the setting of a linear system of measurements with colored

Gaussian noise, where we have shown that the BMEs dominate the LS estimator. Hence, in any

such problem, the proposed estimators can be used in place of the LS estimator, with a guaran-

teed performance gain. Apart from being useful in and of themselves, the proposed estimators

support the underlying concept of blind minimax estimation. This concept can be applied to

many other estimation problems, such as estimation with uncertain system matrices, estima-

tion with non-Gaussian noise, and sequential estimation. Use of the blind minimax approach

in such problems remains a topic for further study.

Stein’s discovery of LS-dominating estimators, half a century ago, shocked the statistics

community, and LS-dominating estimators are still rarely used in practice. It is our hope that

the blind minimax concept will provide additional support for such estimators, both by sup-

plying an intuitive understanding of Stein’s phenomenon, and by providing a wide class of

powerful new estimators.
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Chapter 5

Maximum Set Estimation

The minimax approach, presented in Chapter 3, assumes that bounds on the parameter vector

are known. These bounds have considerable impact on the obtained estimator; for example,

if the parameter set is too small, then the estimator may receive values for which it was not

designed, and the risk will be larger than expected. In Chapter 4, we proposed a method for

estimating the parameter set from measurements, resulting in a class of nonlinear techniques

referred to as the blind minimax approach. This approach is intended for situations in which

nonlinear estimators are acceptable, and when no additional information about the parameters

is available.

In this chapter, we limit discussion to linear estimators. However, instead of the minimax

approach, which requires the unknown parameter to belong to a particular set, we assume

that a maximum estimation error is required of the system. We seek to design an estimator

which guarantees the required error for the widest range of conditions possible, an approach

which follows the philosophy of information-gap decision theory [23,24]. The result is called a

maximum set estimator [25, 26].

The maximum set estimation strategy can be applied in several ways, depending on the

uncertain system property. We present two different approaches as a demonstration of the

power of this approach. In Section 5.1, we discuss the case in which the parameter set is un-

certain; in this case, we seek the estimator which maximizes the parameter set for which error

requirements are maintained. In Section 5.2, we consider the estimation problem when the

noise covariance is known up to a constant, i.e., E{ww∗} = σ2Cw, where σ2 is unknown. In

this case, we assume that x lies in a known parameter set S , and find the estimator which

guarantees a required estimation error for as large a range of noise levels σ2 as possible.

55
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5.1 Maximum Parameter Set Estimation

We begin our presentation of the maximum set approach in Subsection 5.1.1 with a simple

example demonstrating the use of this technique. This example explores a special case of max-

imum parameter set estimation, which is later generalized and formalized in Subsection 5.1.2.

Some consequences of this formalism are then derived in Subsection 5.1.3; these are later used

to produce closed forms for many new types of estimators.

5.1.1 A Useful Special Case

Consider a minimax MSE estimator (Subsection 3.2.1), and suppose the parameter set SL is an

ellipsoid given by

SL = {x : x∗Tx ≤ L2} (5.1)

for some positive definite matrix T. The matrix T defines relations between the uncertainty

levels of the different parameters, while the value L indicates the overall size of the parameter

set. For example, if all parameters have identical physical units and there is no reason to expect

higher uncertainty in some of them, one may choose T = I. The matrix T can thus be chosen to

represent knowledge about the system, even if no exact parameter bound is known. However,

a suitable value of L is often difficult to determine. Even if a small amount of information about

x is available, such as several past measurements, then these usually characterize typical values

of x, while L is meant to characterize the extreme or rare values of x.

In some cases, it is our interest to find an estimator achieving “satisfactory” performance

for as large a parameter set as possible. To this end, we assume that a maximum error εm is

known; this is the maximum error allowed for satisfactory performance of the system. We aim

to design an MPS estimator, for which satisfactory performance is achieved for as large a value

of L as possible.

Formally, the parameter robustness L̂ of an estimator x̂ is defined as the largest L for which

performance is satisfactory,

L̂(x̂) = sup
{

L : E
{‖x− x̂‖2} ≤ εm, ∀x∗Tx ≤ L2} . (5.2)

A maximum parameter set (MPS) estimator x̂PS is an estimator achieving maximal parameter

robustness, i.e.,

L̂(x̂PS) ≥ L̂(x̂), for any linear estimator x̂. (5.3)
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Suppose we wish to find an MPS estimator for maximum error εm equal to ε0 of (2.5), which

is the MSE of the LS estimator. The LS estimator achieves this error regardless of the value of x;

thus, its parameter robustness is infinite when εm ≥ ε0. This implies that requiring a maximum

error of ε0 (or greater) yields the LS estimator as an MPS estimator. More interesting is the

case εm < ε0, for which the LS approach no longer achieves the required error, regardless of

the value of x. An MPS estimator x̂ for a given error level εm < ε0 has finite robustness, but

within the parameter set SL̂(x̂), its worst-case error does not exceed εm. Thus, an MPS estimator

outperforms the LS estimator for any x ∈ SL̂(x̂).

