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ABSTRACT

We consider the problem of finding a lower bound on the min-

imum mean-squared error in a Bayesian estimation problem.

The bound of Young and Westerberg, which is based on de-

termining the optimal bias function, is extended to the case of

a vector parameter. A numerical study demonstrates that the

bound is both tighter and simpler to compute than alternative

techniques.

Index Terms— Bayesian estimation, minimum mean-

squared error estimation, performance bounds.

1. INTRODUCTION

Consider the Bayesian problem of estimating a random vec-

tor θ from observations x. It is well-known that the posterior

mean E{θ|x} is the technique minimizing the mean-squared

error (MSE). However, the complexity of computing the pos-

terior mean is often prohibitive, and various approaches have

been developed as alternatives. It is therefore of interest to

determine the degradation in accuracy resulting from the use

of suboptimal methods. Unfortunately, computation of the

optimal MSE is itself infeasible in many cases. This has led

to a large body of work seeking to find simple lower bounds

for the minimum MSE in a given estimation problem [1–8].

Some of these are asymptotically tight, but in non-asymptotic

cases there is usually a considerable gap between the bounds

and the actual MSE obtained by the optimal estimator.

The situation is different for estimation of a deterministic

parameter θ. The simplest deterministic bound, the Cramér–

Rao bound (CRB), requires a priori specification of a bias

function b(θ) [9]. However, in many cases, any chosen bias

b(θ) yields a tight bound, in the sense that the CRB equals

the MSE of the optimal estimator having bias b(θ).
The tightness of the deterministic CRB motivates its ap-

plication to problems in which θ is random. Such an appli-

cation was described by Young and Westerberg, who consid-

ered the case of a scalar θ constrained to the interval [θ0, θ1].
They used the prior distribution of θ to determine the optimal

bias, and thus obtained a Bayesian bound from the CRB. In

this paper, we extend the work of Young and Westerberg to

a vector parameter constrained to a compact set. A general

bound is given in the form of a solution to a partial differen-

tial equation. Under suitable symmetry conditions, we show

that the vector problem can be reduced to a scalar setting. We

compare the optimal bias technique to other Bayesian bounds,

and show that, in some cases, the proposed method is not

only simpler to compute, but is also tighter than all relevant

bounds.

2. BAYESIAN ESTIMATION BOUND

Let θ be a random vector which is to be estimated from ob-

servations x. Denote the prior pdf of θ by π(θ) and the con-

ditional pdf of x given θ by px|θ(x|θ). Let Θ ⊆ R
n be the

set of values of θ for which π(θ) > 0.

Our goal is to develop a bound on the MSE of an estimator

θ̂. To this end, consider θ̂ as an estimator of a deterministic

parameter θ from measurements distributed as px|θ(x|θ). As

such, the bias of θ̂ is defined by b(θ) = E{θ̂|θ}− θ, and the

Fisher information matrix is

[J(θ)]ij = E

{

∂ log px|θ

∂θi

∂ log px|θ

∂θj

∣

∣

∣

∣

θ

}

. (1)

We assume that J(θ) is finite and positive definite for all θ ∈
Θ. We further assume that the regularity condition
∫

t(x)
∂

∂θi
px|θ(x|θ)dx =

∂

∂θi

∫

t(x)px|θ(x|θ)dx (2)

holds for any function t(x) such that E{|t(x)| | θ} < ∞.

Roughly speaking, these regularity conditions require that the

measurements contain data about the unknown parameter, and

that the support of px|θ does not depend on θ [9].

Under these assumptions, the CRB states that

E
{

(θ − θ̂)2
∣

∣

∣θ

}

≥ CRB[b, θ]

, Tr

[

(

I +
∂b

∂θ

)

J
−1

(

I +
∂b

∂θ

)T
]

+ ‖b(θ)‖2. (3)

Averaging (3) over θ, we obtain that, for any technique θ̂ with

bias function b(θ),

E
{

(θ − θ̂)2
}

≥ Z[b] ,

∫

Θ

CRB[b, θ] π(θ) dθ (4)



where the expectation is now performed over both θ and x.

Note that any estimator has some bias function; furthermore,

if Θ is bounded, then it can be shown that any reasonable

estimator has a differentiable bias function. Thus, a lower

bound on the Bayesian MSE of any estimator θ̂ is given by

minimizing Z[b] over all functions b : Θ → R
n.

We summarize this result in the following theorem.

