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Abstract

The field of signal processing has witnessed an ongoing quest for mathematical models de-

scribing natural phenomena, together with a search for techniques utilizing these models in

applications such as signal quality improvement. Two common types of mathematical mod-

els for estimation problems are the Bayesian scenario, in which a prior probability distribution

quantifies information about the unknown parameter, and structural constraints in a frequen-

tist setting, where the parameter is deterministic, but belongs to a pre-specified set or fam-

ily within a larger space of conceivable values. For example, the recently popular concept of

sparsely representable signals can be modeled using either of these approaches: One can de-

fine a Bayesian model in which the prior probability of obtaining non-sparse signals is small or

zero; alternatively, one can adopt a frequentist approach in which the unknown, deterministic

parameter belongs to a set of sparse signals.

The goal of this work is to analyze the performance of various signal estimation techniques

in both the Bayesian and structured frequentist settings. The theoretical foundations of our

work are based on several extensions on the Cramér–Rao bound (CRB). Specifically, in the fre-

quentist setting, our results rely on a novel interpretation of the effect of parametric constraints

on the CRB, as well as a generalization of the CRB for estimating continuous-time functions.

While the CRB is a bound for the frequentist (or deterministic) scenario, we show that with an

appropriate adaptation, the bound can be applied in the Bayesian world as well, and derive a

general lower bound on the minimum achievable MSE in Bayesian estimation settings.

The aforementioned results are complemented by upper bounds on the performance of

specific estimators. Such upper bounds can be thought of as guarantees which ensure that a

specific approach will never be worse than an analytically computable limit. The combination

of upper and lower bounds identifies cases in which state-of-the-art techniques approach the

theoretically optimal performance, while illuminating scenarios in which existing methods can

be improved.

1



2 ABSTRACT

We demonstrate the applicability of our work in three practical estimation problems:

sparsely representable signals, block-sparse parameters, and the finite rate of innovation (FRI)

scenario. We demonstrate that under appropriate assumptions, sparse and block-sparse es-

timation algorithms come fairly close to the theoretical limit. The situation is less favorable

in the case of FRI estimation, where there is often a large gap between existing techniques

and the lower bound, implying that there is still room for improvement of FRI methods. This

analysis allows us to distinguish fundamental limitations in the problem setting from flaws in

existing algorithms, thus pinpointing directions for the development of improved estimation

techniques.
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M Matrix
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M∗ Hermitian conjugate (for matrices)
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Chapter 1

Introduction:

Structured Estimation Problems

A central challenge of engineering is to formulate realistic models of physical phenomena

which are amenable to mathematical analysis. Indeed, many of the great successes of signal

processing can ultimately be attributed to the introduction of a novel mathematical technique

which effectively describes particular types of signals. A classical example is the theory of

wavelets, which has considerably improved the analysis and processing of signals containing

transient effects [1]. A more recent example is the model of sparsely representable signals,

which has attracted much research in the past decade [2]. This model is based on the obser-

vation that many signals can be approximated by a linear combination of a small number of

atoms chosen from a large, suitably constructed dictionary.

An idea such as the sparse representability of signals can be modeled mathematically in

various ways. In our work, we will be primarily interested in two types of model formalisms,

namely, the Bayesian setting and the imposition of structural constraints in a frequentist sce-

nario. In the Bayesian setting [3], the structure takes the form of a prior distribution on the

signal to be estimated, as, for example, when sparse signals are assigned a higher prior prob-

ability than their non-sparse counterparts [4, 5]. By contrast, the frequentist (or deterministic)

approach [6] models the unknown signal as a deterministic quantity having no prior distri-

bution [7, 8]. The model then takes the form of a constraint set of possible signal values. For

instance, one can adopt the assumption that the signal belongs to the set of all vectors having

a sparse representation, while refraining from assigning a probability to each element within

this set. The frequentist approach is thus more appropriate when one cannot make precise

7



8 CHAPTER 1. INTRODUCTION: STRUCTURED ESTIMATION PROBLEMS

statements about the a priori likelihood of different signals [6, § 1.1].

The goal of this dissertation is to analyze the performance achievable when various signal

models are employed. Specifically, we focus on problems of signal estimation in the presence of

noise. Our analysis is performed both in the Bayesian and constrained frequentist worlds. To

this end, we develop general theoretical tools, which are suitable for a variety of models, and

then apply our results to models of particular interest, such as sparsely representable signals.

To understand the performance of estimation algorithms, we develop two complementary

types of results, namely, lower bounds and performance guarantees. Lower bounds are fun-

damental limits on the achievable performance in a given model. They provide a means for

quantifying the difficulty of a model and, occasionally, for understanding how the model can

be changed in order to facilitate estimation. In some cases, lower bounds can also be compared

with the actual achievements of practical techniques. However, it is not always feasible to fully

ascertain the performance of an estimator: The space of parameters or settings under which

an estimator is required to function may be too large for an exhaustive analysis. In these cases

it becomes necessary to derive upper bounds on the performance of the estimator under con-

sideration, stating that under certain assumptions, a given technique performs no worse than

a specified level. These bounds are specific to a particular technique and can be thought of as

guarantees on its performance, in lieu of a complete description of the estimator’s capabilities

under all conceivable scenarios.

Ideally, one would like the lower bound to be close to the performance guarantee of a prac-

tical estimator: this indicates that the best achievable performance is known, and an estimator

which approaches this optimal performance is available. Conversely, when a gap exists be-

tween the upper and lower bounds, this may indicate a flaw in the algorithm, or it may be the

consequence of an overly weak bound. By exploring the situations in which such gaps occur,

we will glean hints of the directions in which improvements can be made to both the estimator

and the bound.

Several specific models will serve as practical examples of the theory developed in this dis-

sertation. These include the aforementioned sparse representation setting; the extension of this

scenario to block sparsity; and the related model of signals having a finite rate of innovation.

Notably, many instances of these models are unions of subspaces: the set of feasible signals is

a union of several subspaces within a larger space of conceivable values [9]. This structure will

prove useful in developing a geometrical interpretation of the constraint sets. In the remain-

der of this chapter, we place our work in context by briefly summarizing prior work on these
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estimation settings.

1.1 Sparsity

As is often the case with good ideas, precursors of the concept of sparse representation ap-

peared some time before the explosion of research on sparsity in the last decade. Indeed, the

idea of feature selection (finding a small set of features or variables which best explain observed

phenomena), a fundamental concept in statistics and machine learning, can be framed in a way

that is equivalent to the basic problem of sparsity pattern recovery [10]. However, as a model

for signal representation, sparsity arose from the coming of age of the theory of wavelets in the

1990s [1, 11]. Practical work on wavelets led to the realization that real-world signals are best

described as a linear combination of a small number of elements, or atoms, from a large and

overcomplete dictionary. Thus, a signal y ∈ Rm can be approximated as

y = Hx0 + w (1.1)

where H ∈ Rm×p is a dictionary, typically having far more columns than rows; x0 ∈ Rp is a

sparse vector; and w represents noise or model mismatch. The sparsity requirement can be

manifested, for example, as the structural constraint

‖x0‖0 ≤ s (1.2)

where ‖x0‖0 is the number of nonzero entries in the vector x0, and s is a sparsity level which is

usually assumed to be known. Thus, the support pattern of x0 effectively chooses columns of

H to be included in the representation of y, giving rise to the relation with the feature selection

problem. It is not difficult to see that this structure forms a union of subspaces of Rp: Each

choice of an s-element support for x0 forms an s-dimensional subspace, and the set of allowed

values of x0 is thus the union of all such subspaces.

In early sparsity applications, the dictionary H was chosen manually so as to combine dif-

ferent atoms which were thought to be likely candidates for describing the family of signals at

hand. For example, H could be the concatenation of the Fourier basis, the trivial basis, and one

or more wavelet bases. In time, the sparsity model (1.1) came to be used in a variety of set-

tings unrelated to wavelet models. For example, much research has been devoted to the setting

in which H is selected randomly, e.g., by choosing its entries independently from a Gaussian

distribution [8, 12, 13]. As another example, H can be constructed empirically from a training
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set of signals, resulting in a dictionary which has no pre-designed structure [14]. Regardless

of the method by which H is chosen, we will assume throughout that the columns hi of H are

normalized, ‖hi‖2 = 1, which ensures that issues of SNR can be analyzed independently of the

choice of the dictionary itself.

The fundamental estimation problem arising from the sparsity model (1.1) is that of recov-

ering x0, either from y or from linearly transformed measurements thereof. Many important

signal processing applications can be derived from this estimation problem. For example, y can

be considered as a noisy version of the sparsely representable signal Hx0, and denoising can

thus be performed by estimating x0 and then pre-multiplying it by H . Interpolation, deblur-

ring, inpainting, and super-resolution are further examples of applications in which sparsity

has been successfully applied, often leading to state-of-the-art results [15].

How does one go about estimating x0 from the measurements y? A standard approach is

to assume a probabilistic model for the noise and then compute the maximum likelihood (ML)

estimator [16]. In our case, assuming independent, unimodal, zero-mean noise model (such as

white Gaussian noise) implies that the ML estimator is the solution of the optimization problem

min
x

‖y − Hx‖2
2 s.t. ‖x‖0 ≤ s. (1.3)

Unfortunately, solving (1.3) is NP-complete, i.e., to the best of our knowledge, finding the ML

estimator is infeasible computationally, even for small dictionary sizes. In light of this, it is

perhaps surprising that a number of practical algorithms can often accurately estimate x0 in

many cases of interest. These practical approaches can be broadly divided into two classes:

greedy approaches and ℓ1 relaxation techniques.

Greedy approaches are iterative algorithms in which, at each iteration, one selects the “most

likely” atom in H for inclusion in the estimated support of x0. For example, in matching pursuit

(MP) [11], a residual r is maintained which represents the components of y not yet accounted

for by the atoms already chosen from H. In each iteration, the atom most highly correlated

with r is added to the estimated support set. Other algorithms of the greedy variety include

orthogonal matching pursuit (OMP) [17], thresholding, and CoSaMP [18].

As an alternative to the greedy approach, ℓ1 relaxation methods attempt to change the NP-

complete problem (1.3) into a convex (and thus efficiently solvable) optimization problem. This

is done by replacing the ℓ0 constraint ‖x‖0 ≤ s with a constraint based on the ℓ1 norm. The

most straightforward approach is then to solve

min
x

‖y − Hx‖2
2 s.t. ‖x‖1 ≤ τ. (1.4)
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This technique is referred to as the lasso [19] or basis pursuit [20]. Note that the constraint

‖x‖1 ≤ τ no longer directly controls the sparsity level s of the outcome. However, tightening

the constraint by decreasing the value of τ tends to promote sparsity in the solution of (1.4).

A related technique, also based on replacing the ℓ0 “norm” with an ℓ1 norm, is known as the

Dantzig selector [8].

With the availability of practical techniques for estimating x0 from the measurements (1.1),

the question of performance analysis becomes pertinent. Consequently, various types of per-

formance guarantees are available for the algorithms mentioned above. The strength of these

results obviously hinges on the assumptions introduced in the model. For example, very pow-

erful results can be obtained if one assumes that both x0 and w are chosen randomly from

a known distribution [21], while much weaker guarantees are available if nothing is known

about the distribution of x0 and w [7, 12, 22]. As an example of the latter type of guaran-

tee, in the adversarial setting, nothing is assumed about the noise w except that it is bounded,

‖w‖2 ≤ ε. Thus, it is possible that the noise happens to align itself so as to maximally damage

the measurements, an event which is highly improbable if the noise is random. Consequently,

performance guarantees in the adversarial setting typically ensure that the estimation error is

on the order of the noise power ε. As we will see shortly, when the noise is random, much

better guarantees are possible.

In our work on sparse representations, we take the middle ground of structured frequentist

estimation. Specifically, we assume that the signal x0 is deterministic (or that its distribution is

unknown), but conforms to the sparsity requirement ‖x0‖0 ≤ s. On the other hand, we assume

that the noise w is random, and specifically follows a white Gaussian distribution with variance

σ2. This is a standard estimation model, which can be motivated by observing that the noise

typically has multiple independent sources, to which the central limit theorem can be applied,

whereas the signal itself results from a complex process for which any structural assumptions

are tentative. Thus, one is often more comfortable assigning a probability distribution to the

noise than to the signal.

Previous results on the performance of sparse estimation algorithms in the structured fre-

quentist estimation setting can be summarized as follows. Under suitable conditions on the

dictionary H, and for sufficiently sparse vectors x0, various ℓ1 relaxation techniques x̂ can be

shown to satisfy [8, 23]

‖x̂ − x0‖2
2 ≤ Csσ2 log p with high probability (1.5)
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where C is a constant depending on the properties of H. Contrary to the case of adversar-

ial noise, in this setting we observe a significant denoising capability: The total noise power

E
{‖w‖2

2

}
is equal to mσ2, which is typically much larger than the guarantee (1.5), since gen-

erally s ≪ m. Notably, such a guarantee comes within a nearly constant factor of sσ2. The

expression sσ2 is significant since, again up to a constant, it equals the error achievable by the

oracle estimator, which knows the true support of x0. Results such as (1.5) are therefore referred

to as “near-oracle” performance guarantees. As we will see in Chapter 4, the expression sσ2

can also be given a more precise interpretation as the Cramér–Rao bound (CRB) for unbiased

estimators in the sparse setting. Finally, we note in passing that the log p factor in (1.5) can be

shown to be a necessary result of the lack of knowledge about the support of x0 [24, §7.4].

Performance guarantees of the form (1.5) must invariably make some assumptions on the

matrix H. For example, if H contains two identical atoms, then clearly no algorithm will be able

to distinguish between the corresponding elements in x0. The assumptions on H typically take

the form of requirements on the behavior of sets of atoms, in order to ensure that the subspaces

spanned by sets of s atoms are distant from one another. The restricted isometry property (RIP)

[25] is the most well-known of these measures. Such properties can be guaranteed (with high

probability) for many types of randomly constructed dictionaries. However, if one must use

a matrix H fixed by external constraints (for example, an empirically constructed dictionary),

then it is NP-complete to compute the RIP (or related properties).

There are some properties of H which can be readily computed, and which are relevant for

sparse estimation. The most useful of these is the mutual coherence µ, which is defined as

µ , max
i 6=j

|h∗
i hj| (1.6)

where hi is the ith column in H. Thus, µ is the maximum correlation between dictionary atoms.

The coherence can be calculated in O(p2) time by enumerating over all pairs of atoms. Further-

more, one can bound the value of various more complex properties, including the RIP, using

the coherence; this is the standard technique for applying RIP-based performance guarantees

when the dictionary is fixed a priori. However, as we show, the resulting guarantees lose much

of their tightness. Moreover, we demonstrate that direct utilization of the coherence can lead

to considerably improved performance guarantees, as well as novel guarantees for greedy al-

gorithms, which were not possible using previous methods.
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Figure 1.1: Example of a wavelet transform. The existence of nonzero components in a given

detail level are correlated with nonzero values in the corresponding entries of other detail lev-

els.

1.2 Block Sparsity

Incorporating knowledge about signal structure can justifiably be expected to improve estima-

tion performance. Consequently, the more one assumes about a signal, the better one should

be able to perform estimation tasks such as denoising and interpolation. In this respect, while

sparsity is a powerful assumption which can be used to great advantage, it does not always

capture all of the structure inherent in the signal. In particular, it has long been known that

in many cases, the support pattern of signals tends to form clusters, with “similar” atoms

appearing together in the support. For example, atoms representing nearby frequencies are of-

ten conjunctively used to represent signals whose precise frequency is not defined by a single

atom. Another example is demonstrated in Fig. 1.1, where the wavelet transform of an image is

shown. In this example, there is a clear correlation between corresponding entries in different

detail levels.

A straightforward modification of the sparse representation model which can take such

effects into account is the block sparsity approach [9, 26–28]. In this setting, the unknown

parameter x0 ∈ Rp is assumed to be divided into blocks of size d, and the number of nonzero

blocks is no greater than s. If a certain block is nonzero, however, then any or all of its constituent

entries can have nonzero values. With an appropriate choice of blocks containing similar atoms,
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this scenario can accurately model the clustering of nonzero entries described above. Note that

this model is once again a union of subspaces: Each choice of s nonzero blocks defines a sd-

dimensional subspace of Rp, and the set of all block sparse signals is the union of all such

subspaces.

Much of the development of the block sparse estimation problem can be performed in anal-

ogy to the ordinary (or “scalar”) sparsity model of Section 1.1. As before, the problem of finding

the maximum likelihood estimator is NP-complete. Practical techniques overcome this diffi-

culty using either an ℓ1 relaxation or a greedy approach. In particular, block sparse versions of

the thresholding algorithm [29], MP [28], OMP [27,28], and the lasso [9,27] have been proposed

in the literature.