In the remainder of this section, we show that an MPS estimator can be found by solving a

quasiconvex optimization problem. An optimization problem is quasiconvex if its constraints

are convex, and its objective function is quasiconvex; the function f (z) is quasiconvex if the

sublevel sets {z : f (z) ≤ α} are convex for all α. Quasiconvex problems can be efficiently

solved, for example, using bisection [37]. In addition, as we shall see in Subsection 5.1.4, in

many special cases a closed form for an MPS estimator can be obtained, by exploring its relation

to the minimax MSE estimator.

Theorem 5.1. A linear maximum parameter set (MPS) estimator x̂PS = Gy satisfying (5.3) can be

found by solving the following quasiconvex optimization problem:

min
G,λ,y

y/λ (5.4)

s.t.






 y + εm g∗

g I


 º 0


 λI T−1/2(I−GH)∗

(I−GH)T−1/2 I


 º 0

where g is the vector obtained by stacking the columns of GC1/2
w . The parameter robustness L̂ of this

estimator is given by
√−y/λ for the optimal values of y and λ.

Proof. We seek an estimator x̂PS satisfying (5.3) with L̂(x̂) defined by (5.2), which is equivalent

to solving the optimization problem

max
G,L2

L2 s.t. εm ≥ max
‖x‖2

T≤L2
E
{‖x− x̂‖2} , (5.5)

where x̂ = Gy. Using (2.6)–(2.8), we find that for any given estimator x̂,

max
‖x‖T≤L

E
{‖x− x̂‖2} = Tr(GCwG∗) + max

‖x‖T≤L
‖(I−GH)x‖2. (5.6)
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However,

max
‖x‖T≤L

‖(I−GH)x‖2 = max
z∗z≤L2

‖Pz‖2 = λmaxL2, (5.7)

where P = (I−GH)T−1/2 and λmax is the maximum eigenvalue of P∗P. We can express λmax

as the solution to the semidefinite problem

min
λ

λ s.t. P∗P ¹ λI. (5.8)

Consider the problem

max
G,λ,L2

L2 (5.9)

s.t.





Tr(GCwG∗) + λL2 ≤ εm (a)

P∗P ¹ λI. (b)

We claim that the optimal solution to this problem always has λ = λmax. Suppose this were

not the case, and λ > λmax for the optimal solution. Then, λ can be decreased while still main-

taining (5.9b). As a result, (5.9a) is no longer tight, so that L2 can be increased, contradicting

the assumption that λ was the optimal solution. Thus, the optimal solution for (5.9) always has

λ = λmax, and therefore, by (5.6) and (5.7), the optimal solution of (5.9) satisfies

max
‖x‖2

T≤L2
E
{‖x− x̂‖2} = Tr(GCwG∗) + λL2, (5.10)

so that (5.9) and (5.5) are equivalent.

Let g be the vector obtained by stacking the columns of GC1/2
w . Using Schur’s Lemma [38, p.

472], it is shown in [6] that (5.9a) and (5.9b) are equivalent to the following matrix inequalities:


 εm − λL2 g∗

g I


 º 0, (5.11a)


 λI P∗

P I


 º 0. (5.11b)

Defining r = −L2, (5.11a) becomes

r


 λ 0

0 0


 º −


 εm g∗

g I


 . (5.12)
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We now add a scalar optimization parameter y and note that the optimization problem is equiv-

alent to

min
G,λ,r,y

r (5.13)

s.t.





rλ ≥ y
 y 0

0 0


 º −


 εm g∗

g I





 λI P∗

P I


 º 0.

It is evident that the optimal solution to this problem satisfies r = y/λ; substituting this into the

above problem yields the required optimization problem (5.4). The objective function of (5.4)

is quasiconvex, and all its constraints are convex, so that this is a quasiconvex optimization

problem [37].

In the next subsection, we generalize the discussion to MPS estimators which optimize

various error functions over different parameter sets. We also demonstrate a relation between

MPS estimation and minimax estimation, which provides further insight into the idea of MPS

estimation and yields an alternative method for finding MPS estimators. In particular, this

leads to a closed form for an MPS estimator when the weighting matrix T commutes with

H∗C−1
w H, which occurs, for example, when T = I.

5.1.2 General Form of MPS Estimators

The example presented in the previous subsection is a special case of an MPS estimator, which

can be generalized to include different error functions and parameter sets. We now provide

definitions which construct the general form of these estimators.

Definition 5.1. The system properties required for the design of a maximum parameter set (MPS)

estimator are the following:

1. A risk function ε(x̂, x) which quantifies the degree to which an estimator x̂ misrepresents

the specific value x (see Subsection 2.1.2). This function must be continuous.

2. A maximum error εm which defines the error value required for successful operation of the

system. This is a deterministic real number which must be known to the designer. An

MPS estimator seeks to maximize the range of values of x for which the maximum error

is guaranteed.
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3. A class of parameter sets {SL ⊆ Cm}L≥0 which define feasible values of x under varying

parameter set bounds L. These sets obey three basic properties:

(a) As L increases, more values of x become feasible, so that the sets SL are nested:

L1 < L2 ⇐⇒ SL1 ⊂ SL2 . (5.14)

(b) The parameter sets are linearly expanding: For all L1, L2 > 0,

SL1 =
L1

L2
SL2 =

{
x :

L2

L1
x ∈ SL2

}
. (5.15)

This requirement implies that the parameter sets are centered on the origin, an as-

sumption which we adopt without loss of generality.