Theorem 1. Let θ be an unknown random vector with pdf

π(θ) > 0 over the set Θ ⊆ R
n, and let x be a measurement

vector whose pdf, conditioned on θ, is given by px|θ(x|θ).
Assume that the deterministic Fisher information matrix J(θ)
is finite and positive definite for all θ, and that the regularity

condition (2) holds. Then, for any estimator θ̂,

E
{

‖θ − θ̂‖2
}

≥ min
b(θ)

∫

Θ

CRB[b, θ]π(θ)dθ (5)

where the minimization is performed over all functions b. If

Θ is bounded, it suffices to minimize over all differentiable b.

An important observation is that Theorem 1 arises from

the deterministic CRB; hence, there are no requirements on

the prior distribution π(θ). In particular, π(θ) can be discon-

tinuous or have bounded support. As we will see, many pre-

vious Bayesian bounds do not apply in such circumstances.

3. CALCULATING THE BOUND

In finite-dimensional convex optimization problems, the re-

quirement of a vanishing first derivative results in a set of

equations, whose solution is the global minimum. Analo-

gously, in the case of functional optimization problems such

as (5), the optimum is given by the solution of a differential

equation. The following theorem, whose proof can be found

in Section 6, specifies the differential equation relevant to our

optimization problem.

Theorem 2. Under the conditions of Theorem 1, suppose Θ
is a compact subset of R

n with a smooth boundary Γ. Then,

a bias function b(θ) is a global minimum of (5) if and only if

it is a solution to the system of partial differential equations

πbi = π
∑

j,k

∂2bi

∂θj∂θk
(J−1)jk

+
∑

j,k

(

δik +
∂bi

∂θk

)(

(J−1)jk
∂π

∂θj
+ π

∂(J−1)jk

∂θj

)

(6)

for i = 1, . . . n, within the range θ ∈ Θ, which satisfies the

boundary conditions
(

I +
∂b

∂θ

)

J
−1

ν(θ) = 0 (7)

for all points θ ∈ Γ, where ν(θ) is a normal1 to the boundary

at θ.

1The normal vector ν(θ) of a surface given by {θ : q(θ) = 0} can be

obtained by computing the gradient of q at θ.

The bound of Young and Westerberg [3] is a special case

of Theorem 2, and is given here for completeness.

Corollary 1. Under the settings of Theorem 1, suppose Θ =
[θ0, θ1] is a closed interval in R. Then, any bias function b(θ)
minimizing (5) is a solution to the differential equation

J(θ)b(θ) = b′′(θ) + (1 + b′(θ))

(

d log π

dθ
−

d log J

dθ

)

(8)

subject to the boundary conditions b′(θ0) = b′(θ1) = −1.

Theorem 2 can be solved numerically, e.g. using the Mat-

lab pde toolbox, thus obtaining a bound for any problem sat-

isfying the regularity conditions. However, in many cases,

symmetry relations in the problem can be used to simplify

the solution. For example, the following spherically symmet-

ric case can be reduced to a problem similar to that of Corol-

lary 1. The proof of this theorem can be found in Section 6.

Theorem 3. Under the setting of Theorem 1, suppose that

Θ = {θ : ‖θ‖ ≤ r} is a sphere centered on the origin,

π = π(‖θ‖) is spherically symmetric, and J(θ) = J(‖θ‖)I ,

where J(·) is a scalar function2. Then, (5) is solved by

b = b(‖θ‖)
θ

‖θ‖
(9)

where b(·) is a solution to the differential equation

J(θ)b(θ) = b′′(θ) + (1 + b′(θ))

(

d log π

dθ
−

d log J

dθ

)

+ (n − 1)

(

b′(ρ)

ρ
−

b(ρ)

ρ2

)

(10)

with boundary conditions b(0) = 0 and b′(r) = −1.

4. COMPARISON WITH OTHER BOUNDS

The original bound of Young and Westerberg [3] predates

most Bayesian bounds, and, surprisingly, it has never been

cited by or compared with later results. In this section, we

measure its performance against that of various other tech-

niques in a simple estimation scenario.

Consider the case in which θ is uniformly distributed in

the range Θ = [−r, r]. Let x = θ +w be a noisy observation,

where w is zero-mean Gaussian noise, independent of θ, with

variance σ2. We wish to estimate θ from x. The Fisher infor-

mation for this location problem is J(θ) = 1/σ2. Neither the

optimal estimator of θ nor its MSE can be written as a closed

form expression involving elementary functions. Thus, a sim-

ple expression bounding the optimal MSE is of interest.