Being a relatively new model, there have only been a handful of analytical guarantees on

the performance of block sparse estimators. Successful recovery of x0 from noiseless measure-

ments y = Hx0 has been demonstrated, under suitable conditions on H, for both block-OMP

and L-OPT (a block-sparse version of the lasso) [9, 27]. A performance guarantee for L-OPT

has also been demonstrated in the presence of adversarial noise [9]. However, to the best of

our knowledge, there have been no guarantees for any block sparse technique under random

noise. Our work (see Chapter 7) begins to fill this gap by providing guarantees for greedy

block sparse algorithms, which are generalizations of the corresponding results for non-block

methods. These results not only provide numerical guarantees for specific estimation scenar-

ios, but also illustrate the qualitative improvement over scalar sparsity which is achieved by

the incorporation of the block sparse model.

1.3 Finite Rate of Innovation

The sparsity and block sparsity models of the previous sections defined a structure on signals

in the finite-dimensional space Rp. By contrast, in this section we consider structure in a space

of continuous-time signals. Specifically, we investigate signals having a finite rate of innova-

tion (FRI) [30, 31]. As we will see, the transition to infinite-dimensional spaces increases the

complexity of the analysis, but it is still possible to obtain a performance analysis from which

much insight is gained concerning the strengths and limitations of state-of-the-art techniques.

The power of the FRI model becomes evident when contrasted with the classical notion

of Shannon–Nyquist sampling [32]. In classical sampling theory, a bandlimited signal whose

maximum frequency is fmax is sampled at the Nyquist rate 2 fmax or greater. As is well known,
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the signal can then be perfectly reconstructed from its samples. Unfortunately, real-world sig-

nals are rarely truly bandlimited, if only because most signals have finite duration in the time

domain. Even signals which are approximately bandlimited often have a fairly high Nyquist

rate, requiring expensive sampling hardware and high-throughput digital machinery.

Classical sampling theory necessitates a high sampling rate whenever a signal has a high

bandwidth, even if the actual amount of information in the signal is fairly low. For instance,

a piecewise linear signal is non-differentiable; it is therefore not bandlimited, and moreover,

its Fourier transform decays at the fairly low rate O(1/ f 2). However, the signal is completely

described by the positions of knots (transitions between linear segments) and the signal values

at those positions. In this sense, as long as the knots are known to have a minimum separation,

this signal has a finite information rate. The basic motivation of FRI is that it seems wasteful to

sample such signals at the Nyquist rate.

To be specific, suppose that a function x(t) has the following property: Any length-T0 seg-

ment of x(t) is completely determined by no more than K parameters. For example, the afore-

mentioned piecewise linear signal has this property. In this case, the function x(t) is said to

have a T0-local rate of innovation of K/T0 [30]. In general, a signal is said to have a finite rate

of innovation if its T0-local rate of innovation is finite for any sufficiently large T0.

There are many families of FRI signals with wide-ranging applications. For example, the

piecewise linear model can be written as

x(t) = ∑
n∈Z

an(t − tn)1t≥tn (1.7)

where an and tn are parameters, and 1E is an indicator function for the event E. To satisfy

the FRI requirement, we must assume a minimum separation between the knots, such that

|tn − tm| > tmin for some tmin > 0. This is the simplest case of the class of signals known as

splines, which are often used in image processing, and can also be described as FRI signals [33].

Another example of a family of FRI signals is the family of time-delayed pulses

x(t) = ∑
n∈Z

anh(t − tn) (1.8)

where h(·) is a known pulse shape, and again a minimum separation is assumed between the

pulses. Such signals find uses in radar, ultrasound, and multipath channel estimation prob-

lems [34, 35]. Signals corresponding to the models (1.7) and (1.8) are examples of FRI families

which are also unions of subspaces: Indeed, fixing tn and varying an yields a subspace of the

set of continuous-time functions, and the entire set of allowed signals is the union of all such
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subspaces. However, the FRI model can also be used to describe non-union signals. For exam-

ple, consider a generalization of (1.8) in which the pulses are controlled by a generic parameter

θ, so that

x(t) = ∑
n∈Z

h(t, θn) (1.9)

where θn describes one or more parameters controlling the shape and position of the nth pulse.

While the time-delay setting (1.8) is clearly a special case of (1.9), one can easily conceive of

other families of FRI signals which cannot be described as unions of subspaces. Still, the union

model is a useful scenario and will receive special attention in the sequel.

The power of the FRI model is summarized by the rule of thumb which states that FRI

signals can typically be reconstructed without error from samples taken at the rate of innovation

[30, 36]. The advantage of this result is self-evident: FRI signals need not be bandlimited, and

even if they are, the Nyquist frequency can be much higher than the rate of innovation. There

are, however, several caveats to this result. First, the sampling technique sometimes requires

the use of analog filters designed for the specific family of signals, so some hardware flexibility

is a prerequisite. Second, the reconstruction algorithm is again designed based on the family

of FRI signals under consideration; there is no single algorithm guaranteeing reconstruction

for any FRI model. Finally, and most importantly for our point of view, this rule of thumb

only holds in the absence of noise. Indeed, empirical observations indicate that, for some noisy

FRI signals, substantial performance improvements are achievable when the sampling rate is

increased beyond the rate of innovation [34, 37].

The deterioration in observed performance in the presence of even minor levels of noise is

clearly of practical relevance, and motivates the study of FRI techniques under noise. In partic-

ular, there has been some work in the past which derived the CRB on the ability to estimate the

parameters of the FRI signal in the presence of noise [31, 38]. However, these results bounded

the achievable performance from a given set of samples, and consequently were based on the

assumption that the sampling rate and sampling technique are given. As we will see in Chap-

ter 8, one can also derive a CRB which is independent of the sampling technique, and thus

provides a fundamental performance limit which cannot be surpassed, regardless of the type

of hardware employed.
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1.4 Summary of Main Results

The remainder of this dissertation is organized as follows. We begin in Chapter 2 with back-

ground material on various types of performance bounds, in both deterministic and Bayesian

settings. As we will see below, these bounds, and particularly the CRB, serve as the basis for

many of the developments later in the thesis, and are thus discussed in detail.

The novel results in this dissertation are divided into two parts, corresponding to the fre-

quentist and Bayesian points of view. Part I is the larger of the two and contains results which

pertain to the frequentist scenario with structural constraints. Thus, in this part the assumption

is that the parameter to be estimated is deterministic (has no prior distribution); prior knowl-

edge about the signal is encapsulated in the assumption that the parameter belongs to a known

constraint set. The arrangement within this part follows a deductive order, in which we first

derive general estimation bounds and then apply them to specific scenarios. Specifically, our

analysis begins in Chapter 3 with a derivation of the constrained CRB for estimation scenarios

involving a singular Fisher information matrix (FIM). This case is of importance in the context

of sparse estimation, where the matrix H of (1.1) is typically column rank deficient, leading to

a singular FIM. For unconstrained problems, a singular FIM leads to an infinite CRB, meaning

that no unbiased estimator exists in this case. However, as we show, the adoption of constraints

implies that estimation may still be possible even when the FIM is singular, conforming to the

fact that estimation is indeed possible in the sparse setting.

Following this general result, the CRB is derived for the specific case of sparsely repre-

sentable signals in Chapter 4. As mentioned previously, the CRB in this case coincides, for

almost all parameter values, with the error achieved by the oracle estimator. This result mo-

tivates the use of the oracle error as a standard against which the performance of practical

estimators can be judged. In particular, the CRB is known to be achieved at high SNR by the

ML estimator, and is therefore arguably more directly related to the performance of real-world

techniques.

Despite being a tight bound at high SNR, the CRB is often unreliable when the noise level

increases. To gain better understanding of the performance for a wide range of SNR values, in

Chapter 5 we consider the Hammersley–Chapman–Robbins bound for the sparse setting. As

this bound is analytically far more complicated, we restrict attention in this chapter to the case

in which H is a unitary square matrix. This facilitates the derivation of an improved closed-

form bound. We demonstrate the tightness of this bound by constructing a family of estimators
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which jointly come very close to achieving it.

With the lower bounds for the sparsity setting developed in Chapters 4 and 5, the next chal-

lenge is to determine whether any practical technique comes close to achieving these bounds.

This is accomplished in Chapter 6 through the use of estimator performance guarantees. As

we have already mentioned in Section 1.1 above, some performance guarantees have already

been developed for ℓ1-relaxation techniques based on complex properties of the dictionary H,

such as the RIP. However, since the RIP is NP-hard to compute, we derive alternative bounds

based directly on the mutual coherence. As we show, when the RIP is unknown, our coherence

bounds provide tighter results than previously known bounds. Furthermore, our approach en-

ables the derivation of performance guarantees for greedy techniques; such greedy guarantees

have not previously been shown in the frequentist setting.

The combination of the performance guarantees of Chapter 6 and the lower bounds of

Chapters 4 and 5 demonstrates that existing estimators come fairly close to ideal performance.

As we show in Chapter 7, similar results can be obtained for the block sparse model as well:

Both the CRB and greedy performance guarantees are supplied for this generalization of the

sparse representation scenario. The comparison between the sparse and block sparse settings

provides insight into the improvement obtainable by the addition of the block sparsity struc-

ture.

Next, in Chapter 8 we move on to the FRI setting. Here we derive two types of lower

bounds, both based on the CRB. The first is a fundamental limit on the estimation quality

achievable, regardless of the sampling technique, while the second limits the performance

given a particular sampling configuration. Comparing these two bounds with the observed

quality of actual FRI estimation techniques can answer two questions: First, does a given tech-

nique optimally utilize the information given to it by the available hardware? And, second,

could an improvement in the hardware (e.g., an increased sampling rate) result in better per-

formance? We demonstrate that the answers to both questions depend on the precise setup

under consideration. When existing techniques fail to fully exploit the available information,

we identify where these methods could be improved. Finally, we propose a technique for de-

signing sampling schemes which optimally utilize a given sampling rate budget.

In Part II, we adopt the Bayesian point of view in which the unknown parameter is random

and has a known prior distribution. In the Bayesian setting, it is well-known that the condi-

tional expectation is the estimator minimizing the MSE. However, in many cases, the computa-

tional complexity of the minimum MSE (MMSE) estimator is prohibitive, requiring the use of
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alternative techniques, such as the maximum a posteriori (MAP) approach. Furthermore, the

performance of the MMSE method is itself often difficult to ascertain. It is therefore of interest

to develop bounds on the MMSE performance. These bounds can then be compared with the

achievements of practical techniques, so as to determine their proximity to the optimum. This

goal has attracted a significant research effort over the years (see Section 2.2).

We provide two contributions to the field of Bayesian performance bounds. In Chapter 9,

we consider the optimal bias bound (OBB) [39], an unfamiliar result dating from 1971 which

uses the (frequentist) CRB to obtain a Bayesian performance bound. We rigorously demon-

strate the soundness of the bound and extend it to the general case of a vector parameter. We

also prove the asymptotic tightness of the bound both in the high SNR and in the low SNR

regimes, a property which, to the best of our knowledge, has not been demonstrated for any

other bound. Indeed, we demonstrate through examples that the OBB is often substantially

more accurate than more standard approaches. Next, in Chapter 10, we consider the much

more famous Weiss–Weinstein bound. We demonstrate that the standard statement of this

bound is inaccurate in particular cases, specifically when the prior distribution is limited to a

bounded support set. Indeed, we show examples in which this standard statement produces

incorrect results: values which are not bounds on the MMSE performance, and may even be

infinite. The source of this inaccuracy is identified and a corrected version is presented.
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Chapter 2

Background: Performance Bounds

The main goal of this dissertation is to study the capabilities of estimation techniques in struc-

tured settings through the analysis of lower and upper performance bounds. As discussed

in the Introduction, an upper bound is a performance guarantee for a given estimator. Con-

sequently, proofs of upper bounds tend to be specialized to the peculiarities of the technique

under consideration. By contrast, lower bounds are often based on more generic concepts. In-

deed, many of the results in this dissertation are based on several extensions of the Cramér–Rao

bound (CRB), be it an extension for the case of a singular Fisher information matrix (Chapter 3),

various types of constraint sets (Chapters 4 and 7), infinite-dimensional spaces (Chapter 8), or

applications to the Bayesian framework (Chapter 9). Therefore, to provide a basis for the up-

coming chapters, we now review the CRB and other lower bounds on estimation performance.

Specifically, Section 2.1 deals with bounds in the frequentist (or deterministic) estimation sce-

nario, while Section 2.2 summarizes lower bounds in the Bayesian world.

2.1 Frequentist Bounds

The frequentist estimation setting is based on the assumption that an unknown deterministic

parameter x is to be estimated from random measurements y [6, 16]. The probability density

function (pdf) of y depends on x and is denoted p(y; x), where the semicolon is intended to

serve as a reminder that x is not random, merely a parameter which influences the distribution.

A standard objective in estimation is to achieve low mean-squared error (MSE), defined

as E
{
‖x − x̂‖2

}
, where x̂ is the estimator under consideration. In the frequentist context, this

quantity is a function of the parameter x. Consequently, the MSE does not form a complete

ordering of estimator performance, since one estimator may be better than another for some

21
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values of x but worse for other values. In particular, the trivial estimator x̂ = x0 (for some

constant x0) achieves zero MSE when x = x0, but is a very poor estimator for other parameter

values.

Our goal in this section, and indeed in much of the dissertation, is to construct lower bounds

on the MSE achievable in a given estimation problem. However, to construct these bounds, es-

timators such as x̂ = x0 must be excluded from consideration. Otherwise, the only possible

bound on the MSE is the zero bound, since there exists an estimator achieving zero MSE at any

point x0. What is needed is therefore a mechanism for excluding estimators which are insensi-

tive to changes in the parameter x. There are several possible techniques for doing so, including

various types of minimax approaches, in which one seeks the estimator whose worst-case error

is minimal [40–42]. However, probably the most common technique for the expurgation of triv-

ial approaches is the notion of unbiasedness, which will be adopted throughout the frequentist

chapters in this dissertation. An estimator is said to be unbiased if it holds that

b(x) , E{x̂} − x = 0 for all x. (2.1)

In this sense, the bias b(x) (or more accurately, the lack of bias) can be viewed as an assurance

of the sensitivity of the estimator to changes in the parameter values. Conveniently, the MSE

of an unbiased estimator is equal to its variance, so one generally searches for bounds on the

variance of estimators x̂ satisfying (2.1).

Alternatively, frequentist bounds can be constructed for estimators which have any pre-

specified bias function b(x), not necessarily the zero function. It should be noted, though, that

there apparently exists neither a rigorous technique or nor an intuitive approach for choosing

desirable bias functions other than b(x) = 0. We will, however, find a use for biased bounds

in Chapter 9, when exploiting the biased CRB in a Bayesian context. Suppose, then, that one

desires a certain bias function b(x). This is equivalent to requiring an unbiased estimator of the

quantity x + b(x). Thus, instead of speaking of biased bounds, one can always seek bounds on

the variance of estimators of functions of the parameter x.

Beyond the desirable sensitivity of an estimator to changes in the parameter value, there

are various other justifications for the popularity of unbiasedness as a design criterion. For

example, the unbiased CRB is asymptotically achieved by the maximum likelihood (ML) esti-

mator as the number of IID measurements increases. However, this statement, as well as all

other formal justifications of unbiasedness, are based on asymptotic analyses. Indeed, in many

cases biased estimators can perform better than any unbiased techniques, and indeed better
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than bounds on unbiased techniques [42–44]. Consequently, bounds based on principles of

unbiasedness should primarily be used to judge performance in the high SNR regime.

In the remainder of this section, we review the frequentist estimation bounds which will

be exploited later in the dissertation. We begin with the well-known Cramér–Rao bound. We

then discuss its non-local refinement, the Hammersley–Chapman–Robbins bound. Finally, we

discuss prior work on applying the CRB to constrained estimation settings, in which the pa-

rameter is known to have a specified structure.

2.1.1 The Cramér–Rao Bound

The CRB was independently discovered by several mathematicians, including Cramér [45],

Darmois [46], Fréchet [47], and Rao [48]. It is thus probably more historically correct to re-

fer to this bound as the information inequality [6], although the term Cramér–Rao bound is

more common in electrical engineering texts [16]. Since much of our work relies on various

extensions of the CRB, we now take the time to review the bound in some detail.

Considering the elementary nature of the CRB and its widespread use, the bound is sur-

prisingly difficult to formulate in a completely rigorous fashion. This is primarily due to the

necessity of swapping integration over y and differentiation with respect to x in the proof of the

CRB, a step which requires an application of the dominated convergence theorem, and thus ne-

cessitates domination conditions on the bias and pdf. Since these conditions are cumbersome,

not very insightful, and hold for many of the most common distributions, in our discussion

below we will simply assume that differentiation by x and integration over y can be swapped

when necessary. The reader is referred to [6, Theorem 2.5.15] for a completely rigorous treat-

ment in the case of a scalar parameter. Even with this simplification, readers not acquainted

with the CRB will likely find our discussion somewhat challenging, and may find it easier to

first follow the more friendly exposition in [16].