(c) The sets SL are compact (i.e., closed and bounded). This requirement ensures the

existence of a maximum error for every parameter set.

Most common bounds fulfill the requirements for the class of parameter sets above. The

weighted norm SL = {x : x∗Tx ≤ L2} used in Subsection 5.1.1 is one example. Another

example is the box bound, SL = {x : |xi| ≤ Lbi, ∀i}, where bi > 0 are constants.

Definition 5.2. The parameter robustness L̂(x̂) of an estimator x̂ (for particular system properties)

is the largest parameter set bound L for which the maximum error is guaranteed, namely,

L̂(x̂) = sup{L : ∀x ∈ SL, ε(x̂, x) ≤ εm}. (5.16)

Definition 5.3. A maximum parameter set (MPS) estimator (among estimators of a given class E ) is

an estimator x̂PS such that, for any x̂ ∈ E ,

L̂(x̂PS) ≥ L̂(x̂). (5.17)

Note that Definition 5.3 does not imply the unique existence of MPS estimators. In fact, for

some choices of εm, many estimators with infinite robustness exist. However, we shall see that

in many cases of interest, the MPS estimator exists and is unique.

The estimator presented in Subsection 5.1.1 is a special case of an MPS estimator, which

makes use of a particular choice of the error function and of the class of parameter sets. Specif-

ically, the MSE (2.2) is used as the risk function, ellipsoids (5.1) of increasing size and constant

axis ratios are used as the nested parameter sets, and the estimator is restricted to being linear.
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5.1.3 Relation to Minimax Estimation

An interesting and useful relation exists between the MPS estimator x̂PS and the minimax es-

timator of Chapter 3. Put simply, the MPS estimator maximizes the parameter robustness L

within a range defined by the known value of ε, while the minimax estimator minimizes the

worst-case error ε within a range defined by the known value of L.

To formalize this relation, let {SL}L≥0 be a class of parameter sets, and define the worst-case

error function

e(L) = max
x∈SL

ε(x̂M(L), x), (5.18)

where x̂M(L) is a minimax estimator for the parameter set SL. Clearly, e(L) is non-decreasing,

since enlarging the parameter set cannot decrease the worst-case error. This trade-off between

parameter set size and worst-case error is applicable to MPS estimators as well. Indeed, if

e(L) is strictly increasing in L, there exists a one-to-one correspondence between the parameter

set bound L and the worst-case error e(L). In this case it is intuitive to expect a one-to-one

correspondence between minimax and MPS estimators. Thus, we have the following theorem.

Theorem 5.2. Consider a risk function ε(x̂, x) and a class of parameter sets {SL}L≥0, as defined in

Definition 5.1. Assume the worst-case error e(L) of (5.18) is strictly increasing in L. For any L, an

estimator x̂ is an MPS estimator with worst-case error εm = e(L) if, and only if, it is a minimax

estimator over the parameter set SL.

Proof. Suppose first that x̂PS is an MPS estimator with worst-case error εm = e(L0), for a given

L0. Let L1 = L̂(x̂PS) and notice that L1 ≥ L0 (we shall show presently that L1 = L0). Assume by

contradiction that x̂PS is not a minimax estimator over SL1 . Then, by Definition 3.1, there exists

an estimator x̂M such that

max
x∈SL1

ε(x̂M, x) < max
x∈SL1

ε(x̂PS, x) ≤ εm. (5.19)

By Definition 5.1, the parameter sets expand linearly, so that for sufficiently small α > 1,

each of the values in the parameter set SαL1 is arbitrarily close to some value in SL1 . Further-

more, by Definition 5.1, ε is continuous, so that sufficiently small changes in x yield arbitrarily

small changes in ε(x̂PS, x). Hence, there exists a sufficiently small α > 1 for which

max
x∈SαL1

ε(x̂M, x) ≤ εm. (5.20)

Thus the parameter robustness of x̂M is at least αL1 > L1 = L̂(x̂PS), which contradicts the fact

that x̂PS is an MPS estimator. Hence, x̂PS is a minimax estimator over SL1 , and its worst-case
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error is e(L1). However, from (5.19), the worst-case error of x̂PS is e(L0). Since e(L) is strictly

increasing, this implies L0 = L1. We conclude that x̂PS is minimax over SL0 .

We now prove that a minimax estimator is an MPS estimator. For any L0, let x̂M(L0) be a

minimax estimator for the parameter set SL0 . Assume by contradiction that x̂M(L0) is not an

MPS estimator for the maximum error εm = e(L0). Then, there exists an x̂PS with robustness

L1 = L̂(x̂PS) such that L1 > L̂(x̂M(L0)) ≥ L0. Therefore,

max
x∈SL1

ε(x̂PS, x) ≤ εm = e(L0) < e(L1). (5.21)

However, by (5.18),

max
x∈SL1

ε(x̂M(L1), x) = e(L1). (5.22)

Hence x̂PS achieves a lower worst-case error over SL1 than the minimax estimator of SL1 , which

is a contradiction. We conclude that x̂M(L0) must be an MPS estimator.