It follows from Corollary 1 that, for any estimator θ̂ [3],

E
{

(θ − θ̂)2
}

≥ σ2

(

1 −
tanh(r/σ)

r/σ

)

. (11)

2This form of J(θ) occurs, for example, in the estimation of location

parameters from independent, identically distributed measurements.
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Fig. 1. Ratio between the MSE bounds and the optimal

achievable MSE.

Despite the widespread use of finite-support prior distri-

butions [2, 7], the regularity conditions of many bounds are

violated by such prior pdf functions. Indeed, the Bayesian

CRB of Van Trees [1], the Bobrovski–Zakai bound [6], and

the Bayesian Abel bound [8] all assume that π(θ) has infinite

support, and thus cannot be applied in this scenario.

Techniques from the Ziv–Zakai family are applicable to

constrained problems. These include the Ziv–Zakai bound

itself [2], the Bellini–Tartara bound [4], and the Chazan–

Zakai–Ziv bound [5]. Of these, the Bellini–Tartara bound is

known to be tightest. In the current setting, it is given by

E
{

(θ − θ̂)2
}

≥

∫ 2r

0

(

1 −
ξ

2r

)

ξ Q

(

ξ

2σ

)

dξ (12)

where Q(z) = (2π)−1/2
∫∞

z e−t2/2dt is the tail function of

the normal distribution.

We also compare the optimal bias bound with the result of

Weinstein and Weiss [7], which is given by

E
{

(θ − θ̂)2
}

≥

max
s∈(0,1),h∈R

h2M2(s, h)

M(2s, h) + M(2s − 1, h) − 2M(s, 2h)
(13)

where

M(s, h) = max

(

0, 1 −
|h|

2r

)

e−h2s(1−s)/2σ2

. (14)

We note that neither the Bellini–Tartara bound nor the

Weiss–Weinstein bound can be expressed in a closed form

involving only elementary functions. Yet, in this setting, the

simple formula (11) of the optimal bias bound is substantially

tighter. This is demonstrated in Fig. 1, which plots the ratio

between the different bounds and the exact optimal MSE. To

obtain this figure, the exact value of the optimal MSE was

computed by numerical integration of E
{

(θ − E{θ|x})2
}

.

Apart from the reduction in computational complexity, the

simplicity of (11) also emphasizes several features of the es-

timation problem. First, the dependence of the problem on

the dimensionless quantity r/σ, rather than on r and σ sep-

arately, is clear. This is to be expected, as a change in units

of measurement would multiply both r and σ by a constant.

Second, for r ≫ σ, the bound converges to the noise variance

σ2, corresponding to an uninformative prior whose optimal

estimator is θ̂ = x. Finally, for σ ≫ r, the bound converges

to r2/3, corresponding to the case of uninformative measure-

ments, where the optimal estimator is θ̂ = 0. Thus, the bound

(11) is tight both for very low and for very high SNR; this can

also been seen from Fig. 1.

5. CONCLUSION

Although often considered distinct settings, there are in-

sightful connections between the Bayesian and determinis-

tic estimation problems. One such relation is the use of

the deterministic CRB in a Bayesian problem. The combi-

nation of this generally tight deterministic bound with the

well-defined Bayesian optimality criterion results in a tight

Bayesian bound. Application to the location estimation prob-

lem demonstrates that the technique is both simpler and

tighter than alternative approaches.

6. APPENDIX: PROOFS OF THEOREMS 2 AND 3

Proof of Theorem 2. Consider the more general problem of

minimizing the functional

Z[b] =

∫

Θ

F [b, θ]dθ (15)

where F [b, θ] is smooth and convex in b : Θ → R
n, and

Θ ⊂ R
n is a compact set with a smooth boundary Γ. Then,

Z[b] is also smooth and convex in b, so that b is a global

minimum of Z[b] if and only if the differential δZ[h] equals

zero at b for all admissible functions h : Θ → R
n [10].