Theorem 2.1 (Cramér–Rao bound). Let X ⊆ Rn be an open set and let {p(y; x)}x∈X be a family of

pdfs having a common support, i.e., the set {y : p(y; x) > 0} is independent of x. Suppose that p(y; x)

and log p(y; x) are differentiable with respect to x and assume that integration over y and differentiation

with respect to x can be interchanged whenever necessary. Define the Fisher information matrix (FIM)

J(x) , E

{(
∂ log p

∂x

)(
∂ log p

∂x

)T
}

(2.2)

and assume that J(x) exists and is finite and positive definite. Consider a finite-variance estimator x̂
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having a differentiable bias function b(x). Then,

Cov(x̂) �
(

I +
∂b

∂x

)
J−1(x)

(
I +

∂b

∂x

)T

(2.3)

and thus

MSE(x̂) ≥ Tr

[(
I +

∂b

∂x

)
J−1(x)

(
I +

∂b

∂x

)T
]

. (2.4)

The bounds (2.3) and (2.4) are achieved with equality if and only if there exists a matrix function A(x)

such that

∂ log p(y; x)

∂x
= A(x) (x̂ − x − b(x)) . (2.5)

Specifically, for unbiased estimators (b(x) = 0), the matrix function A(x) must equal the FIM J(x).

Several remarks are in order concerning Theorem 2.1. First, we observe that the condition

(2.5) for achieving the CRB with equality is rather strict. In particular, estimators achieving

the unbiased CRB (referred to as efficient estimators) are only possible when the pdf satisfies

a specific form. Rearranging terms in (2.5) and substituting the unbiasedness requirement, it

can be shown that efficient estimators exist if and only if the class of pdfs forms an exponential

family, and then only when estimating the natural parameter of that family [6]. Thus, achiev-

ability of the CRB is the exception rather than the rule. Various methods whereby the CRB can

be tightened are discussed in Section 2.1.2, below.

It is interesting to note the requirement of a positive definite FIM in the conditions for The-

orem 2.1. This condition is necessary: If the FIM is singular, then no finite-variance, unbiased

estimator exists [49]. Intuitively, when J(x) is singular, its inverse is infinite, so that (2.4) ex-

plodes. However, the fact that the FIM is singular does not preclude the existence of unbiased

estimators if the parameter is constrained to a sufficiently limited subset of Rn (rather than an

open set, as in Theorem 2.1). We will return to this point in Section 2.1.3.

We next point out a common misconception concerning the CRB. The unbiased version of

the bound is commonly quoted as follows. If an estimator x̂ is unbiased for all x ∈ X , then its

MSE is bounded by

MSE ≥ Tr(J−1(x)). (2.6)

While this statement is correct, the assumption of unbiasedness for all x is stronger than re-

quired. Indeed, from the statement of Theorem 2.1, it is clear that one requires only that

b(x) = 0 and ∂b/∂x = 0 at a particular value of x in order for (2.6) to hold for that specific

x. The importance of this distinction is in the realization that the CRB is a local bound, in the
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sense that it is based only on the statistics of the estimation problem in the neighborhood of

the parameter x for which the bound is computed. This is manifested both in the requirements

of the bound and in its guarantee. In terms of requirements, one must assume only unbiased-

ness at x and near it (the latter ensured by the specification of the bias gradient). Likewise, the

guarantee provided by the CRB is based only on the local statistical properties of the setting

(specifically, derivatives of the bias and the pdf).

2.1.2 The Hammersley–Chapman–Robbins Bound

The locality of the unbiasedness assumption will provide the theoretical basis for the derivation

of the constrained CRB for sparse settings in Chapter 4. More generally, the locality of the CRB

is the main reason for its simple closed form and, consequently, its widespread use. On the

downside, though, this property is precisely the cause of the laxity of the bound, and many of

the improvements of the CRB result from a deeper analysis based on non-local properties of

the estimation setting.

One such improvement is the Hammersley–Chapman–Robbins bound (HCRB), which was

derived independently by Hammersley [50] and Chapman and Robbins [51]. Whereas the CRB

requires unbiasedness at the point x for which the bound is computed and in its local neighbor-

hood, the HCRB is based on an assumption of unbiasedness at x and another arbitrary point

x + δ, which need not necessarily be close to x. Ordinarily, the HCRB is applied to estimators

which are assumed to be unbiased for all values of x, and consequently the bound holds re-

gardless of the choice of δ. One can therefore compute the bound for any δ and choose the

highest value thereof as the tightest possible HCRB.

In the following, we state the HCRB for a scalar parameter x [50,51]. A vector version of this

bound is slightly more complicated, requiring the use of multiple test points. Such a derivation

can be found in the work of Gorman and Hero [52].

Theorem 2.2 (Hammersley–Chapman–Robbins bound). Let y be a measurement vector whose pdf

is given by p(y; x) for x ∈ X ⊆ R. Suppose1 that the set {y : p(y; x) > 0} is independent of x. Then,

any unbiased estimator x̂ of x satisfies

MSE(x̂) ≥ sup
δ:x+δ∈X

δ2

E

{(
p(y;x+δ)

p(y;x)
− 1
)2
} . (2.7)

1This requirement can be replaced by a weaker, but more cumbersome, assumption on the support of p(y; x) [6,

p. 114].
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The point x + δ is referred to as a test point, a concept which will reappear when discussing

Bayesian bounds of the Weiss–Weinstein family in Section 2.2. As explained in the beginning of

Section 2.1, the HCRB can easily be formulated for estimators having an arbitrary pre-specified

bias function, but this will not be necessary for our purposes.

A striking feature of Theorem 2.2 when compared with the CRB is that the former requires

far fewer regularity conditions. This, too, is a consequence of the non-locality of the HCRB.

Indeed, the CRB exploits the local properties of the setting through the use of derivatives of the

pdf and the bias. The many regularity conditions of the CRB result from the need to carefully

handle the limits implied by the differentiation operation. By contrast, the HCRB in its basic

form requires only two points of unbiasedness, x and x + δ, and no limits are involved in the

derivations. As an example of this advantage of the HCRB, note that settings involving the

uniform distribution, such as y ∼ U[x, x + 1], cannot be analyzed with the CRB but are readily

bounded by the HCRB.

It turns out that even more can be said: When a given estimation problem satisfies the

regularity conditions of Theorem 2.1, the CRB is obtained as a special case of the HCRB. This

can be seen in the one-dimensional case by taking the limit of (2.7) as δ → 0 and swapping the

order of the expectation and limit, whereupon we obtain

MSE(x̂) ≥ 1

E

{(
1

p(y;x)
∂p(y;x)

∂x

)2
} =

1

J(x)
(2.8)

where we used the definition (2.2) of the Fisher information. The resulting bound is precisely

the CRB for unbiased estimators of a scalar parameter. Thus, Theorem 2.1 can be thought of as

a HCRB with the test point chosen infinitesimally close to x, again illustrating the local nature

of the CRB.

We note that the HCRB is not the only possible extension of the CRB. Further improvements

can be achieved by increasing the number of test points, at the cost of increased computational

complexity. This technique is attributed to Barankin [53]. Moreover, the CRB is not even the

tightest possible local bound: it can be improved locally by relying on higher-order derivatives

of the pdf, as proposed by Bhattacharya [54]. However, for the purposes of this dissertation,

familiarity with the CRB and HCRB will suffice.
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2.1.3 The Constrained Cramér–Rao Bound

A central theme in our work involves the effect of structural constraints on estimation quality,

as reflected in performance bounds. The constrained CRB is the name given to the performance

bound when the parameter is known to belong to a structure set X . Work on the constrained

CRB was pioneered by Gorman and Hero [52], who considered primarily constraints of the

form

X = {x ∈ R
n : g(x) = 0, h(x) ≤ 0} (2.9)

where g : Rn → Rp and h : Rn → Rq are continuously differentiable functions. It is assumed

that the definition of the set using the functions g and h is not redundant, in the sense that it

is impossible to define X using a smaller number of constraints. It is further assumed that the

constraints are consistent, i.e., X 6= ∅. We will refer to sets of the form (2.9) as continuously

differentiable constraints.

The constrained CRB of Gorman and Hero [52] can now be stated as follows. Note that

some of the regularity conditions stated below are omitted from [52], but are indeed necessary

for the theorem to hold. These regularity conditions closely follow the requirements for the

unconstrained CRB as discussed in Section 2.1.1 above.

Theorem 2.3 (Constrained CRB). Let X be a continuously differentiable set of the form (2.9) and let

{p(y; x)}x∈X be a family of pdfs having a common support, i.e., the set {y : p(y; x) > 0} is indepen-

dent of x. Suppose that p(y; x) and log p(y; x) are differentiable with respect to x, and assume that

differentiation with respect to x and integration over y can be interchanged whenever necessary. As-

sume that the FIM (2.2) is well-defined, finite, and positive definite. Consider a finite-variance estimator

x̂ having a differentiable bias function b(x). Then,

Cov(x̂) �
(

I +
∂b

∂x

)(
J−1 − J−1GT(GJ−1GT)†GJ−1

)(
I +

∂b

∂x

)T

(2.10)

where G , ∂g/∂x, and G = 0 when no equality constraints are present.

Several key points arise from an examination of Theorem 2.3. Most strikingly, the bound

(2.10) is completely indifferent to the existence of inequality constraints in the set X . For exam-

ple, if it is known that ‖x‖2 ≤ τ, the resulting CRB is identical to the unconstrained bound, even

if τ is very small. While a mathematical discussion of this result is given in [52], we believe that

a more intuitive explanation arises from an analysis of the bias restrictions in the constrained

CRB, which will be presented in Chapter 4. Whatever the interpretations, all versions of the
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constrained CRB are insensitive to inequality constraints, even when the bound is computed at

the boundary of the constraint set. Indeed, later studies of the constrained CRB often simply

assume that no inequality constraints are present, as these have no effect on the bound [55–58].

Another observation follows from a comparison between the constrained bound (2.10) and

the unconstrained CRB (2.3), whence it is evident that the constraints reduce the value of the

bound. On a certain level, this seems unsurprising: More information is available concerning x,

so it should be easier to estimate it. This fact is stated as an intuitive argument for the power of

the constrained CRB by Gorman and Hero [52, Remark 4]. On deeper inspection, however, the

bound reduction is somewhat mysterious. Recall that the CRB is a bound on the performance of

all unbiased estimators at the specific point x. The bound thus applies to techniques designed

specifically for x (as long as these remain unbiased). Such techniques should not benefit from

the much less precise knowledge that x ∈ X . How, then, can knowledge of a constraint set X
reduce the CRB? The answer lies in the class of estimators which are considered unbiased. As

we will see in Chapters 3 and 4, unbiasedness in the constrained context has a wider meaning

than the ordinary definition in the unconstrained case. Thus, the constrained CRB applies to a

wider range of techniques, and this yields a reduction in the value of the bound.

Among the many papers following the work of [52], we mention two which are particularly

relevant for our applications. The first is an analysis by Stoica and Ng [56] which examined

the case of a singular FIM. Recall that both Theorem 2.1 and Theorem 2.3 assumed that J(x)

is positive definite. As mentioned previously, in the unconstrained case, the invertibility of

J(x) is necessary for the existence of finite-variance unbiased estimators [49]. However, in the

constrained case, it is sometimes possible for unbiased estimators to exist even when the FIM

is singular [56]. Intuitively, one can think of a singular FIM as indicative of a complete lack of

measurement data concerning some parameters (or some linear combination of parameters). If

the constraints provide the missing information, then the singularity of the FIM is no longer an

obstacle. Chapter 3 provides a more detailed analysis of this situation, in which the interplay

between bias, constraints, and singularity of the FIM is explored.

An alternative perspective on the constrained CRB is obtained by examining a reparametri-

zation of the problem [52, 57]. Consider a continuously differentiable constraint set X contain-

ing p equality constraints (as we have seen, the inequality constraints can be ignored as they

have no effect on the CRB). The constraint set can be locally parameterized using n − p coor-

dinates. The idea of reparametrization is to construct a CRB for the estimation of these n − p

coordinates, and transform the result into a bound on the original parameters. As it turns out,
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the result is identical to the constrained CRB of Theorem 2.3. Thus, in theory, any result on the

CRB for continuously differentiable constraints can equivalently be obtained using the classi-

cal CRB and a reparametrization. In practice, there are cases in which the reparametrization is

quite cumbersome. Nonetheless, this technique is often useful, and becomes particularly pow-

erful when the dimension of the parameter to be estimated is much higher than the dimension

of the reparameterized coordinates. An extreme example of such a construction will occur in

the case of bounds for FRI signals (Chapter 8), where the parameter is a continuous-time func-

tion (and thus belongs to an infinite-dimensional space), but the coordinates determining it

belong to a finite-dimensional space. In this case we will utilize the reparametrization scheme

in order to derive the constrained CRB.

As a final comment, we note that while continuously differentiable constraints of the form

(2.9) describe many useful types of signal structures, the sparsity models of Sections 1.1 and 1.2

cannot be described in this manner. Thus, our derivation in Chapter 4 of the CRB for sparse

estimation will require an extension of the CRB to non-differentiable constraints.

2.2 Bayesian Bounds

In this section, we adopt the Bayesian point of view, i.e., we assume that both x and y are

random vectors whose joint pdf p(y, x) is known. We denote by px(x) the prior pdf of x, and

by py|x(y|x) the conditional distribution of y given x.

We are given a realization of y and wish to use it to estimate x. In this case, the MSE

E
{
‖x − x̂‖2

}
is a scalar, rather than a function of x, since the expectation is taken over both x

and y. Consequently, one can speak of the estimator minimizing the MSE. As is well known,

this minimum MSE (MMSE) estimator is the conditional expectation, x̂MMSE = E{x|y}.

While the conditional expectation provides the optimal performance in terms of MSE, in

many practical cases it is difficult to calculate x̂MMSE in practice. There are various alternatives

to the MMSE estimator which attempt to provide a suboptimal estimator whose computational

cost is lower. Given such an alternative technique, one would like to know how much is lost

with respect to the optimum performance. Unfortunately, determining the MSE of the condi-

tional expectation is usually no easier than obtaining the MMSE estimate itself. Consequently,

there is an interest in easily computable lower bounds on the MMSE performance. If a prac-

tical technique comes close to such a lower bound, then the proposed approach is known to

also approach the performance of the MMSE method. We emphasize that contrary to the fre-
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quentist case, Bayesian bounds are intended merely to provide a computational benefit, since

the precise performance of the MMSE estimator can be accurately determined given sufficient

computing power.

In this section, we review the most commonly used Bayesian performance bounds. The

optimal bias bound (OBB) is described in detail in Chapter 9 and is thus omitted from the

discussion herein. We focus in particular on the effectiveness of these bounds when the prior

distribution px(x) is constrained, i.e., when there exists a bounded set S such that px(x) = 0

whenever x /∈ S. Such priors form a natural adaptation of the constraint sets of Section 2.1 to

the Bayesian world, and will continue to play a central role in our Bayesian results in Part II of

the dissertation.

2.2.1 Bayesian CRB

The Bayesian CRB, which is due to Van Trees [59, pp. 72–73], follows the derivation of the

ordinary (frequentist) CRB. For simplicity of notation, in this subsection we assume that the

parameter x to be estimated is a scalar; a vector extension of this bound is straightforward.

Theorem 2.4 (Bayesian CRB). Assume the following regularity conditions:

1. The first and second derivatives of p(y, x) with respect to x exist for all x ∈ R, and the derivatives

are absolutely integrable with respect to x and y.

2. It holds that

lim
x→−∞

E{x̂ − x|x} px(x) = lim
x→+∞

E{x̂ − x|x} px(x) = 0. (2.11)

Any estimator x̂ then satisfies

E
{
(x̂ − x)2

}
≥
(

E

{(
∂ log p(y, x)

∂x

)2
})−1

. (2.12)

Note the similarity of (2.12) to the ordinary unbiased CRB (2.6). The second regularity con-

dition in Theorem 2.4 is the analog of the unbiasedness requirement for the deterministic CRB.

However, while in the deterministic case unbiasedness excludes many interesting estimators,

in the Bayesian case the condition (2.11) is usually not difficult to satisfy. This is because most

probability distributions tend to zero very quickly as x → ±∞, so that (2.11) typically holds for

all estimators except those with exceptional deviations from the true parameter x.

That being said, the Bayesian CRB is typically inapplicable to situations where the prior

px(x) is constrained, in the sense that px(x) = 0 for values of x outside of a bounded set S. This
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is because oftentimes the joint pdf will not be sufficiently smooth to satisfy the first regularity

condition. For example, a uniform prior will result in a discontinuous pdf, which is clearly not

differentiable.