We have shown that when the worst-case error function e(L) is strictly increasing in L, there

is a one-to-one correspondence between minimax and MPS estimators. As we shall see in the

following sections, e(L) is indeed strictly increasing for many important cases, such as the MSE

error function. However, this is not always the case. For instance, if the error function decreases

with ‖x‖, then increasing the parameter set will not increase the worst-case error.

Theorem 5.2 can be used to efficiently find an MPS estimator using known minimax esti-

mators. This is done using bisection on the worst-case error function e(L): Since the function

is strictly monotonic, a value of L yielding e(L) which equals εm to any desired accuracy can

efficiently be found. From Theorem 5.2, the minimax estimator x̂M(L) equals the desired MPS

estimator.

Similarities notwithstanding, minimax and MPS estimators differ qualitatively in the type

of information on which their design is based. A minimax estimator requires that a bound

on the uncertain parameter x be stated, while an MPS estimator requires knowledge of the

maximum error under which the system still operates correctly. Thus, proper choice of an

estimator should depend on the nature of the information available to the designer.

In the following subsections, we use Theorem 5.2 to develop MPS estimators for two cases

of interest, the MSE estimator and the regret estimator.

5.1.4 Linear MSE Estimators

Consider the MPS estimation problem when the error function of interest is the MSE, and the

estimator is restricted to being linear. In Theorem 5.3, we show that minimax and MPS criteria
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for optimality are equivalent in these circumstances. This allows us to find an MPS estimator

whenever an algorithm for finding a minimax estimator is known. In particular, Theorem 5.4

derives a closed form for the estimator when the uncertainty sets are spherical.

Theorem 5.3. Suppose that the risk function of interest is the MSE (2.2), let E be the class of linear

estimators, and let {SL}L≥0 be a class of parameter sets, as defined in Definition 5.1. An estimator

x̂ ∈ E is a linear minimax estimator over SL if, and only if, it is a linear MPS estimator with maximum

error εm equal to the worst-case error e(L) of (5.18).

Proof. By Theorem 5.2, it is sufficient to show that e(L) is strictly increasing. Let x̂M(L) = GLy

be a linear minimax MSE estimator over the set SL. From (2.6)–(2.8), we have

e(L) = Tr(GLCwG∗
L) + max

x∈SL
‖(I−GLH)x‖2. (5.23)

By Theorem 3.8, the minimax MSE estimator achieves lower MSE than the LS estimator for any

x ∈ SL. Since the LS estimator achieves the lowest possible MSE among all unbiased estimators

(Subsection 2.2.2), it follows that the minimax MSE estimator must be biased, i.e., GLH 6= I.

We now show that maxx∈SL ‖(I − GLH)x‖2 is obtained only on the boundary of SL. Let

x0 ∈ SL be a point which is not on the boundary. Then, there exists a sufficiently small sphere

S, centered on x0, such that S ⊂ SL. In particular, S necessarily includes a point (1 + δ)x0 (for a

sufficiently small δ > 0). Since GLH 6= I, we have

‖(I−GLH)(1 + δ)x0‖2 > ‖(I−GLH)x0‖2. (5.24)

Thus, maxx∈SL ‖(I − GLH)x‖2 is not obtained at x0; rather, the maximum is obtained only

on the boundary of SL. Therefore, by shrinking the parameter set, the worst-case error must

decrease: for any L < M,

max
x∈SL

E
{‖x̂M(M)− x‖2} < max

x∈SM
E
{‖x̂M(M)− x‖2} . (5.25)

However, since x̂M(L) is a minimax MSE estimator for SL,

max
x∈SL

E
{‖x̂M(L)− x‖2} ≤ max

x∈SL
E
{‖x̂M(M)− x‖2} . (5.26)

Together with (5.25), this implies that e(L) < e(M) for all L < M, which completes the proof.

As we have seen, using the MSE as a risk function, the set of minimax estimators equals

the set of MPS estimators for a given class of parameter sets. Thus, finding an MPS estimator
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for a given maximum error εm becomes simply a matter of finding a minimax estimator whose

worst-case error is εm. In particular, when a closed form is known for the set of minimax

estimators and their worst-case errors, one can find a closed form for MPS estimators as well.

This is the case for the class of ellipsoidal parameter sets, as demonstrated by the following

theorem.

Theorem 5.4. Consider the MSE risk and define the ellipsoidal parameter sets SL = {x : x∗Tx ≤ L2}.

Let x̂LS be the LS estimator (2.4), whose MSE ε0 is given by (2.5).

(a) Suppose H∗C−1
w H and T have the same unitary eigenvector matrix V, so that H∗C−1

w H = VΣV∗

where Σ = diag(σ1, . . . σm), and T = VΛV∗ where Λ = diag(λ1, . . . λm) with λ1 ≥ λ2 ≥
· · · ≥ λm > 0. An MPS estimator for a given maximum error εm is given by

x̂PS =





V


0 0

0 Im−k


 V∗(I− αT1/2)x̂LS, εm < ε0

x̂LS, εm ≥ ε0,

(5.27)

where

α =
∑m

i=k+1
1
σi
− εm

∑m
i=k+1

λ1/2
i
σi

(5.28)

and

k = min
{

i : αλ1/2
i+1 < 1

}
. (5.29)

(b) Suppose T = I, i.e., the parameter sets are spherical. In this case, an MPS estimator is

x̂PS =





εm
ε0

x̂LS, εm < ε0

x̂LS, εm ≥ ε0.
(5.30)