By a standard technique [10, §35], it can be shown that

δZ[h] = ǫ
∑

i

∫

Θ





∂F

∂bi
−
∑

j

∂

∂θj

∂F

∂b
(j)
i



hi(θ)dθ

+ ǫ
∑

i

∫

Γ

(

∂F

∂b
(1)
i

, . . . ,
∂F

∂b
(n)
i

)T

ν(θ)hi(θ) dσ (16)

where ǫ is an infinitesimal quantity, b
(j)
i = ∂bi/∂θj , and ν(θ)

is an outward-pointing normal at the boundary point θ ∈ Γ.

We now seek conditions for which δZ[h] = 0 for all h(θ).



Consider first functions h(θ) which equal zero on the bound-

ary Γ. In this case, the second integral vanishes, and we obtain

the Euler–Lagrange equations

∀i,
∂F

∂bi
−
∑

j

∂

∂θj

∂F

∂b
(j)
i

= 0. (17)

Substituting this result back into (16), and again using the fact

that δZ[h] = 0 for all h, we obtain the boundary condition

∀i, ∀θ ∈ Γ,

(

∂F

∂b
(1)
i

, . . . ,
∂F

∂b
(n)
i

)T

ν(θ) = 0. (18)

Plugging F [b, θ] = CRB[b, θ]π(θ) into (17) and (18) pro-

vides the required result.

The proof of Theorem 3 is based on the following lemma.

Lemma 1. Under the conditions of Theorem 3, the functional

Z[b] of (4) is rotation and reflection invariant, i.e., its value

does not change if b is rotated about the origin or reflected

through a hyperplane which contains the origin.

Proof. We begin by considering a rotation about the first two

coordinates, such that b is transformed to

b̃ , (b1(θ) cosφ + b2(θ) sin φ,

− b1(θ) sin φ + b2(θ) cos φ, b3(θ), . . . bn(θ))T . (19)

We now perform the change of variables θ 7→ θ̃, where θ̃ ,

(θ1 cosφ+θ2 sin φ,−θ1 sin φ+θ2 cosφ, θ3, . . . θn)T , so that

Z[b̃] =

∫

Θ

CRB[b̃, θ]π(θ)dθ =

∫

Θ

CRB[b̃, θ̃]π(θ̃)dθ̃.

(20)

By assumption, π, J and Θ are unaffected by the change of

variables. Using the chain rule and some tedious manipula-

tions, it can be verified that CRB[b̃, θ̃] = CRB[b, θ], and

therefore Z[b] = Z[b̃]. The result similarly holds for rota-

tions about any other two coordinates of θ. Since any rotation

can be decomposed into a sequence of two-coordinate rota-

tions, we conclude that Z[b] is rotation invariant.

Next, we prove that Z[b] is invariant to reflections through

hyperplanes containing the origin. Since Z[b] is invariant to

rotations, it suffices to choose a single hyperplane, say {θ :
θ1 = 0}. Let b̃ , (−b1(θ), b2(θ), . . . bn(θ))T be the reflec-

tion of b and consider the corresponding change of variables

θ̃ , (−θ1, θ2, . . . θn)T . By the symmetry assumptions, π
and J are unaffected by the change of variables; furthermore,

∂b̃/∂θ̃ = ∂b/∂θ. It follows that CRB[b̃, θ̃] = CRB[b, θ],
and therefore Z[b] = Z[b̃].

Proof of Theorem 3. As noted previously, Z[b] is convex in

b; therefore, the set of optimal solutions of (5) is convex. Now

suppose there exists an optimal solution bo which is not ro-

tation invariant. Then, by Lemma 1, its rotations about the

origin are also optimal. By convexity, the average ba of all

such rotations, which is rotation invariant, is optimal as well.

Furthermore, suppose that ba is not radial, i.e., for some

value of θ, ba(θ) contains a component perpendicular to the

vector θ. Consider a hyperplane passing through the origin,

whose normal is the aforementioned perpendicular compo-

nent. By Lemma 1, The reflection br of ba through this hy-

perplane is also an optimal solution of (5), as is the average

bf = (br + ba)/2. However, bf no longer has a component

perpendicular to θ, and is thus radial. Therefore, bf , which is

an optimal solution, is spherically symmetric and radial.

To determine b(·), it suffices to find a solution along a sin-

gle line segment from the origin to the boundary of Θ. Choos-

ing the segment along the θ1 axis, we have b(θ) = b(θ1)e1,

where e1 is a unit vector in the direction of θ1. Furthermore,

J(θ) = J(θ1)I , and π(θ) = π(θ1). Substitution of these

values into (6) and (7), along with careful calculation of the

derivatives, yields the required result.
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