As an alternative, one can derive the Bayesian CRB for a constrained set x ∈ (a, b), where

a, b ∈ R. This yields a bound which is analogous to Theorem 2.4, with minor modifications to

the regularity conditions. Specifically, the first condition now requires the derivatives to exist

only in the range (a, b), which is satisfied by most constrained distributions. However, the

second regularity condition becomes

lim
x→a+

E{x̂ − x|x} px(x) = lim
x→b−

E{x̂ − x|x} px(x) = 0. (2.13)

Unfortunately, in many constrained cases (e.g., under a uniform prior), px will be nonzero on

the boundaries a and b. The bound then applies only to estimators satisfying

E{x̂ − x|x = a} = E{x̂ − x|x = b} = 0. (2.14)

However, it can be shown that any technique satisfying this requirement must produce esti-

mates outside the range [a, b] with nonzero probability. But the MMSE approach never pro-

duces estimates whose prior probability is zero. It follows that the bound is not applicable to

the MMSE technique. In other words, we have obtained a lower bound on the MSE of some

estimators, but not on the MSE of the optimal approach.

As mentioned above, Theorem 2.4 is derived in a manner analogous to the frequentist

CRB. It was pointed out by Weinstein and Weiss [60] that it is similarly possible to obtain a

Bayesian analog of the Bhattacharya bound, which is a tighter version of the CRB. However,

this Bayesian Bhattacharya bound is also inapplicable to constrained estimation, as it too fails

to meet the regularity conditions outlined above.

2.2.2 The Weinstein–Weiss Family of Bounds

As shown in Section 2.1.2, in the frequentist setting the CRB can be generalized by replacing

the use of derivatives with the more general concept of test points, resulting in the HCRB. The

elimination of derivatives also reduces the regularity conditions required by the HCRB. In an

analogous manner, one can replace the derivatives in the Bayesian CRB with test points, result-

ing in the Weiss–Weinstein bound, below. This bound again essentially requires no regularity

conditions, and is therefore appealing for situations in which the prior distribution is con-

strained to a bounded set. As before, we provide the bound for the case of a scalar parameter

x.
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Theorem 2.5 (Weiss–Weinstein bound [61]). Let s ∈ (0, 1) and h ∈ R be two arbitrary constants.

Then, any estimator x̂ satisfies

E
{
(x̂ − x)2

} ≥ h2E2{L1−s(y; x − h, x)}
E{(Ls(y; x + h, x)− L1−s(y; x − h, x))2} (2.15)

where

L(y; x1, x2) ,
p(y, x1)

p(y, x2)
. (2.16)

The points x + h and x − h are referred to as test points, and are analogous to the test

points of the HCRB presented in Section 2.1.2. Since Theorem 2.5 holds for any s and h, ideally

one would like to maximize over these two parameters so as to obtain the tightest possible

bound; however, this can be computationally expensive. In many situations, the tightest bound

is obtained for s = 1/2, and this value is sometimes used (even when it is not necessarily

optimal) in order to reduce the computational load. In the limit as h → 0, the bound tends to

the Bayesian CRB, which again illustrates the locality of the CRB (see Section 2.1.1).

A useful extension of Theorem 2.5 is based on adding multiple test points. This generally

tightens the bound, but increases the number of parameters which must be optimized. Even-

tually, adding too many test points will make the bound less practical than directly calculating

the MMSE by numerical integration.

The extension to the vector case is straightforward. In the vector case, in order to obtain

nontrivial results, one must use at least n test points, where n is the dimension of x; further-

more, the test points must span the space Rn. Thus, a common approach to reduce the com-

plexity of the optimization is to choose test points {he1, . . . , hen}, where the ei are unit vectors.

This leaves us with a single parameter h to optimize.

Using a similar technique, one can further generalize the Weiss–Weinstein bound, as shown

below.

Theorem 2.6 (Weinstein–Weiss bound [60]). Consider an integer m and assume we are given a set

of functions ψ1(y, x), . . . , ψm(y, x) satisfying

E{ψi(y, x)|y} = 0 for all y. (2.17)

We then have the lower bound

E
{
(x̂ − x)(x̂ − x)T

}
≥ VP−1V T (2.18)

where

Vij = E
{

xiψj(y, x)
}

(2.19)
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and

Pij = E
{

ψi(y, x)ψj(y, x)
}

. (2.20)

Intriguingly, many Bayesian bounds can be derived as special cases by an appropri-

ate choice of functions ψi(y, x). These bounds include the aforementioned Bayesian CRB,

Bayesian Bhattacharya, and Weiss–Weinstein bounds, which are therefore said to belong to

the Weinstein–Weiss family of lower bounds [62].

The challenge in Theorem 2.6 is, of course, to find functions ψi(y, x) which satisfy (2.17)

but yield new, hopefully tighter, bounds. This challenge can be addressed by exploiting a

geometrical interpretation of Bayesian lower bounds [63, 64]. Specifically, consider the Hilbert

space L2 of finite-variance functions of both x and y. The random variable representing the

true parameter value x is an element of L2, and the MMSE estimator x̂MMSE is the projection

of x onto the subspace Y of L2 containing only the functions of y. Therefore, the estimation

error is equal to the variance of the projection of x onto the orthogonal complement Y⊥ of Y .

Computing this projection is typically difficult, being in fact merely a geometrical statement of

the requirement of computing x̂MMSE. However, one can obtain lower bounds on the size of

the MMSE error by projecting x onto any subspace H of Y⊥. Any such projection is a lower

bound on the minimum MSE achievable in the given estimation setting. If the subspace H is

low-dimensional, then computing the projection becomes simple, at least numerically.

It turns out that the Weinstein–Weiss family can be viewed precisely as projections onto

specific subspaces of Y⊥ [63, 64]. Indeed, the requirement (2.17) is precisely a statement of the

fact that ψi ∈ Y⊥. The lower bound of Theorem 2.6 is then the Bayesian bound corresponding

to choosing the subspace

H = span{ψ1, . . . , ψm} ⊂ Y⊥. (2.21)

This observation can be used to great advantage in designing Hilbert subspaces H for specific

types of signals. This is done by performing a transform on known functions {ψi(y, x)}, such

that the energy of the projection is concentrated in a small number of transformed coordinates.

A lower bound can then be constructed by choosing those components having large magni-

tude. For example, measurements for which the energy is concentrated in specific frequency

components can be exploited by performing a DFT on a standard set of test points, resulting in

a bound which is substantially higher than previous bounds in the Weinstein–Weiss family [64].
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2.2.3 The Ziv–Zakai Family of Bounds

The Ziv–Zakai bound was developed originally for the specific case of an unknown scalar

parameter x which is distributed uniformly over [0, T] [65]. The bound has since been substan-

tially tightened, and also extended to vector parameters with arbitrary prior densities, albeit

with some loss of the elegance of the original idea.

Given measurements y, the bound is based on the following observation. Suppose it is

known that x equals either x1 or x2, and that these two possibilities occur with equal probability.

Then, an optimal detection approach would be to test the hypothesis x = x1 vs. x = x2. Let

Pe,min(x1, x2) be the probability of error of this optimal technique. Alternatively, we can also use

a suboptimal approach which is based on first estimating the value of x from the measurements,

and then selecting x1 or x2 based on whichever is closer to x̂. This will result in a particular

error probability Pe ≥ Pe,min, which is given by

Pe,min ≤ Pe =
1
2Pr
{

x̂ − x1 ≥ ∆
2

∣∣∣x1

}
+ 1

2Pr
{

x2 − x̂ ≤ ∆
2

∣∣∣x2

}
(2.22)

where ∆ = x2 − x1.

The right-hand side of (2.22) can be bounded by using the Chebyshev inequality, which

converts the probability terms into MSE terms. This results in a lower bound on the MSE

which is based on the optimal probability of error. The bound holds for any two values of x1

and x2, so that obtaining the tightest bound requires maximizing over these two functions. In

fact, it turns out that one need only optimize over their difference ∆ = x2 − x1. Working out

the math, the Ziv–Zakai bound is given by

E
{
(x − x̂)2

}
≥ max

∆∈[0,T]

∆2

4T

∫ T−∆

0
Pe,min(x, x + ∆)dx. (2.23)

The bound is loose in two places: First, in the transition from an optimal detection problem

to a suboptimal approach based on estimation; and, second, in the application of the Chebyshev

inequality. This latter point was improved by Chazan, Ziv, and Zakai [66] and by Bellini and

Tartara [67]. Their approach avoids the use of Chebyshev’s inequality, resulting in a bound

which is higher by at least a factor of 2.

Bell et al. [68] extended the Bellini–Tartara bound to vector parameters and to arbitrary prior

pdfs. This increases the complexity of the optimization problem, since in general one must now

optimize over an n-dimensional vector ∆. They also demonstrated tightness at low SNR for a

particular family of Gaussian-like location problems. However, it is unknown whether this
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bound is tight for general distributions at low SNR, nor is tightness guaranteed for high SNR

values.
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Chapter 3

The CRB with Singular Fisher

Information

This chapter is a reprint of the paper:

• Z. Ben-Haim and Y. C. Eldar, “On the constrained Cramér–Rao bound with a singular

Fisher information matrix,” IEEE Signal Processing Letters, vol. 16, no. 6, June 2009, pp.

453–456.

3.1 Introduction

A central goal in statistics and signal processing is to estimate unknown deterministic param-

eters from random measurements. The performance of estimators in such a setting is circum-

scribed by the well-known Cramér–Rao bound (CRB) [69]. Specifically, the CRB provides a

lower limit on the variance obtainable by any technique as a function of the Fisher information

matrix (FIM) and the estimator’s bias gradient.

A variant of the CRB for constrained estimation problems was developed by Gorman and

Hero [52]. They considered the setting in which the parameter vector belongs to a known set.

When this information is incorporated into the estimator, performance can be improved. As a

consequence, the constrained CRB can be lower than the unconstrained version.

The derivation of Gorman and Hero assumed that the FIM is positive definite. Stoica and

Ng [56] later extended the constrained CRB to the case in which the FIM is positive semi-

definite, and may thus be singular. In an unconstrained problem, a singular FIM implies that

unbiased estimation of the entire parameter vector is impossible [49]. However, Stoica and Ng
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demonstrated that, in some cases, one can obtain so-called constrained unbiased estimators,

which are unbiased as long as the constraints hold.

The work of Stoica and Ng considers only unbiased estimation. Yet even when unbiased

methods do not exist in a particular setting, biased techniques can still be found. As we will

demonstrate, when the FIM is singular, estimators can be constructed by introducing a suffi-

cient number of constraints, by specifying an appropriate bias function, or by a combination

thereof.

More specifically, in this letter we generalize the above-mentioned bounds and obtain a

biased CRB for constrained estimation with a positive semi-definite FIM. When an estimator

achieving the CRB exists, we provide a closed form for it. We further derive a necessary and

sufficient condition for the CRB to be infinite, indicating that no estimator exists in the given

setting.

The following notation is used throughout the letter. Given a vector function f : Rn → Rk,

we denote by ∂ f /∂θ the k × n matrix whose ijth element is ∂ fi/∂θj. Also, R(A), N (A), and A†

are, respectively, the range space, null space, and Moore–Penrose pseudoinverse of a matrix A,

and S⊥ denotes the orthogonal complement of the subspace S . Finally, A � B indicates that

A −B is positive semi-definite.

3.2 Problem Statement

Let y be a measurement vector with pdf p(y; θ), for some deterministic unknown parameter

vector θ ∈ Θ ⊆ Rn. Suppose that p(y; θ) is differentiable with respect to θ. The FIM J(θ) is

then defined as

J(θ) = E
{

∆∆
T
}

(3.1)

where

∆ =
∂ log p(y; θ)

∂θ
. (3.2)

We assume throughout that J(θ) is finite for all θ ∈ Θ.

Suppose that θ is known to belong to a constraint set

Θ = {θ ∈ R
n : f (θ) = 0} ⊆ R

n (3.3)

where f : Rn → Rk is a continuously differentiable function of θ with 0 ≤ k ≤ n. Note that

we are assuming for simplicity that no inequality constraints are present, as it has been shown

that such constraints have no effect on the CRB [52].
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We further assume that the k × n matrix F(θ) = ∂ f /∂θ has full row rank, which is equiva-

lent to requiring that the constraints are not redundant. Thus, there exists an n× (n− k) matrix

U(θ) such that

F(θ)U(θ) = 0, UT(θ)U(θ) = I. (3.4)

Intuitively, R(U(θ)) is the set of feasible directions at θ, i.e., the set of directions in which an

infinitesimal change does not violate the constraints. For notational simplicity, in the sequel we

will omit the dependence of U and J on θ.

Let θ̂ = θ̂(y) be an estimator of θ. We are interested in the performance of θ̂ under the

assumption that θ ∈ Θ. Specifically, we derive a lower bound on the covariance matrix

Cov(θ̂) = E
{(

θ̂− E
{

θ̂
}) (

θ̂− E
{

θ̂
})T

}
(3.5)

obtainable by any estimator θ̂. The covariance matrix, as well as the CRB, are a function of

θ; we are interested in bounding this matrix for all θ ∈ Θ. To obtain a nontrivial bound, we

assume that the desired bias b(θ) = E{θ̂} − θ is specified for θ ∈ Θ; the bias for θ /∈ Θ is

arbitrary.

Previous work on the constrained estimation setting [52, 56] assumed that the estimator θ̂

satisfies the constraint θ̂ ∈ Θ. However, it turns out that this requirement can be removed with-

out altering the resulting bound. Furthermore, in some cases, the CRB can only be achieved

by estimators violating the constraint. In this letter, the term “constrained estimator” refers to

the situation in which the bias b(θ) is specified only for θ ∈ Θ, and the performance is evalu-

ated when the true parameter value θ belongs to the set Θ. The implications of this setting are

discussed further in the next section.

3.3 Cramér–Rao Bound

3.3.1 Main Result

With the concepts developed in the previous section, our main result can be stated as follows.

Theorem 3.1. Let Θ be a constraint set of the form (3.3) with a corresponding matrix U of (3.4). Let θ̂

be an estimator of θ whose bias is given by b(θ) for all θ ∈ Θ, and define

A = I +
∂b

∂θ
. (3.6)
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Assume that integration with respect to y and differentiation with respect to θ can be interchanged,1 and

suppose that

R
(

UUT AT
)
⊆ R

(
UUT JUUT

)
. (3.7)

Then, the covariance of θ̂ satisfies

Cov(θ̂) � AU(UT JU)†UT AT for all θ ∈ Θ. (3.8)

Equality is achieved in (3.8) if and only if

θ̂ = b(θ) + θ+ AU(UT JU)†UT
∆ (3.9)

in the mean square sense, for all θ ∈ Θ. Here, ∆ is given by (3.2). Conversely, if (3.7) does not hold,

then there exists no finite-variance estimator with the given bias function.

It is illuminating to examine the influence of the constraints on the bound of Theorem 3.1.

Recall that the CRB is a bound on the covariance of all estimators having a given bias function,

at each specific point θ. The bound thus applies even to estimators which are designed for the

specific point θ, a far more restrictive assumption than the knowledge that θ ∈ Θ. How, then,

can one expect to obtain a meaningful performance bound by imposing the constraint set Θ?

The answer stems from the fact that the bias is specified in Theorem 3.1 only for θ ∈ Θ. For

example, consider constrained unbiased estimators, for which b(θ) = 0 for all θ ∈ Θ; the bias

when θ /∈ Θ is irrelevant and unspecified. This is a far larger class of estimators than those

which are unbiased for all θ ∈ Rn. Consequently, the bound (3.8) is lower than the uncon-

strained CRB. The weakened bias specification is apparent in Theorem 3.1 from the fact that

the matrix A only appears when multiplied by U, which nullifies components in directions vio-

lating the constraints. Indeed, to calculate the bound, A only needs to be specified in directions

consistent with Θ. This issue will be discussed further in a forthcoming paper [70].

Condition (3.7) succinctly describes the possibilities for estimation under various values of

the FIM. If J is invertible, then (3.7) holds regardless of the constraint set and the bias gradient,

implying that the CRB is always finite. The situation is more complicated when J is singular.

In this case, one option is to choose a matrix A whose null space includes N (J); this implies

that the estimator is insensitive to changes in elements of θ for which there is no information.

Another option is to provide external constraints for the unmeasurable elements of θ, thus

1This condition basically requires that the bounds of p(y; θ) do not depend on θ. Such regularity conditions are

assumed in all forms of the CRB.
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changing U in such a way as to ensure the validity of (3.7) for all A. An example comparing

these approaches will be presented in Section 3.4.

Theorem 3.1 encompasses several previous results as special cases. Most famously, when J

is nonsingular and no constraints are imposed, we obtain the standard CRB

Cov(θ̂) � AJ−1AT. (3.10)

Several prior extensions [49, 52, 56] of (3.10) are also special cases of Theorem 3.1.