The parameter robustness of this estimator is given by

L̂(x̂PS) =





√
ε0εm

ε0−εm
, εm < ε0

∞, εm ≥ ε0.
(5.31)

Proof. (a) We seek an estimator which guarantees an error not exceeding εm for as large a pa-

rameter set as possible. We begin with the case εm ≥ ε0. In this case, the allowed error is larger

than ε0, the MSE obtained by the LS estimator. Since the LS estimator guarantees this error for

any value of x, its parameter robustness is infinite; thus, x̂LS is an MPS estimator for this trivial

case.
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We now consider the case εm < ε0. By Theorem 5.3, an MPS estimator is also a minimax

estimator. Furthermore, by Theorem 3.3, the minimax MSE estimator for a given parameter set

SL is given by (3.15), and its worst-case error is given by (3.17). We require a value of L for

which the worst-case error equals εm. Equating (3.17) with εm and solving for L2, we obtain the

required estimator (5.27).

(b) The case T = I is a special case of (a) in which Λ = I. Substituting λi = 1 in the MPS

estimator obtained for (a), we observe that α < 1 and thus k = 0. Furthermore,

m

∑
i=1

1
σi

= Tr(Σ−1) = Tr
(
(H∗C−1

w H)−1
)

= ε0, (5.32)

and thus

α =
ε0 − εm

ε0
. (5.33)

Substituting these results into (5.27) yields the required estimator (5.30). We have already seen

that the parameter robustness when εm ≥ ε0 is infinite. To find the parameter robustness when

εm < ε0, notice that (3.16) is now

α =
ε0

L2 + ε0
. (5.34)

Combining this with (5.33) yields

L2 =
ε0εm

ε0 − εm
, (5.35)

which is the required result (5.31).

It is sometimes useful to find the actual MSE obtained by an MPS estimator for a particular

value of x. The MSE can be calculated using the matching minimax estimator. For example, it

has been shown in (3.14) that the MSE of the minimax estimator for a spherical parameter set

x∗x ≤ L2 is given by

MSE(x̂M, x) =
(

L2

L2 + ε0

)2

ε0 +
(

ε0

L2 + ε0

)2

‖x‖2. (5.36)

Substituting the value of L2 from (5.31), we have

MSE(x̂PS, x) =





ε2
m

ε0
+

(
ε0−εm

ε0

)2 ‖x‖2, εm < ε0

ε0, εm ≥ ε0.
(5.37)

Thus, the MSE of the maximum spherical parameter set estimator is a linear function of ‖x‖2.

This result is useful for comparing the performance of the MPS estimator with other estimators,

as we demonstrate in Section 5.3.
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5.1.5 Linear Regret Estimators

We now present a different example of an MPS estimator, one which guarantees a worst-case

regret (see Subsection 2.1.2). The regret is given by (2.3), and is defined as the difference be-

tween the MSE and the best MSE obtainable using a linear estimator x̂ = G(x)y which is a

function of x.

In this section, we limit our discussion to parameter sets of the form SL = {x : x∗Tx ≤
L2}, where T is a Hermitian positive definite weighting matrix. For analytical tractability, we

further restrict the discussion to the case where T and H∗C−1
w H have the same eigenvectors.

We show that, under these assumptions, the linear MPS regret estimator is equivalent to the

linear minimax regret estimator. It follows that the MPS estimator can be found as easily as the

minimax estimator. In particular, closed-form solutions can be developed for some values of T

and L, using the results of Subsection 3.2.2.

Theorem 5.5. Suppose that the error function of interest is the regret (2.3). Let E be the class of linear

estimators, and let SL = {x : x∗Tx ≤ L2} be a class of parameter sets, where T = VΛV∗ is a

Hermitian positive definite weighting matrix, Λ is a diagonal matrix with diagonal elements λi > 0,

and V is an eigenvector matrix of H∗C−1
w H. An estimator x̂ ∈ E is a linear minimax regret estimator

over SL if, and only if, it is a linear MPS regret estimator with maximum error εm equal to the worst-case

error e(L) of (5.18).

Proof. By Theorem 5.2, it is sufficient to show that e(L) is strictly increasing with L. By Theo-

rem 3.5, the linear minimax regret estimator x̂M(L) is the solution to the convex optimization

problem (3.22). We will analyze this optimization problem to show that e(L) is indeed strictly

increasing with L.

We first show that (3.22b) is an active constraint in the optimization problem. Assume by

contradiction that (3.22b) is inactive. Then, by the Karush-Kuhn-Tucker conditions for optimal-

ity [37, Sec. 5.5.3], (3.22) is equivalent to

min
d,τ

τ s.t. ∑
d2

i
σi
≤ τ, (5.38)

for which the optimal solution is d = 0, τ = 0. However, for any r ∈ S ,

F2(0, r) > 0 = τ, (5.39)

contradicting the fact that (3.22b) is inactive. Thus, for the optimal value of τ and d, there exists

at least one active r ∈ S for which F2(d, r) = τ.
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Next, define

g(d, r, L2) , ∑(1− di)2ri − ∑ ri

1 + L2 ∑ σiri
. (5.40)

Let us study the behavior of g(d, r, L2) when L2 is changed. Observe that

∂g
∂L2 = ∑ σiri ∑ ri

(1 + L2 ∑ σiri)
2 > 0. (5.41)

Thus, g(d, r, L2) is strictly increasing with L. Therefore, if L is decreased, then F2(d, r) =

F1(d) + L2g(d, r, L2) is decreased for all active r, and the constraint (3.22b) is relaxed, which

implies that the optimal value of τ is also decreased. Since this value equals e(L), we conclude

that e(L) is strictly monotonic in L, which completes the proof.