3.3.2 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the following lemmas.

Lemma 3.2. Assuming that integration with respect to y and differentiation with respect to θ can be

interchanged, we have

E
{(

θ̂− E
{

θ̂
})

∆
T
}
= A (3.11)

for any estimator θ̂. Here, ∆ is defined by (3.2), and A is given by (3.6).

Proof. The proof is an extension of [55, Th. 1] to the case of a biased estimator. Using (3.2),

E
{(

θ̂− E
{

θ̂
})

∆
T
}

=
∫ (

θ̂− E
{

θ̂
}) 1

p(y; θ)

∂p(y; θ)

∂θ
p(y; θ)dy

=
∂

∂θ

∫
θ̂p(y; θ)dy − E

{
θ̂
} ∂

∂θ

∫
p(y; θ)dy (3.12)

where we interchanged the order of differentiation and integration, and used the fact that θ̂ is

a function of y but not of θ. Noting that the second integral in (3.12) equals 1, we obtain

E
{(

θ̂− E
{

θ̂
})

∆
T
}
=

∂E
{

θ̂
}

∂θ
= I +

∂b

∂θ
(3.13)

which completes the proof.

The following lemma provides a family of bounds on Cov(θ̂) for any estimator θ̂ having

a specified bias function. Theorem 3.1 is obtained by choosing an optimal member from this

class.

Lemma 3.3. Let θ̂ be an estimator of θ ∈ Θ, and suppose its bias is b(θ). Under the conditions of

Lemma 3.2, for any n × n matrix W , we have

Cov(θ̂) � WUUT AT + AUUTW T

− WUUT JUUTW T. (3.14)
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Proof of Lemma 3.3. Let θ̃ = θ̂− E{θ̂} and note that

0 � E

{(
θ̃− WUUT

∆

) (
θ̃−WUUT

∆

)T
}

= Cov(θ̂)− WUUTE
{

∆θ̃
T
}
− E

{
θ̃∆

T
}

UUTW T

+ WUUTE
{

∆∆
T
}

UUTW T. (3.15)

Using (3.1) and Lemma 3.2, we obtain (3.14).

We recall the following properties of the pseudoinverse, which will be required for some

further developments.

Lemma 3.4. Let M and N be arbitrary matrices and let UTU = I. Then

(UMUT)† = UM†UT (3.16)

(MT M)† = M† MT† (3.17)

M† = M† MT†MT (3.18)

M = MT†MT M (3.19)

(MN)† = (MN)†MT†MT. (3.20)

Proof. Proofs for (3.16)–(3.19) can be found in [71, Theorem 1.2.1], while (3.20) can be demon-

strated by showing that (MN)†MT†MT satisfies the Moore–Penrose conditions for the pseu-

doinverse of MN.

We are now ready to prove the main result.

Proof of Theorem 3.1. Our proof is based on that of Stoica and Ng [56]. Suppose first that (3.7)

holds, and let

W = AUUT(UUT JUUT)†. (3.21)

Applying Lemma 3.3 and using the Moore–Penrose condition M†MM† = M†, we obtain

Cov(θ̂) � AUUT(UUT JUUT)†UUT AT. (3.22)

It follows from (3.16) that

(UUT JUUT)† = UT†(UT JU)†U† = U(UT JU)†UT. (3.23)

Substituting this into (3.22) yields (3.8), as required.
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We now show that (3.9) holds if and only if

Cov(θ̂) = AU(UT JU)†UT AT (3.24)

in the mean squared sense, for all θ ∈ Θ. Note first that if θ̂ satisfies (3.9), then the bias of θ̂ is

indeed b(θ), since E{∆} = 0. Furthermore

Cov(θ̂) = AU(UT JU)†UTE
{

∆∆
T
}

U(UT JU)†UT AT (3.25)

which yields (3.24). Conversely, suppose that (3.24) holds, and let θ̃ = θ̂ − E{θ̂}. Using

Lemma 3.2 and (3.24), it is straightforward to show that

Cov
(

θ̃− AU(UT JU)−1UT
∆

)
= 0. (3.26)

Therefore, θ̂ = E{θ̂}+ AU(UT JU)−1UT
∆ in the mean square sense, as required.

It remains to show that if

R
(

UUT AT
)
* R

(
UUT JUUT

)
(3.27)

then no finite variance estimator exists. Suppose that (3.27) holds. Since R(M) = N
(

MT
)⊥

for

any matrix M, we have N
(

AUUT
)⊥

* N
(
UUT JUUT

)⊥
, or equivalently, N

(
UUT JUUT

)
*

N (AUUT
)
. Thus, there exists a vector v ∈ N (UUT JUUT

)
for which v /∈ N (AUUT

)
. Now,

let W = αAUUTvvT for some scalar α to be defined below. From Lemma 3.3,

Tr(Cov(θ̂))

≥ 2 Tr(WUUT AT)− Tr(WUUT JUUTW T)

= 2α Tr(AUUTvvTUUT AT)

− α2 Tr(AUUTvvTUUT JUUTvvTUUT AT). (3.28)

The second term in (3.28) is zero since v ∈ N (UUT JUUT
)
, whereas the first term equals

2α‖AUUTv‖2, which is nonzero since v /∈ N
(

AUUT
)
. Thus, by choosing α appropriately,

Tr(Cov(θ̂)) can be shown to be larger than any finite number. Therefore, there does not exist a

finite-variance estimator with the required bias.

3.3.3 Choice of W

The bound (3.8) of Theorem 3.1 is obtained from the more general Lemma 3.3 by choosing a

specific value (3.21) for the matrix W . We now show that this choice of W is optimal, in that
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it results in the tightest bound obtainable from Lemma 3.3. Note that Lemma 3.3 provides a

matrix inequality, so there does not necessarily exist a single maximum value of the bound

(because the set of matrices is not totally ordered). However, in our case, such a maximum

value does exist and results in the bound of Theorem 3.1.

The method of obtaining W used in [56] does not seem to generalize to the case of biased

estimators. Instead, let v be an arbitrary vector in Rn and observe that

vT
(

WUUT AT + AUUTW T − WUUT JUUTW T
)

v (3.29)

is concave in W . Therefore, to maximize (3.29), it suffices to find a point W at which the

derivative is zero. Differentiating (3.29) with respect to W , we obtain [72]

2vvT AUUT − 2vvTWUUT JUUT. (3.30)

Thus, if there exists a matrix W such that

UUT JUUTW T = UUT AT (3.31)

then that value of W maximizes (3.29) simultaneously for any choice of v. Note that (3.31) can

be written as a set of n vector equations

UUT JUUTwi = ui, i = 1, . . . , n (3.32)

where wi is the ith row of W and ui is the ith column of UUT AT. Clearly, (3.32) has a solution

wi if and only if ui ∈ R
(
UUT JUUT

)
. This does indeed occur under the condition (3.7) of

Theorem 3.1, and one such solution is given by

wi = (UUT JUUT)†ui, i = 1, . . . , n. (3.33)

Combining these n equations, we obtain that the matrix W chosen in (3.21) simultaneously

maximizes (3.29) for all values of v. Therefore, the bound of Theorem 3.1 is the tightest bound

obtainable from Lemma 3.3.

3.4 Example

As an example of the applicability of Theorem 3.1, we consider an underdetermined linear

regression setting. Let θ ∈ Rn be an unknown vector for which measurements y = Hθ + v

are available. Here, v is white Gaussian noise with variance σ2 and H is a known p × n matrix
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with p < n. Since there are fewer measurements than parameters, unbiased reconstruction of

θ is clearly impossible without additional assumptions. To see this formally, note that

J = σ−2HT H. (3.34)

Thus rank(J) ≤ p < n, so that the matrix J is singular, and by Theorem 3.1, unconstrained

unbiased estimation is impossible. This also follows from earlier results [49, 56].

In order to enable reconstruction of θ, additional assumptions are required. One possibility

is to restrict θ to some subset Θ ⊂ Rn, and then seek an unbiased estimator over this set. An

alternative is to choose a reasonable value for E{θ̂}, taking into account the lack of information.

As we will see, both approaches result in the same estimator, but the latter implies optimality

under wider conditions.

Beginning with the first approach, let us assume that θ = Wα for a given n × k matrix W

and an unknown α ∈ Rk. For example, W can define a smoothness requirement on θ. We seek

an unbiased estimator for such θ.

Choosing Θ = R(W) results in U(θ) = W . Thus, it follows from Theorem 3.1 that if there

exists a constrained unbiased estimator θ̂c which achieves the CRB, then θ̂c must satisfy, for all

θ ∈ R(W),

θ̂c = θ+ W(W THT HW)†W T HT(y − Hθ)

= θ+ W(HW)†(HW)T†(HW)T(y − Hθ)

= θ+ W(HW)†(y − Hθ) (3.35)

where we have used (3.17) in the first transition and (3.18) in the second. Since θ ∈ R(W), one

may write θ = Wd, for some vector d. Thus

θ̂c = θ+ W(HW)†y − W(HW)†HWd. (3.36)

Suppose that

R(W) ∩N (H) = {0}. (3.37)

In this case, it is readily shown that N (HW) = N (W), and consequently W(HW)†HW = W .

Thus

θ̂c = W(HW)†y (3.38)

is the constrained unbiased estimator achieving the CRB. In other words, θ̂c has minimum MSE

among all estimators which are unbiased over Θ.
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On the other hand, suppose that R(W) ∩ N (H) 6= {0}. This implies that the constraints

on θ do not sufficiently compensate for the lack of information in the measurements y. Indeed,

in this case we have R(WW T HT HWW T
)
( R(WW T

)
, and it follows from Theorem 3.1 that

no unbiased estimator exists. These conclusions can also be obtained from [56].

Observe that the expectation of θ̂c is

E
{

θ̂c

}
= W(HW)†Hθ. (3.39)

If (3.37) holds, then (3.39) is the oblique projection of θ along N (H) onto R(W) [71]. Thus, if

θ ∈ R(W), then W(HW)†Hθ = θ, so that θ̂c is indeed unbiased under this constraint. As a

generalization, let us seek an estimator whose expectation is given by (3.39), while removing

the constraint on θ and the assumption (3.37). If such an estimator existed, then its bias would

be given by

b(θ) = W(HW)†Hθ− θ (3.40)

and therefore the matrix A of (3.6) would equal

A = W(HW)†H. (3.41)

Thus, we now seek an unconstrained but biased estimator. To find the minimum MSE estimator

whose expectation is (3.39), we apply (3.9) of Theorem 3.1 with U = I and A given by (3.41).

This yields

θ̂ = W(HW)†Hθ+ W(HW)†H(HTH)†HT(y − Hθ)

= W(HW)†Hθ+ W(HW)†HT†HTy

− W(HW)†HH†Hθ

= W(HW)†HT†HTy

= W(HW)†y = θ̂c (3.42)

where we used (3.17) and (3.18) in the second line, and (3.20) in the last line.

Thus, θ̂c of (3.38) is the approach achieving minimum MSE among all estimators whose

expectation is (3.39). This implies that θ̂c is a useful estimator under a wider range of settings

than suggested by the unbiased approach. Indeed, among estimators having the required ex-

pectation, θ̂c is optimal even if θ does not satisfy the constraint θ ∈ R(W), and, furthermore,

its optimality is guaranteed even if the intersection between R(W) and N (H) is nontrivial.



Chapter 4

The CRB for Sparse Estimation

This chapter is an expanded version of the paper:

• Z. Ben-Haim and Y. C. Eldar, “The Cramér–Rao bound for estimating a sparse parameter

vector,” IEEE Trans. Signal Processing, vol. 58, no. 6, June 2010, pp. 3384–3389.

4.1 Introduction

The problem of estimating a sparse unknown parameter vector from noisy measurements has

been analyzed intensively in the past few years [7, 8, 12, 22], and has already given rise to nu-

merous successful signal processing algorithms [73–77]. In this paper, we consider the setting

in which noisy measurements of a deterministic vector x0 are available. It is assumed that x0

has a sparse representation x0 = Dα0, where D is a given dictionary and most of the entries

of α0 equal zero. Thus, only a small number of “atoms,” or columns of D, are required to rep-

resent x0. The challenges confronting an estimation technique are to recover either x0 itself or

its sparse representation α0. Several practical approaches turn out to be surprisingly successful

in this task. Such approaches include the Dantzig selector (DS) [8] and basis pursuit denoising

(BPDN), which is also referred to as the Lasso [7, 20, 22].

A standard measure of estimator performance is the mean-squared error (MSE). Several

recent papers analyzed the MSE obtained by methods such as the DS and BPDN [8, 23, 78]. To

determine the quality of estimation approaches, it is of interest to compare their achievements

with theoretical performance limits: if existing methods approach the performance bound, then

they are nearly optimal and further improvements in the current setting are impossible. This

motivates the development of lower bounds on the MSE of estimators in the sparse setting.

49
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Since the parameter to be estimated is deterministic, the MSE is in general a function of the

parameter value. While there are lower bounds on the worst-case achievable MSE among all

possible parameter values [24, §7.4], the actual performance for a specific value, or even for

most values, might be substantially lower. Our goal is therefore to characterize the minimum

MSE obtainable for each particular parameter vector. A standard method of achieving this

objective is the Cramér–Rao bound (CRB) [16, 69].

The fact that x0 has a sparse representation is of central importance for estimator design.

Indeed, many sparse estimation settings are underdetermined, meaning that without the as-

sumption of sparsity, it is impossible to identify the correct parameter from its measurements,

even without noise. In this paper, we treat the sparsity assumption as a deterministic prior con-

straint on the parameter. Specifically, we assume that x0 ∈ S , where S is the set of all parameter

vectors which can be represented by no more than s atoms, for a given integer s.

Our results are inspired by the well-studied theory of the constrained CRB [52, 55, 56, 58].

This theory is based on the assumption that the constraint set can be defined using the system

of equations f (x) = 0, g(x) ≤ 0, where f and g are continuously differentiable functions. The

resulting bound depends on the derivatives of the function f . However, sparsity constraints

cannot be written in this form. This necessitates the development of a bound suitable for non-

smooth constraint sets [79]. In obtaining this modified bound, we also provide new insight

into the meaning of the general constrained CRB. In particular, we show that the fact that the

constrained CRB is lower than the unconstrained bound results from an expansion of the class

of estimators under consideration.

With the aforementioned theoretical tools at hand, we obtain lower bounds on the MSE in a

variety of sparse estimation problems. Our bound limits the MSE achievable by any estimator

having a pre-specified bias function, for each parameter value. Particular emphasis is given to

the unbiased case; the reason for this preference is twofold: First, when the signal-to-noise ratio

(SNR) is high, biased estimation is suboptimal. Second, for high SNR values, the unbiased CRB

is achieved by the maximum likelihood (ML) estimator.

While the obtained bounds differ depending on the exact problem definition, in general

terms and for unbiased estimation the bounds can be described as follows. For parameters

having maximal support, i.e., parameters whose representation requires the maximum allowed

number s of atoms, the lower bound equals the MSE of the “oracle estimator” which knows the

locations (but not the values) of the nonzero representation elements. On the other hand, for

parameters which do not have maximal support (a set which has Lebesgue measure zero in S),
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our lower bound is identical to the CRB for an unconstrained problem, which is substantially

higher than the oracle MSE.

The correspondence between the CRB and the MSE of the oracle estimator (for all but a

zero-measure subset of the feasible parameter set S) is of practical interest since, unlike the

oracle estimator, the CRB is achieved by the ML estimator at high SNR. Our bound can thus be

viewed as an alternative justification for the common use of the oracle estimator as a baseline

against which practical algorithms are compared. This gives further merit to recent results,

which demonstrate that BPDN and the DS both achieve near-oracle performance [8, 23, 78].

However, the existence of parameters for which the bound is much higher indicates that oracu-

lar performance cannot be attained for all parameter values, at least using unbiased techniques.

Indeed, as we will show, in many sparse estimation scenarios, one cannot construct any estima-

tor which is unbiased for all sparsely representable parameters.

Our contribution is related to, but distinct from, the work of Babadi et al. [80], in which the

CRB of the oracle estimator was derived (and shown to equal the aforementioned oracle MSE).

Our goal in this work is to obtain a lower bound on the performance of estimators which are

not endowed with oracular knowledge; consequently, as explained above, for some parameter

values the obtained CRB will be higher than the oracle MSE. It was further shown in [80] that

when the measurements consist of Gaussian random mixtures of the parameter vector, there

exists an estimator which achieves the oracle CRB at high SNR; this is shown to hold on average

over realizations of the measurement mixtures. The present contribution strengthens this result

by showing that for any given (deterministic) well-behaved measurement setup, there exists a

technique (namely, the ML estimator) achieving the CRB at high SNR. Thus, convergence to

the CRB is guaranteed for all measurement settings, and not merely when averaging over an

ensemble of such settings.

The rest of this paper is organized as follows. In Section 4.2, we review the sparse setting as

a constrained estimation problem. Section 4.3 defines a generalization of sparsity constraints,

which we refer to as locally balanced constraint sets; the CRB is then derived in this general

setting. In Section 4.4, our general results are applied back to some specific sparse estimation

problems. In Section 4.5, the CRB is compared to the empirical performance of estimators of

sparse vectors. Our conclusions are summarized in Section 4.6.

Throughout the paper, boldface lowercase letters v denote vectors while boldface uppercase

letters M denote matrices. Given a vector function f : Rn → Rk, we denote by ∂ f /∂x the k × n

matrix whose ijth element is ∂ fi/∂xj. The support of a vector, denoted supp(v), is the set of
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indices of the nonzero entries in v. The Euclidean norm of a vector v is denoted ‖v‖2, and

the number of nonzero entries in v is ‖v‖0. Finally, the symbols R(M), N (M), and M† refer,

respectively, to the column space, null space, and Moore–Penrose pseudoinverse of the matrix

M.

4.2 Sparse Estimation Problems

In this section, we describe several estimation problems whose common theme is that the un-

known parameter has a sparse representation with respect to a known dictionary. We then

review some standard techniques used to recover the unknown parameter in these problems.

In Section 4.5 we will compare these methods with the performance bounds we develop.

4.2.1 The Sparse Setting

Suppose we observe a measurement vector y ∈ Rm, given by

y = Ax0 + w (4.1)

where x0 ∈ Rn is an unknown deterministic signal, w is independent, identically distributed

(IID) Gaussian noise with zero mean and variance σ2, and A is a known m × n matrix. We

assume the prior knowledge that there exists a sparse representation of x0, or, more precisely,

that

x0 ∈ S , {x ∈ R
n : x = Dα, ‖α‖0 ≤ s} . (4.2)

In other words, the set S describes signals x which can be formed from a linear combination of

no more than s columns, or atoms, from D. The dictionary D is an n × p matrix with n ≤ p,

and we assume that s < p, so that only a subset of the atoms in D can be used to represent any

signal in S . We further assume that D and s are known.

Quite a few important signal recovery applications can be formulated using the setting

described above. For example, if A = I, then y consists of noisy observations of x0, and

recovering x0 is a denoising problem [73, 74]. If A corresponds to a blurring kernel, we obtain

a deblurring problem [75]. In both cases, the matrix A is square and invertible. Interpolation

and inpainting can likewise be formulated as (4.1), but in those cases A is an underdetermined

matrix, i.e., we have m < n [77]. For all of these estimation scenarios, our goal is to obtain an

estimate x̂ whose MSE is as low as possible, where the MSE is defined as

MSE , E
{‖x̂ − x0‖2

2

}
. (4.3)
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Note that x0 is deterministic, so that the expectation in (4.3) (and throughout the paper) is taken

over the noise w but not over x0. Thus, the MSE is in general a function of x0.

In the above settings, the goal is to estimate the unknown signal x0. However, it may also be

of interest to recover the coefficient vector α0 for which x0 = Dα0, e.g., for the purpose of model

selection [8, 22]. In this case, the goal is to construct an estimator α̂ whose MSE E{‖α̂ − α0‖2
2}

is as low as possible. Unless D is unitary, estimating α0 is not equivalent to estimating x0.

Note, however, that when estimating α0, the matrices A and D can be combined to obtain the

equivalent problem

y = Hα0 + w (4.4)

where H , AD is an m × p matrix and

α0 ∈ T = {α ∈ R
p : ‖α‖0 ≤ s}. (4.5)

Therefore, this problem can also be seen as a special case of (4.1) and (4.2). Nevertheless, it will

occasionally be convenient to refer specifically to the problem of estimating α0 from (4.4).

Signal estimation problems differ in the properties of the dictionary D and measurement

matrix A. In particular, problems of a very different nature arise depending on whether the

dictionary is a basis or an overcomplete frame. For example, many approaches to denoising

yield simple shrinkage techniques when D is a basis, but deteriorate to NP-hard optimization

problems when D is overcomplete [81].

A final technical comment is in order. If the matrix H in (4.4) does not have full column

rank, then there may exist different feasible parameters α1 and α2 such that Hα1 = Hα2. In this

case, the probability distribution of y will be identical for these two parameter vectors, and the

estimation problem is said to be unidentifiable [6, §1.5.2]. A necessary and sufficient condition

for identifiability is

spark(H) > 2s (4.6)

where spark(H) is defined as the smallest integer k such that there exist k linearly dependent

columns in H [82]. We will adopt the assumption (4.6) throughout the paper. Similarly, in the

problem (4.1) we will assume that

spark(D) > 2s. (4.7)

4.2.2 Estimation Techniques

We now review some standard estimators for the sparse problems described above. These

techniques are usually viewed as methods for obtaining an estimate α̂ of the vector α0 in (4.4),
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and we will adopt this perspective in the current section. One way to estimate x0 in the more

general problem (4.1) is to first estimate α0 with the methods described below and then use the

formula x̂ = Dα̂.

A widely-used estimation technique is the ML approach, which provides an estimate of α0

by solving

min
α

‖y − Hα‖2
2 s.t. ‖α‖0 ≤ s. (4.8)

Unfortunately, (4.8) is a nonconvex optimization problem and solving it is NP-hard [81], mean-

ing that an efficient algorithm providing the ML estimator is unlikely to exist. In fact, to the

best of our knowledge, the most efficient method for solving (4.8) for general H is to enumerate

the (p
s) possible s-element support sets of α and choose the one for which ‖y− Hα‖2

2 is minimal.

This is clearly an impractical strategy for reasonable values of p and s. Consequently, several ef-

ficient alternatives have been proposed for estimating α0. One of these is the ℓ1-penalty version

of BPDN [22], which is defined as a solution α̂BP to the quadratic program

min
α

1
2‖y − Hα‖2

2 + γ‖α‖1 (4.9)

with some regularization parameter γ. More recently, the DS was proposed [8]; this approach

estimates α0 as a solution α̂DS to

min
α

‖α‖1 s.t. ‖HT(y − Hα)‖∞ ≤ τ (4.10)

where τ is again a user-selected parameter. A modification of the DS, known as the Gauss–

Dantzig selector (GDS) [8], is to use α̂DS only to estimate the support of α0. In this approach,

one solves (4.10) and determines the support set of α̂DS. The GDS estimate is then obtained as

α̂GDS =





H†
α̂DS

y on the support set of α̂DS

0 elsewhere

(4.11)

where H α̂DS
consists of the columns of H corresponding to the support of α̂DS.

Previous research on the performance of these estimators has primarily examined their

worst-case MSE among all possible values of α0 ∈ T . Specifically, it has been shown [8] that,

under suitable conditions on H, s, and τ, the DS of (4.10) satisfies

‖α0 − α̂DS‖2
2 ≤ Csσ2 log p with high probability (4.12)

for some constant C. It follows that the MSE of the DS is also no greater than a constant times

sσ2 log p for all α0 ∈ T [24]. An identical property was also demonstrated for BPDN (4.9) with
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an appropriate choice of γ [78]. Conversely, it is known that the worst-case error of any esti-

mator is at least a constant times sσ2 log p [24, §7.4]. Thus, both BPDN and the DS are optimal,

up to a constant, in terms of worst-case error. Nevertheless, the MSE of these approaches for

specific values of α0, even for a vast majority of such values, might be much lower. Our goal

differs from this line of work in that we characterize the pointwise performance of an estimator,

i.e., the MSE for specific values of α0.

Another baseline with which practical techniques are often compared is the oracle estima-

tor, given by

α̂oracle =





H†
α0

b on the set supp(α0)

0 elsewhere

(4.13)

where Hα0 is the submatrix constructed from the columns of H corresponding to the nonzero

entries of α0. In other words, α̂oracle is the least-squares (LS) solution among vectors whose

support coincides with supp(α0), which is assumed to have been provided by an “oracle.” Of

course, in practice the support of α0 is unknown, so that α̂oracle cannot actually be implemented.

Nevertheless, one often compares the performance of true estimators with α̂oracle, whose MSE

is given by [8]

σ2 Tr((HT
α0

Hα0)
−1). (4.14)

Is (4.14) a bound on estimation MSE? While α̂oracle is a reasonable technique to adopt if

supp(α0) is known, this does not imply that (4.14) is a lower bound on the performance of

practical estimators. Indeed, as will be demonstrated in Section 4.5, when the SNR is low,

both BPDN and the DS outperform α̂oracle, thanks to the use of shrinkage in these estimators.

Furthermore, if supp(α0) is known, then there exist biased techniques which are better than

α̂oracle for all values of α0 [42]. Thus, α̂oracle is neither achievable in practice, nor optimal in terms

of MSE. As we will see, one can indeed interpret (4.14) as a lower bound on the achievable MSE,

but such a result requires a certain restriction of the class of estimators under consideration.

4.3 The Constrained Cramér–Rao Bound

A common technique for determining the achievable performance in a given estimation prob-

lem is to calculate the CRB, which is a lower bound on the MSE of estimators having a given

bias [16]. In this paper, we are interested in calculating the CRB when it is known that the

parameter x satisfies sparsity constraints such as those of the sets S of (4.2) and T of (4.5).
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Figure 4.1: In a locally balanced set such as a union of subspaces (a) and an open ball (b), each

point is locally defined by a set of feasible directions along which an infinitesimal movement

does not violate the constraints. The curve (c) is not characterized in this way and thus is not

locally balanced.

The CRB for constrained parameter sets has been studied extensively in the past [52, 55, 56,

58]. However, in prior work derivation of the CRB assumed that the constraint set is given by

X = {x ∈ R
n : f (x) = 0, g(x) ≤ 0} (4.15)

where f (x) and g(x) are continuously differentiable functions. We will refer to such X as con-

tinuously differentiable sets. As shown in prior work [52], the resulting bound depends on

the derivatives of the function f . Yet in some cases, including the sparse estimation scenarios

discussed in Section 4.2, the constraint set cannot be written in the form (4.15), and the afore-

mentioned results are therefore inapplicable. Our goal in the current section is to close this gap

by extending the constrained CRB to constraint sets X encompassing the sparse estimation

scenario.

We begin this section with a general discussion of the CRB and the class of estimators to

which it applies. This will lead us to interpret the constrained CRB as a bound on estimators

having an incompletely specified bias gradient. This interpretation will facilitate the applica-

tion of the existing constrained CRB to the present context.

4.3.1 Bias Requirements in the Constrained CRB

In previous settings for which the constrained CRB was derived, it was noted that the resulting

bound is typically lower than the unconstrained version [52, Remark 4]. At first glance, one
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would attribute the reduction in the value of the CRB to the fact that the constraints add infor-

mation about the unknown parameter, which can then improve estimation performance. On

the other hand, the CRB separately characterizes the achievable performance for each value of

the unknown parameter x0. Thus, the CRB at x0 applies even to estimators designed specifically

to perform well at x0. Such estimators surely cannot achieve further gain in performance if it is

known that x0 ∈ X . Why, then, is the constrained CRB lower than the unconstrained bound?

The answer to this apparent paradox involves a careful definition of the class of estimators to

which the bound applies.

To obtain a meaningful bound, one must exclude some estimators from consideration. Un-

less this is done, the bound will be tarnished by estimators of the type x̂ = xu, for some constant

xu, which achieve an MSE of 0 at the specific point x = xu. It is standard practice to circumvent

this difficulty by restricting attention to estimators having a particular bias b(x) , E{x̂} − x.

In particular, it is common to examine unbiased estimators, for which b(x) = 0.

However, in some settings, it is impossible to construct estimators which are unbiased for

all x ∈ Rn. For example, suppose we are to estimate the coefficients α0 of an overcomplete

dictionary based on the measurements given by (4.4). Since the dictionary is overcomplete, its

nullspace is nontrivial; furthermore, each coefficient vector in the nullspace yields an identical

distribution of the measurements, so that an estimator can be unbiased for one of these vectors

at most.

The question is whether it is possible to construct estimators which are unbiased for some,

but not all, values of x. One possible approach is to seek estimators which are unbiased for all

x ∈ X . However, as we will see later in this section, even this requirement can be too strict:

in some cases it is impossible to construct estimators which are unbiased for all x ∈ X . More

generally, the CRB is a local bound, meaning that it determines the achievable performance at

a particular value of x based on the statistics at x and at nearby values. Thus, it is irrelevant to

introduce requirements on estimation performance for parameters which are distant from the

value x of interest.

Since we seek a locally unbiased estimator, one possibility is to require unbiasedness at a

single point, say xu. As it turns out, it is always possible to construct such a technique: this is

again x̂ = xu, which is unbiased at xu but nowhere else. To avoid this loophole, one can require

an estimator to be unbiased in the neighborhood

Bε(x0) = {x ∈ R
m : ‖x − x0‖2 < ε} (4.16)
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of x0, for some small ε. It follows that both the bias b(x) and the bias gradient

B(x) ,
∂b

∂x
(4.17)

vanish at x = x0. This formulation is the basis of the unconstrained unbiased CRB, a lower

bound on the covariance at x0 which applies to all estimators whose bias gradient is zero at x0.

It turns out that even this requirement is too stringent in constrained settings. As we will

see in Section 4.4.1, estimators of the coefficients of an overcomplete dictionary must have

a nonzero bias gradient matrix. The reason is related to the fact that unbiasedness is required

over the setBε(x0), which, in the overcomplete setting, has a higher dimension than the number

of measurements.

However, it can be argued that one is not truly interested in the bias at all points in Bε(x0),

since many of these points violate the constraint set X . A reasonable compromise is to require

unbiasedness over Bε(x0) ∩ X , i.e., over the neighborhood of x0 restricted to the constraint set

X . This leads to a weaker requirement on the bias gradient B at x0. Specifically, the derivatives

of the bias need only be specified in directions which do not violate the constraints. The exact

formulation of this requirement depends on the nature of the set X . In the following subsec-

tions, we will investigate various constraint sets and derive the corresponding requirements on

the bias function.

It is worth emphasizing that the dependence of the CRB on the constraints is manifested

through the class of estimators being considered, or more specifically, through the allowed

estimators’ bias gradient matrices. By contrast, the unconstrained CRB applies to estimators

having a fully specified bias gradient matrix. Consequently, the constrained bound applies to a

wider class of estimators, and is thus usually lower than the unconstrained version of the CRB.

In other words, estimators which are unbiased in the constrained setting, and thus applicable

to the unbiased constrained CRB, are likely to be biased in the unconstrained context. Since a

wider class of estimators is considered by the constrained CRB, the resulting bound is lower,

thus explaining the puzzling phenomenon described in the beginning of this subsection.

4.3.2 Locally Balanced Constraints

We now consider a class of constraint sets, called locally balanced sets, which encompass the

sparsity constraints of Section 4.2. Roughly speaking, a locally balanced set is one which is

locally defined at each point by the directions along which one can move without leaving the

set. Formally, a metric space X is said to be locally balanced if, for all x ∈ X , there exists an
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open set C ⊂ X such that x ∈ C and such that, for all x′ ∈ C and for all |λ| ≤ 1, we have

x + λ(x′ − x) ∈ C. (4.18)

As we will see, locally balanced sets are useful in the context of the constrained CRB, as they

allow us to identify the feasible directions along which the bias gradient must be specified.

An example of a locally balanced set is given in Fig. 4.1(a), which represents a union of two

subspaces. In Fig. 4.1(a), for any point x ∈ X , and for any point x′ ∈ X sufficiently close to x,

the entire line segment between x and x′, as well as the line segment in the opposite direction,

are also in X . This illustrates the fact that any union of subspaces is locally balanced, and, in

particular, so are the sparse estimation settings of Section 4.2 [9, 36, 83]. As another example,

consider any open set, such as the open ball in Fig. 4.1(b). For such a set, any point x has a

sufficiently small neighborhood C such that, for any x′ ∈ C, the line segment connecting x to x′

is contained in X . On the other hand, the curve in Fig. 4.1(c) is not locally balanced, since the

line connecting x to any other point on the set does not lie within the set.1

Observe that the neighborhood of a point x in a locally balanced set X is entirely determined

by the set of feasible directions v along which infinitesimal changes of x do not violate the

constraints. These are the directions v = x′ − x for all points x′ 6= x in the set C of (4.18). Recall

that we seek a lower bound on the performance of estimators whose bias gradient is defined

over the neighborhood of x0 restricted to the constraint set X . Suppose for concreteness that

we are interested in unbiased estimators. For a locally balanced constraint set X , this implies

that

Bv = 0 (4.19)

for any feasible direction v. In other words, all feasible directions must be in the nullspace of

B. This is a weaker condition than requiring the bias gradient to equal zero, and is thus more

useful for constrained estimation problems. If an estimator x̂ satisfies (4.19) for all feasible di-

rections v at a certain point x0, we say that x̂ is X -unbiased at x0. This terminology emphasizes

the fact that X -unbiasedness depends both on the point x0 and on the constraint set X .