5.2 Maximum Noise Level Estimation

In Section 5.1, we assumed that the noise covariance E{ww∗} is known. In practice, this is

rarely the case, and the covariance must itself often be estimated from measurements. In this

section, we consider the case

E{ww∗} = σ2Cw, (5.42)

for some unknown deterministic noise level σ2, and some known covariance matrix Cw [39].

For example, when the noise is i.i.d., Cw = I and σ2 is the noise variance. The estimation

techniques used so far require complete knowledge of the noise covariance. Thus, minimax or

MPS approaches cannot be directly applied to this problem, unless the noise parameters are

estimated from the measurements; this increases computational complexity and is potentially

unreliable.

As an alternative approach, we propose to estimate x from the observations, while guar-

anteeing maximum error requirements, for as large a range of noise levels as possible. To this

end, we assume that x ∈ S for a known parameter set S , and require a maximum error level

εm. We seek the estimator which guarantees an error not exceeding εm for all x ∈ S , and for

as large a noise level σ2 as possible; this will be referred to as the maximum noise level (MNL)

estimator. As we shall show, the MNL estimator is related to the minimax estimator, allowing

us to efficiently find the MNL estimator whenever the minimax estimator is known.

Formally, we define an error function εσ2(x̂, x), such as the MSE or the regret, and require

some level of performance εσ2(x̂, x) ≤ εm to be satisfied over the entire range x ∈ S . We can

now define a new type of maximum set estimator, in a manner analogous to the definition of

the MPS in Subsection 5.1.2, as follows.
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Definition 5.4. The noise robustness σ̂2 of an estimator x̂ is defined as the maximum σ2 for which

the performance requirement is satisfied,

σ̂2(x̂) = sup
{

σ2 : max
x∈S

εσ2(x̂, x) ≤ εm

}
. (5.43)

Definition 5.5. The maximum noise level (MNL) estimator x̂NL (among a class of estimators E ) is

the estimator maximizing the noise robustness among all estimators in E , for given S , εσ2(x̂, x)

and εm:

x̂NL = arg max
x̂∈E

σ̂2(x̂). (5.44)

We now show that, if the error function εσ2 is continuous in σ2, then the MNL estimator is

a minimax estimator. The error function is indeed continuous for many cases of interest, such

as the MSE and the regret.

Theorem 5.6. Suppose the error function ε of interest is continuous in σ2. Then, the MNL estimator

x̂NL is a minimax estimator for the parameter set S , with noise level σ2
1 = σ̂2(x̂NL).

Proof. Assume by contradiction that x̂NL is not a minimax estimator. Then, there exists x̂M 6=
x̂NL such that

max
x∈S

εσ2
1
(x̂M, x̂) < max

x∈S
εσ2

1
(x̂NL, x) ≤ εm. (5.45)

However, since εσ2 is continuous in σ2, a sufficiently small change in σ2 causes an arbitrarily

small change in εσ2 . Thus, there exists σ2
2 > σ2

1 such that

max
x∈S

εσ2
2
(x̂M, x̂) ≤ εm. (5.46)

Hence, σ̂2(x̂M) ≥ σ2
2 > σ2

1 = σ̂2(x̂NL), contradicting the fact that x̂NL is an MNL estimator.

A consequence of this theorem is that an MNL estimator can be found if an algorithm for

finding a minimax estimator is known. This can be performed efficiently using a line search,

in which minimax estimators are calculated for various noise levels, until a minimax estimator

whose worst-case error equals εm is found. Alternatively, as the following theorem demon-

strates, a closed form for a linear MNL estimator can be identified when a closed form for the

minimax estimator is known.

Theorem 5.7. Let S = {x : ‖x‖2 ≤ L2} and let εσ2(x̂, x) be the MSE. For a given maximum error

εm, a linear maximum noise level (MNL) estimator is given by

x̂NL =





L2−εm
L2 x̂LS, L2 > εm

0, L2 ≤ εm,
(5.47)

where x̂LS is the LS estimator (2.4).
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Proof. We first consider the case L2 ≤ εm. In this case, the performance requirements are ex-

tremely lax, and many estimators satisfy these requirements for any noise level. In particular,

the estimator x̂ = 0 has an MSE of ‖x‖2, for which the worst case is max ‖x‖2 = L2 ≤ εm;

this is true regardless of the noise level. Thus, x̂ = 0 is an MNL estimator (with infinite noise

robustness) for the trivial case L2 ≤ εm.