Consider the subspace F spanned by the feasible directions at a certain point x ∈ X . We

refer to F as the feasible subspace at x. Note that F may include infeasible directions, if these

are linear combinations of feasible directions. Nevertheless, because of the linearity of (4.19),

1We note in passing that since the curve in Fig. 4.1(c) is continuously differentiable, it can be locally approximated

by a locally balanced set. Our derivation of the CRB can be extended to such approximately locally balanced sets in

a manner similar to that of [52], but such an extension is not necessary for the purposes of this paper.
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any vector u ∈ F satisfies Bu = 0, even if u is infeasible. Thus, X -unbiasedness is actually a

property of the feasible subspace F , rather than the set of feasible directions.

Since X is a subset of a finite-dimensional Euclidean space, F is also finite-dimensional,

although different points in X may yield subspaces having differing dimensions. Let u1, . . . , ul

denote an orthonormal basis for F , and define the matrix

U = [u1, . . . , ul]. (4.20)

Note that ui and U are functions of x. For a given function x, different orthonormal bases can

be chosen, but the choice of a basis is arbitrary and will not affect our results.

As we have seen, X -unbiasedness at x0 can alternatively be written as Bu = 0 for all u ∈ F ,

or, equivalently

BU = 0. (4.21)

The constrained CRB can now be derived as a lower bound on all X -unbiased estimators,

which is a weaker requirement than “ordinary” unbiasedness.

Just as X -unbiasedness was defined by requiring the bias gradient matrix to vanish when

multiplied by any feasible direction vector, we can define X -biased estimators by requiring a

specific value (not necessarily zero) for the bias gradient matrix when multiplied by a feasible

direction vector. In an analogy to (4.21), this implies that one must define a value for the matrix

BU. Our goal is thus to construct a lower bound on the covariance at a given x achievable by

any estimator whose bias gradient B at x satisfies BU = P, for a given matrix P. This is referred

to as specifying the X -bias of the estimator at x.

4.3.3 The CRB for Locally Balanced Constraints

It is helpful at this point to compare our derivation with prior work on the constrained CRB,

which considered continuously differentiable constraint sets of the form (4.15). It has been

previously shown [52] that inequality constraints of the type g(x) ≤ 0 have no effect on the

CRB. Consequently, we will consider constraints of the form

X = {x ∈ R
n : f (x) = 0}. (4.22)

Define the k × n matrix F(x) = ∂ f /∂x. For simplicity of notation, we will omit the dependence

of F on x. Assuming that the constraints are non-redundant, F is a full-rank matrix, and thus

one can define an n × (n − k) matrix W (also dependent on x) such that

FW = 0, W TW = I. (4.23)
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The matrix W is closely related to the matrix U spanning the feasible direction subspace of

locally balanced sets. Indeed, the column space R(W) of W is the tangent space of X , i.e.,

the subspace of Rn containing all vectors which are tangent to X at the point x. Thus, the

vectors in R(W) are precisely those directions along which infinitesimal motion from x does

not violate the constraints, up to a first-order approximation. It follows that if a particular set X
is both locally balanced and continuously differentiable, its matrices U and W coincide. Note,

however, that there exist sets which are locally balanced but not continuously differentiable

(and vice versa).

With the above formulation, the CRB for continuously differentiable constraints can be

stated as a function of the the matrix W and the bias gradient B [58]. In fact, the resulting

bound depends on B only through BW . This is to be expected in light of the discussion of

Section 4.3.1: The bias should be specified only for those directions which do not violate the

constraint set. Furthermore, the proof of the CRB in [58, Theorem 1] depends not on the formu-

lation (4.22) of the constraint set, but merely on the class of bias functions under consideration.

Consequently, one can state the bound without any reference to the underlying constraint set.

To do so, let y be a measurement vector with pdf p(y; x), which is assumed to be differentiable

with respect to x. The Fisher information matrix (FIM) J(x) is defined as

J(x) = E
{

∆∆
T
}

(4.24)

where

∆ =
∂ log p(y; x)

∂x
. (4.25)

We assume that the FIM is well-defined and finite. We further assume that integration with

respect to y and differentiation with respect to x can be interchanged, a standard requirement

for the CRB. We then have the following result.

Theorem 4.1. Let x̂ be an estimator and let B = ∂b/∂x denote the bias gradient matrix of x̂ at a given

point x0. Let U be an orthonormal matrix, and suppose that BU is known, but that B is otherwise

arbitrary. If

R
(

U(U + BU)T)
)
⊆ R

(
UUT JUUT

)
(4.26)

then the covariance of x̂ at x0 satisfies

Cov(x̂) � (U + BU)
(

UT JU
)†

(U + BU)T. (4.27)

Equality is achieved in (4.27) if and only if

x̂ = x0 + b(x0) + (U + BU)
(

UT JU
)†

UT
∆ (4.28)
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in the mean square sense, where ∆ is defined by (4.25). Conversely, if (4.26) does not hold, then there

exists no finite-variance estimator with the required bias gradient.

As required, no mention of constrained estimation is made in Theorem 4.1; instead, partial

information about the bias gradient is assumed. Apart from this restatement, the theorem is

identical to [58, Theorem 1], and its proof is unchanged. However, the above formulation is

more general in that it can be applied to any constrained setting, once the constraints have

been translated to bias gradient requirements. In particular, Theorem 4.1 provides a CRB for

locally balanced sets if the matrix U is chosen as a basis for the feasible direction subspace of

Section 4.3.2.

4.4 Bounds on Sparse Estimation

In this section, we apply the CRB of Theorem 4.1 to several sparse estimation scenarios. We

begin with an analysis of the problem of estimating a sparse parameter vector.

4.4.1 Estimating a Sparse Vector

Suppose we would like to estimate a parameter vector α0, known to belong to the set T of

(4.5), from measurements y given by (4.4). To determine the CRB in this setting, we begin by

identifying the feasible subspaces F corresponding to each of the elements in T . To this end,

consider first vectors α ∈ T for which ‖α‖0 = s, i.e., vectors having maximal support. Denote

by {i1, . . . , is} the support set of α. Then, for all δ, we have

‖α + δeik
‖0 = ‖α‖0 = s, k = 1, . . . , s (4.29)

where ej is the jth column of the identity matrix. Thus α + δeik
∈ T , and consequently, the vec-

tors {ei1 , . . . , eis
} are all feasible directions, as is any linear combination of these vectors. On the

other hand, for any j /∈ supp(α) and for any nonzero δ, we have ‖α + δej‖0 = s + 1, and thus ej

is not a feasible direction; neither is any other vector which is not in span{ei1 , . . . , eis
}. It follows

that the feasible subspace F for points having maximal support is given by span{ei1 , . . . , eis
},

and a possible choice for the matrix U of (4.20) is

U = [ei1 , . . . , eis
] for ‖α‖0 = s. (4.30)

The situation is different for points α having ‖α‖0 < s. In this case, vectors ei corresponding



4.4. BOUNDS ON SPARSE ESTIMATION 63

to any direction i are feasible directions, since

‖α + δei‖0 ≤ ‖α‖0 + 1 ≤ s. (4.31)

Because the feasible subspace is defined as the span of all feasible directions, we have

F ⊇ span{e1, . . . , ep} = R
p. (4.32)

It follows that F = Rp and thus a convenient choice for the matrix U is

U = I for ‖α‖0 < s. (4.33)

Consequently, whenever ‖α‖0 < s, a specification of the T -bias amounts to completely speci-

fying the usual estimation bias b(x).

To invoke Theorem 4.1, we must also determine the FIM J(α). Under our assumption of

white Gaussian noise, J(α) is given by [16, p. 85]

J(α) =
1

σ2
HTH . (4.34)

Using (4.30), (4.33), and (4.34), it is readily shown that

UT JU =





1
σ2 HT

α Hα when ‖α‖0 = s

1
σ2 HT H when ‖α‖0 < s

(4.35)

where Hα is the p × s matrix consisting of the columns of H indexed by supp(α).

We now wish to determine under what conditions (4.26) holds. Consider first points α0 for

which ‖α0‖0 = s. Since, by (4.6), we have spark(H) > s, it follows that in this case UT JU is

invertible. Therefore

R
(

UUT JUUT
)
= R

(
UUT

)
. (4.36)

Since

R
(

UUT(I + BT)
)
⊆ R

(
UUT

)
(4.37)

we have that condition (4.26) holds when ‖α0‖0 = s.

The condition (4.26) is no longer guaranteed when ‖α0‖0 < s. In this case, U = I, so that

(4.26) is equivalent to

R
(

I + BT
)
⊆ R

(
HT H

)
. (4.38)

Using the fact that R
(

HT H
)
= R

(
HT
)

and that, for any matrix Q, R
(
QT
)
= N (Q)⊥, we find

that (4.38) is equivalent to

N (H) ⊆ N (I + B). (4.39)
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Combining these conclusions with Theorem 4.1 yields the following CRB for the problem of

estimating a sparse vector.

Theorem 4.2. Consider the estimation problem (4.4) with α0 given by (4.5), and assume that (4.6)

holds. For a finite-variance estimator α̂ of α0 to exist, its bias gradient matrix B must satisfy (4.39)

whenever ‖α0‖0 < s. Furthermore, the covariance of any estimator whose T -bias gradient matrix is

BU satisfies

Cov(α̂) � σ2(I + B)(HT H)†(I + BT)

when ‖α0‖0 < s,

Cov(α̂) � σ2(U + BU)(HT
α0

Hα0)
−1(U + BU)T

when ‖α0‖0 = s. (4.40)

Here, Hα0 is the matrix containing the columns of H corresponding to supp(α0).

Let us examine Theorem 4.2 separately in the underdetermined and well-determined cases.

In the well-determined case, in which H has full row rank, the nullspace of H is trivial, so

that (4.39) always holds. It follows that the CRB is always finite, in the sense that we cannot

rule out the existence of an estimator having any given bias function. Some insight can be

obtained in this case by examining the T -unbiased case. Noting also that HT H is invertible in

the well-determined case, the bound for T -unbiased estimators is given by

Cov(α̂) � σ2(HT H)−1 when ‖α0‖0 < s,

Cov(α̂) � σ2U(HT
α0

Hα0)
−1UT when ‖α0‖0 = s. (4.41)

From this formulation, the behavior of the CRB can be described as follows. When α0 has

non-maximal support (‖α0‖0 < s), the CRB is identical to the bound which would have been

obtained had there been no constraints in the problem. This is because U = I in this case,

so that T -unbiasedness and ordinary unbiasedness are equivalent. As we have seen in Sec-

tion 4.3.1, the CRB is a function of the class of estimators under consideration, so the uncon-

strained and constrained bounds are equivalent in this situation. The bound σ2(HT H)−1 is

achieved by the unconstrained LS estimator

α̂ = (HT H)−1HTy (4.42)

which is the minimum variance unbiased estimator in the unconstrained case. Thus, we learn

from Theorem 4.2 that for values of α0 having non-maximal support, no T -unbiased technique
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can outperform the standard LS estimator, which does not assume any knowledge about the

constraint set T .

On the other hand, consider the case in which α0 has maximal support, i.e., ‖α0‖0 = s.

Suppose first that supp(α0) is known, so that one must estimate only the nonzero values of

α0. In this case, a reasonable approach is to use the oracle estimator (4.13), whose covariance

matrix is given by σ2U(HT
α0

Hα0)
−1UT [8]. Thus, when α0 has maximal support, Theorem 4.2

states that T -unbiased estimators can perform, at best, as well as the oracle estimator, which is

equivalent to the LS approach when the support of α0 is known.

The situation is similar, but somewhat more involved, in the underdetermined case. Here,

the condition (4.39) for the existence of an estimator having a given bias gradient matrix no

longer automatically holds. To interpret this condition, it is helpful to introduce the mean

gradient matrix M(α), defined as

M(α) =
∂E{α̂}

∂α
= I + B. (4.43)

The matrix M(α) is a measure of the sensitivity of an estimator to changes in the parameter vec-

tor. For example, a T -unbiased estimator is sensitive to any feasible change in α. Thus, N (M)

denotes the subspace of directions to which α̂ is insensitive. Likewise, N (H) is the subspace

of directions for which a change in α does not modify Hα. The condition (4.39) therefore states

that for an estimator to exist, it must be insensitive to changes in α which are unobservable

through Hα, at least when ‖α‖0 < s. No such requirement is imposed in the case ‖α‖0 = s,

since in this case there are far fewer feasible directions.

The lower bound (4.40) is similarly a consequence of the wide range of feasible directions

obtained when ‖α‖0 < s, as opposed to the tight constraints when ‖α‖0 = s. Specifically, when

‖α‖0 < s, a change to any component of α is feasible and hence the lower bound equals that

of an unconstrained estimation problem, with the FIM given by σ−2HT H. On the other hand,

when ‖α‖0 = s, the bound is effectively that of an estimator with knowledge of the particular

subspace to which α belongs; for this subspace the FIM is the submatrix UT JU given in (4.35).

This phenomenon is discussed further in Section 4.6.

Another difference between the well-determined and underdetermined cases is that when

H is underdetermined, an estimator cannot be T -unbiased for all α. To see this, recall from

(4.21) that T -unbiased estimators are defined by the fact that BU = 0. When ‖α‖0 < s, we

have U = I and thus T -unbiasedness implies B = 0, so that N (I + B) = {0}. But since

H is underdetermined, N (H) is nontrivial. Consequently, (4.39) cannot hold for T -unbiased
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estimators when ‖α‖0 < s.

The lack of T -unbiased estimators when ‖α0‖0 < s is a direct consequence of the fact that

the feasible direction set at such α0 contains all of the directions e1, . . . , ep. The conclusion

from Theorem 4.2 is then that no estimator can be expected to be unbiased in such a high-

dimensional neighborhood, just as unbiased estimation is impossible in the p-dimensional

neighborhood Bε(α0), as explained in Section 4.3.1. However, it is still possible to obtain a finite

CRB in this setting by further restricting the constraint set: if it is known that ‖α0‖0 = s̃ < s,

then one can redefine T in (4.5) by replacing s with s̃. This will enlarge the class of estimators

considered T -unbiased, and Theorem 4.2 would then provide a finite lower bound on those

estimators. Such estimators will not, however, be unbiased in the sense implied by the original

constraint set.

While an estimator cannot be unbiased for all α ∈ T , unbiasedness is possible at points α

for which ‖α‖0 = s. In this case, Theorem 4.2 produces a bound on the MSE of a T -unbiased

estimator, obtained by calculating the trace of (4.40) in the case BU = 0. This bound is given

by

E
{
‖α̂ − α0‖2

2

}
≥ σ2 Tr((HT

α0
Hα0)

−1), ‖α0‖0 = s. (4.44)

The most striking feature of (4.44) is that it is identical to the oracle MSE (4.14). However,

the CRB is of additional importance because of the fact that the ML estimator achieves the CRB

in the limit when a large number of independent measurements are available, a situation which

is equivalent in our setting to the limit σ → 0. In other words, an MSE of (4.44) is achieved at

high SNR by the ML approach (4.8), as we will illustrate numerically in Section 4.5. While the

ML approach is computationally intractable in the sparse estimation setting, it is still imple-

mentable in principle, as opposed to α̂oracle, which relies on unavailable information (namely,

the support set of α0). Thus, Theorem 4.1 gives an alternative interpretation to comparisons of

estimator performance with the oracle.

Observe that the bound (4.44) depends on the value of α0 (through its support set, which

defines Hα0). This implies that some values of α0 are more difficult to estimate than others. For

example, suppose the ℓ2 norms of some of the columns of H are significantly larger than the

remaining columns. Measurements of a parameter α0 whose support corresponds to the large-

norm columns of H will then have a much higher SNR than measurements of a parameter

corresponding to small-norm columns, and this will clearly affect the accuracy with which α0

can be estimated. To analyze the behavior beyond this effect, it is common to consider the

situation in which the columns hi of H are normalized so that ‖hi‖2 = 1. In this case, for
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sufficiently incoherent dictionaries, Tr((HT
α0

Hα0)
−1) is bounded above and below by a small

constant times s, so that the CRB is similar for all values of α0. To see this, let µ be the coherence

of H [22], defined (for H having normalized columns) as

µ , max
i 6=j

∣∣∣hT
i hj

∣∣∣ . (4.45)

By the Gershgorin disc theorem, the eigenvalues of HT
α0

Hα0 are in the range [1 − sµ, 1 + sµ]. It

follows that the unbiased CRB (4.44) is bounded above and below by

sσ2

1 + sµ
≤ σ2 Tr((HT

α0
Hα0)

−1) ≤ sσ2

1 − sµ
. (4.46)

Thus, when s is somewhat smaller than 1/µ, the CRB is roughly equal to sσ2 for all values of

α0. As we have seen in Section 4.2.2, for sufficiently small s, the worst-case MSE of practical

estimators, such as BPDN and the DS, is O(sσ2 log p). Thus, practical estimators come almost

within a constant of the unbiased CRB, implying that they are close to optimal for all values of

α0, at least when compared with unbiased techniques.