We now turn to the more interesting case L2 > εm. By Theorem 5.6, x̂NL is a minimax

estimator for some noise level σ2. By Theorem 3.2, the unique minimax estimator over the

parameter set S , for a given noise level σ2, is

x̂M(σ2) =
L2

L2 + σ2ε0
x̂LS, (5.48)

where ε0 is given by (2.5). From (3.11), the worst-case error for this estimator within the set S
is given by

max
x∈S

εσ2(x̂M(σ2), x) =
L2σ2ε0

L2 + σ2ε0
. (5.49)

The critical value of σ2 for which this value exactly equals εm is given by

σ2 =
εmL2

ε0(L2 − εm)
. (5.50)

Substituting this value of σ2 into (5.48) yields the required estimator (5.47).

It is instructive to compare the closed forms obtained for the MPS estimator (Theorem 5.4b)

and the MNL estimator (Theorem 5.7), when spherical parameter sets are used. Both estimators

take the form of a linear minimax MSE estimator for a spherical parameter set, and hence they

are shrinkage estimators. They can thus be viewed as a compromise between the LS estimator

and the zero estimator. However, for the MPS estimator, the shrinkage factor increases with

the maximum allowed error εm; while for the MNL estimator, the shrinkage factor decreases

with εm. The reason for this is as follows. When the allowed error is increased, an increase in

either the parameter set or noise level is allowed. However, a larger parameter set is achieved

by an estimator closer to the LS estimator (which provides constant error for all x); while a

larger noise level is achieved by an estimator closer to the zero estimator (which provides zero

error, regardless of noise level, for the nominal value x = 0). Thus, increasing the maximum

allowed error has opposite effects, depending on whether the goal is to increase the robustness

to uncertainty in the parameter set or in the noise level.
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5.3 Application: Channel Estimation

As a demonstration of the maximum set estimation concept, we consider the problem of esti-

mating the channel in a communication system. Specifically, we seek the impulse response of

an unknown channel; to this end, we use a preamble (also called a training sequence), which is

transmitted along with payload data. The received symbols are compared to the known pream-

ble, and this information is used to obtain an estimate of the channel response. Knowledge of

the channel response is required in many detection algorithms, for example, in maximum like-

lihood sequence estimation (MLSE) [40]. We will compare the standard LS approach to channel

estimation with the MPS technique developed in Section 5.1.

Let c = (c0, . . . cNc−1)T denote the unknown channel impulse response of known length Nc,

and let

p = (p−Nc+1, p−Nc+2, . . . p0, . . . pNp−Nc)
T (5.51)

denote the known vector of preamble symbols of length Np. The corresponding received sym-

bols are given by

rk =
Nc−1

∑
l=0

cl pk−l + wk, k = 0, 1, . . . Np − Nc, (5.52)

where w = (w0, . . . wNp−Nc)T is additive white noise with variance σ2
w. Defining

H =




p0 p−1 · · · p−Nc+1

p1 p0 · · · p−Nc+2
...

...
. . .

...

pNp−Nc pNp−Nc−1 · · · pNp−1




, (5.53)

we have

r = Hc + w. (5.54)

The classical approach to channel estimation using a preamble is least-squares estimation of

the unknown, deterministic vector c from the measurements r [40–42]. The estimated channel

in this case is

ĉLS = GLSr = (H∗H)−1H∗r. (5.55)

This estimator minimizes the measurement error ‖r − HGr‖2. However, we are interested in

minimizing the estimation error ε = E
{‖c− ĉ‖2}, as the channel estimate is used for further

processing (e.g., detection of payload data). For example, in [41], an increase in channel esti-

mation error is assumed to be equivalent to an increase in noise level.
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Unfortunately, the channel estimation error ε is a function of the unknown channel c, so

direct minimization of ε is not possible. Were we to know that c lies within some bounded

set S , a minimax MSE approach would allow us to minimize the worst-case error among all

possible channels within S . However, we generally only have a vague understanding that

channel dispersion is limited and that most of the energy in c lies in the first component.

On the other hand, the desired channel estimation error is a parameter with known impli-

cations for the system designer. In particular, the maximum channel estimation error may be

treated as an added noise source [41]. In this case, the estimation error requirement is a design

parameter; it is to be chosen together with other system properties such as receiver signal to

interference plus noise ratio (SINR) requirements. We can use the MPS estimator to maximize

the set of channels for which a required estimation error εm is achieved. Thus, we assume that

the given maximum estimation error is critical for system operation, and should be guaranteed

for as wide a range of channels as possible.

Let c0 = (1, 0, . . . 0)T be a perfect (nondispersive) channel, and let c′ = c− c0. We construct

a simple class of parameter sets by defining

SL = {c′ : ‖c′‖ ≤ L}. (5.56)

This model assumes that most of the channel energy is concentrated in the first tap, and that

deviations from this nominal value are fairly uniform among the channel taps. More elaborate

models may be constructed if additional information about the channel properties is known.

We seek an estimator guaranteeing estimation error of εm or less, for as large a parameter

set as possible. From (5.54), we have

r−Hc0 = Hc′ + w. (5.57)

By Theorem 5.4, the maximum error εm must first be compared with ε0 = Tr((H∗H)−1), the

MSE of the LS estimator. If εm ≥ ε0, then an error of ε0 is allowable. Such an error is guaranteed

by the LS estimator for any value of c, so that the LS estimator has infinite parameter robustness

in this case. However, if εm < ε0, then an MPS estimator is given by

ĉ′PS =
εm

ε0
(H∗H)−1H∗(r−Hc0), (5.58)

and thus

ĉPS =
εm

ε0
(H∗H)−1H∗r +

(
1− εm

ε0

)
c0. (5.59)
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Figure 5.1: The worst-case error of various minimax MSE channel estimators

To compare the performance of the LS and MPS channel estimators, we consider the prob-

lem of estimating a 7-tap channel using the optimal 14-symbol BPSK preamble suggested

in [41], and given by

[−1,−1,−1, +1,−1,−1, +1,−1,−1,−1, +1, +1, +1,−1]. (5.60)

We assume that the noise variance is σ2
w = 0.1. The worst-case error of various minimax MSE

estimators is given by (3.11) and plotted in Figure 5.1. By Theorem 5.4, all of these estimators

are also MPS estimators. An engineer constructing a channel estimation system should use

such a plot as a design tool, as it demonstrates the tradeoff between channel estimation error

and the range of channels for which the error can be achieved.

Suppose we choose to design our system such that a channel estimation error of εm = 2
3 ε0 is

to be tolerated; this choice covers a reasonably-sized parameter set while substantially reduc-

ing the estimation error. We note that the choice of εm is accompanied by appropriate design

steps, which will allow the receiver to handle the resulting estimation errors (for example, er-

ror correction capabilities suitable for such noise levels). The MSE (5.37) of the resulting MPS

estimator is compared with the MSE ε0 of the LS estimator in Figure 5.2.
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Figure 5.2: Channel estimation error of MPS and LS estimators for various channels

To verify that the reduced estimation error resulting in improved detection performance,

a BPSK detection scenario was simulated [43]. A signal containing the 14 preamble symbols

(5.60) and 100 random data symbols was generated. Channels were simulated by choosing

each tap ci (1 ≤ i ≤ 7) to be an independent Rayleigh-distributed variate with parameter Aβi,

where 0 ≤ β ≤ 1 is the channel dispersion factor, and A is chosen so that E
{‖c‖2} = 1. Thus,

β = 0 results in a nondispersive channel, while β = 1 indicates a channel for which the taps are

identically distributed (maximum channel dispersion). The channel was estimated using both

the LS and MPS estimators described above, and the resulting channel estimate was used for

MLSE detection of the data symbols. The simulation was repeated to obtain an estimate of the

bit error rate (BER). The results are presented in Figure 5.3. For comparison, a null estimator is

also plotted; this “estimator” assumes a nondispersive channel, i.e., ĉ = c0.

The MPS estimator is a compromise between the LS estimator and the null estimator: the LS

estimator has modest estimation error requirements, but achieves them for all values of c; the

null estimator can be viewed as an estimator requiring zero estimation error, and achieves this

requirement only for the nominal channel c0. MPS estimators provide a continuum of choices

between these two extremes, allowing the designer to choose a point in the tradeoff between
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the estimation error requirement and the size of the parameter set for which the requirement is

achieved. An appropriate choice of εm leads to an estimator which considerably outperforms

the LS estimator for low- and moderate-dispersion channels, and fails only when channel taps

are nearly identically distributed.

5.4 Discussion

In this chapter, we considered the problem of parameter estimation given a maximum allowed

estimation error. This is appropriate for systems designed to function with a known and toler-

able error margin, such as communication systems designed for a certain SNR level. We have

developed estimators which guarantee the required estimation error for as wide a range of op-

erating conditions as possible. The goal of this paper has been to show that estimators which

make use of given estimation error requirements outperform classical approaches such as the

LS estimator.

The maximum set estimation concept was first applied to find the largest parameter set SL

such that performance is guaranteed for any parameter x in SL. This results in the maximum
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parameter set (MPS) estimator. Next, the maximum noise level (MNL) estimator was devel-

oped; this estimator maximizes the range of noise variances for which the required estimation

error is guaranteed.

As we have seen, in many cases, the maximum set estimator is equivalent in form to a

matching minimax estimator: the maximum set estimator for a given error requirement εm

equals a minimax estimator whose worst-case error is εm. However, while minimax estimators

assume a given bound on the parameter set, maximum set estimators assume a requirement on

the obtained estimation error. Thus, these estimators are used under different circumstances,

and their similarity in form merely serves as a mathematical tool for finding maximum set

estimators based on known results for minimax estimators.

The maximum allowed error is often a function of system design parameters, and can be

influenced by design decisions. In such cases, a plot of the worst-case error as a function of

the size of the parameter set (as in Figure 5.1) can be used as a design tool. Such a plot can

be interpreted in two complementary ways. It describes the worst-case error obtained if a

minimax estimator is used with a given parameter set bound. However, it also defines the

size of the parameter set obtained if an MPS estimator is used with a given maximum error.

Thus, such a plot can be used to select a meaningful value for the maximum error, based on the

tradeoff between estimation error and parameter set bound.

The choice of an appropriate estimator for a given problem depends on the data available

to the designer. Knowledge of the second-order statistics of the parameters x, for example,

leads to the well-known Wiener estimator, which is optimal in an MSE sense. However, partial

information can also be used to improve estimation performance. The maximum allowed esti-

mation error is an example of added information which may be known to the designer, and as

we have demonstrated, can often result in improved performance.
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