4.4.2 Denoising and Deblurring

We next consider the problem (4.1), in which it is required to estimate not the sparse vector α0

itself, but rather the vector x0 = Dα0, where D is a known dictionary matrix. Thus, x0 belongs

to the set S of (4.2). We assume for concreteness that D has full row rank and that A has full

column rank. This setting encompasses the denoising and deblurring problems described in

Section 4.2.1, with the former arising when A = I and the latter obtained when A represents

a blurring kernel. Similar calculations can be carried out when A is rank-deficient, a situation

which occurs, for example, in some interpolation problems.

Recall from Section 4.2.1 the assumption that every x ∈ S has a unique representation x =

Dα for which α is in the set T of (4.5). We denote by r(·) the mapping from S to T which

returns this representation. In other words, r(x) is the unique vector in T for which

x = Dr(x) and ‖r(x)‖0 ≤ s. (4.47)

Note that while the mapping r is well-defined, actually calculating the value of r(x) for a given

vector x is, in general, NP-hard.

In the current setting, unlike the scenario of Section 4.4.1, it is always possible to construct

an unbiased estimator. Indeed, even without imposing the constraint (4.2), there exists an
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unbiased estimator. This is the LS or maximum likelihood estimator, given by

x̂ = (AT A)−1ATy. (4.48)

A standard calculation demonstrates that the covariance of x̂ is

σ2(AT A)−1. (4.49)

On the other hand, the FIM for the setting (4.1) is given by

J =
1

σ2
AT A. (4.50)

Since A has full row rank, the FIM is invertible. Consequently, it is seen from (4.49) and (4.50)

that the LS approach achieves the CRB J−1 for unbiased estimators. This well-known property

demonstrates that in the unconstrained setting, the LS technique is optimal among all unbiased

estimators.

The LS estimator, like any unbiased approach, is also S-unbiased. However, with the addi-

tion of the constraint x0 ∈ S , one would expect to obtain improved performance. It is therefore

of interest to obtain the CRB for the constrained setting. To this end, we first note that since

J is invertible, we have R
(
UUT JUUT

)
= R

(
UUT

)
for any U, and consequently (4.26) holds

for any matrix B. The bound (4.27) of Theorem 4.1 thus applies regardless of the bias gradient

matrix.

For simplicity, in the following we derive the CRB for S-unbiased estimators. A calculation

for arbitrary S-bias functions can be performed along similar lines. Consider first values x ∈ S
such that ‖r(x)‖0 < s. Then, ‖r(x) + δei‖0 ≤ s for any δ and for any ei. Therefore,

x + δDei ∈ S (4.51)

for any δ and ei. In other words, the feasible directions include all columns of D. Since it is

assumed that D has full row rank, this implies that the feasible subspace F equals Rn, and the

matrix U of (4.20) can be chosen as U = I.

Next, consider values x ∈ S for which ‖r(x)‖0 = s. Then, for sufficiently small δ > 0, we

have ‖r(x) + δv‖0 ≤ s if and only if v = ei for some i ∈ supp(r(x)). Equivalently,

x + δv ∈ S if and only if v = Dei and i ∈ supp(r(x)). (4.52)

Consequently, the feasible direction subspace in this case corresponds to the column space

of the matrix Dx containing the s columns of D indexed by supp(r(x)). From (4.7) we have
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Figure 4.2: MSE of various estimators compared with the unbiased CRB (4.44), for (a) varying

SNR and (b) varying sparsity levels.

spark(D) > s, and therefore the columns of Dx are linearly independent. Thus the orthogonal

projector onto F is given by

P , UUT = Dx(DT
x Dx)

−1DT
x . (4.53)

Combining these calculations with Theorem 4.1 yields the following result.

Theorem 4.3. Consider the estimation setting (4.1) with the constraint (4.2), and suppose spark(D) >

2s. Let x̂ be a finite-variance S-unbiased estimator. Then,

Cov(x̂) � σ2(AT A)−1 when ‖r(x)‖0 < s,

Cov(x̂) � σ2
(

PAT AP
)†

when ‖r(x)‖0 = s. (4.54)

Here, P is given by (4.53), in which Dx is the n × s matrix consisting of the columns of D participating

in the (unique) s-element representation Dα of x.

As in Theorem 4.2, the bound exhibits a dichotomy between points having maximal and

non-maximal support. In the former case, the CRB is equivalent to the bound obtained when

the support set is known, whereas in the latter the bound is equivalent to an unconstrained

CRB. This point is discussed further in Section 4.6.
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4.5 Numerical Results

In this section, we demonstrate the use of the CRB for measuring the achievable MSE in the

sparse estimation problem (4.4). To this end, a series of simulations was performed. In each

simulation, a random 100 × 200 dictionary H was constructed from a zero-mean Gaussian IID

distribution, whose columns hi were normalized so that ‖hi‖2 = 1. A parameter α0 was then

selected by choosing a support uniformly at random and selecting the nonzero elements as

Gaussian IID variables with mean 0 and variance 1. Noisy measurements y were obtained

from (4.4), and α0 was then estimated using BPDN (4.9), the DS (4.10), and the GDS (4.11).

The regularization parameters were chosen as τ = 2σ
√

log p and γ = 4σ
√

log(p − s), rules of

thumb which are motivated by a theoretical analysis [78]. The MSE of each estimate was then

calculated by repeating this process with different realizations of the random variables. The

unbiased CRB was calculated using (4.44). In this case, the unbiased CRB equals the MSE of

the oracle estimator (4.13), but as we will see below, interpreting (4.44) as a bound on unbiased

estimators provides further insight into the estimation problem.

A first set of experiments was conducted to examine the CRB at various SNR levels. In this

simulation, the ML estimator (4.8) was also computed, in order to verify its convergence to the

CRB at high SNR. Since the ML approach is computationally prohibitive when p and s are

large, this necessitated the selection of the rather low support size s = 3. The MSE and CRB

were calculated for 15 SNR values by changing the noise standard deviation σ between 1 and

10−3. The MSE of the ML approach, as well as the other estimators of Section 4.2.2, is compared

with the CRB in Fig. 4.2(a). The convergence of the ML estimator to the CRB is clearly visible

in this figure. The performance of the GDS is also impressive, being as good or better than the

ML approach. Apparently, at high SNR, the DS tends to correctly recover the true support set,

in which case GDS (4.11) equals the oracle (4.13). Perhaps surprisingly, applying a LS estimate

on the support set obtained by BPDN (which could be called a “Gauss–BPDN” strategy) does

not work well at all, and in fact results in higher MSE than a direct application of BPDN. (The

results for the Gauss–BPDN method are not plotted in Fig. 4.2.)

Note that some estimation techniques outperform the oracle MSE (or CRB) at low SNR. It

may appear surprising that a practical technique such as the DS outperforms the oracle. The

explanation for this stems from the fact that the CRB (4.44) is a lower bound on the MSE of un-

biased estimators. The bias of most estimators tends to be negligible in low-noise settings, but

often increases with the noise variance σ2. Indeed, when σ2 is as large as ‖α0‖2
2, the measure-
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ments carry very little useful information about α0, and an estimator can improve performance

by shrinkage. Such a strategy, while clearly biased, yields lower MSE than a naive reliance on

the noisy measurements. This is indeed the behavior of the DS and BPDN, since for large σ2,

the ℓ1 regularization becomes the dominant term, resulting in heavy shrinkage. Consequently,

it is to be expected that such techniques will outperform even the best unbiased estimator at

low SNR, as indeed occurs in Fig. 4.2(a).

The performance of the estimators of Section 4.2.2, excluding the ML method, was also

compared for varying sparsity levels. To this end, the simulation was repeated for 15 support

sizes in the range 1 ≤ s ≤ 30, with a constant noise standard deviation of σ = 0.01. The results

are plotted in Fig. 4.2(b). While a substantial gap exists between the CRB and the MSE of the

practical estimators in this case, the general trend in both cases describes a similar rate of in-

crease as s grows. Interestingly, a drawback of the GDS approach is visible in this setting: as s

increases, correct support recovery becomes more difficult, and shrinkage becomes a valuable

asset for reducing the sensitivity of the estimate to random measurement fluctuations. The LS

approach practiced by the GDS, which does not perform shrinkage, leads to gradual perfor-

mance deterioration.

Results similar to Fig. 4.2 were obtained for a variety of related estimation scenarios, in-

cluding several deterministic, rather than random, dictionaries H.

4.6 Discussion

In this paper, we extended the CRB to constraint sets satisfying the local balance condition

(Theorem 4.1). This enabled us to derive lower bounds on the achievable performance in var-

ious estimation problems (Theorems 4.2 and 4.3). In simple terms, Theorems 4.2 and 4.3 can

be summarized as follows. The behavior of the CRB differs depending on whether or not the

parameter has maximal support (i.e., ‖α‖0 = s). In the case of maximal support, the bound

equals that which would be obtained if the sparsity pattern were known; this can be consid-

ered an “oracle bound”. On the other hand, when ‖α‖0 < s, performance is identical to the

unconstrained case, and the bound is substantially higher. We now discuss some practical im-

plications of these conclusions. To simplify the discussion, we consider the case of unbiased

estimators, though analogous conclusions can be drawn for any bias function.

When ‖α‖0 = s and all nonzero elements of α are considerably larger than the standard

deviation of the noise, the support set can be recovered correctly with high probability (at least
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if computational considerations are ignored). Thus, in this case an estimator can mimic the

behavior of the oracle, and the CRB is expected to be tight. Indeed, in the high SNR limit, the

ML estimator achieves the unbiased CRB. On the other hand, when the support of α is not

maximal, the unbiasedness requirement demands sensitivity to changes in all components of

α, and consequently the bound coincides with the unconstrained CRB. Thus, as claimed in

Section 4.3, in underdetermined cases no estimator is unbiased for all α ∈ S .

An interesting observation can also be made concerning maximal-support points α for

which some of the nonzero elements are close to zero. The CRB in this “low-SNR” case corre-

sponds to the oracle MSE, but as we will see, the bound is loose for such values of α. Intuitively,

at low-SNR points, any attempt to recover the sparsity pattern will occasionally fail. Conse-

quently, despite the optimistic CRB, it is unlikely that the oracle MSE can be achieved. Indeed,

the covariance matrix of any finite-variance estimator is a continuous function of α [6], and the

fact that performance is bounded by the (much higher) unconstrained bound when ‖α‖0 < s

implies that performance must be similarly poor for low SNR.

This excessive optimism is a result of the local nature of the CRB: The bound is a function

of the estimation setting only in an ε-neighborhood of the parameter itself. Indeed, the CRB

depends on the constraint set only through the feasible directions, which were defined in Sec-

tion 4.3.2 as those directions which do not violate the constraints for sufficiently small deviations.

Thus, for the CRB, it is entirely irrelevant if some of the components of α are close to zero, as

long as supp(α) is held constant.

A tighter bound for sparse estimation problems may be obtained using the Hammersley–

Chapman–Robbins (HCR) approach [50–52], which depends on the constraints at points be-

yond the local neighborhood of x. Such a bound is likely to yield tighter results for low SNR

values, and will create a smooth transition between the regions of maximal and non-maximal

support. However, the bound will depend on more complex properties of the estimation set-

ting, such as the distance between Dα and feasible points with differing supports. The deriva-

tion of such a bound is a subject for further research.
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Chapter 5

Bounds for Sparse Estimation with a

Unitary Dictionary

This chapter has been submitted for publication as:

• A. Jung, Z. Ben-Haim, F. Hlawatsch, and Y. C. Eldar, “Unbiased estimation of a sparse

vector in white Gaussian noise,” submitted to IEEE Trans. Information Theory, May 2010.

5.1 Introduction

Research in the past few years has led to a recognition that the performance of signal pro-

cessing algorithms can be boosted by exploiting the tendency of many signals to have sparse

representations. Applications of this principle include signal reconstruction (e.g. in the context

of compressed sensing [84,85]) and signal enhancement (e.g. in the context of image denoising

and deblurring [75, 76, 86]).

In this work, we consider the estimation of an S-sparse, finite-dimensional vector x ∈ RN.

By “S-sparse” we mean that the vector x has at most S nonzero entries, which is denoted by

‖x‖0 , | supp(x)| ≤ S, where supp(x) denotes the set of indices of the nonzero entries of x.

The “sparsity” S is assumed to be known, and typically S≪ N. However, the positions of the

nonzero entries (i.e., supp(x)) as well as the values of the nonzero entries are unknown. We

investigate how much we can gain in estimation accuracy by knowing a priori that the vector x

is S-sparse. We will use the frequentist setting [6] of estimation theory, i.e., we will model x as

unknown but deterministic. This is in contrast to Bayesian estimation theory, where one treats

x as a random vector whose probability density function (pdf) or certain moments thereof are

73
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assumed to be known. In the Bayesian setting, the sparsity can be modeled by using a pdf that

favors sparse vectors, see e.g. [87–89].

A fundamental concept in the frequentist setting is that of unbiasedness [6, 16, 90]. An un-

biased estimator is one whose expectation always equals the true underlying vector x. The

restriction to unbiased estimators is important as it excludes trivial and practically useless es-

timators, and it allows us to study the difficulty of the estimation problem using established

techniques such as the Cramér–Rao bound (CRB) [16, 45, 90]. Another justification of unbi-

asedness is that for typical estimation problems, when the variance of the noise is low, it is

necessary for an estimator to be unbiased in order to achieve a small mean-squared estimation

error (MSE) [6].

These reasons notwithstanding, there is no guarantee that unbiased estimators are nec-

essarily optimal. In fact, in many settings, including the scenario described in this paper,

there exist biased estimators which are strictly better than any unbiased technique in terms

of MSE [42, 44, 91]. Nevertheless, for simplicity and because of the reasons stated above, we

focus on bounds for unbiased estimation in this work. As we will see, bounds on unbiased

techniques give some indication of the general difficulty of the setting, and as such some of our

conclusions will be shown empirically to characterize biased techniques as well.

Our main contribution is a characterization of the optimal performance of unbiased estima-

tors x̂(y) that are based on observing

y = Ax + n (5.1)

where A∈RM×N (M≥ N) is a known matrix with orthonormal columns, i.e., AT A = IN , and

n ∼ N (0, σ2 IM) denotes zero-mean white Gaussian noise with known variance σ2 (here, IN

denotes the identity matrix of size N × N). Note that without loss of generality we can then

assume that A = IN and M = N, i.e., y = x + n, since premultiplication of the model (5.1)

by AT will reduce the estimation problem to an equivalent problem y′ = A′x + n′ in which

A′ = AT A = IN and the noise n′ = ATn is again zero-mean white Gaussian with variance

σ2. Such a sparse signal model can be used, e.g., for channel estimation [92] when the channel

consists only of few significant taps and an orthogonal training signal is used [93]. Another

application that fits our scope is image denoising using an orthonormal wavelet basis [86]. We

note that parts of this work were previously presented in [94].

The estimation problem (5.1) with A = IN was studied by Donoho and Johnstone [95, 96].

Their work was aimed at demonstrating asymptotic minimax optimality, i.e., they considered
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estimators having optimal worst-case behavior when the problem dimensions N, S tend to in-

finity. By contrast, we consider the finite-dimensional setting, and attempt to characterize the

performance at each value of x, rather than analyzing worst-case behavior. Such a “pointwise”

approach was also advocated by the authors of [70, 79], who studied the CRB for the sparse

linear model (5.1) with arbitrary A. However, the CRB is a local bound, in the sense that the

performance characterization it provides is only based on the statistical properties in the neigh-

borhood of the specific value of x being examined. In particular, the CRB for a given x is only

based on a local unbiasedness assumption, meaning that the estimator is only required to be

unbiased at x and in its infinitesimal neighborhood. Our goal in this paper is to obtain per-

formance bounds for the more restrictive case of globally unbiased estimators, i.e., estimators

whose expectation equals the true x for each S-sparse vector x. Since any globally unbiased

estimator is also locally unbiased, our lower bounds will be tighter than those of [70, 79].

Our contributions and the organization of this paper can be summarized as follows. In Sec-

tion 5.2, we show that whereas only one unbiased estimator exists for the ordinary (nonsparse)

signal in noise model, there are infinitely many unbiased estimators for the sparse signal in

noise model; on the other hand, none of them has uniformly minimum variance. In Sections

5.3 and 5.4, we characterize the performance of locally minimum variance unbiased estimators

by providing, respectively, lower and upper bounds on their mean-squared error (MSE). These

bounds can equivalently be viewed as lower and upper bounds on the Barankin bound [52, 53].

Finally, numerical studies exploring and extending our performance bounds and comparing

them with established estimator designs are presented in Section 5.5.

Notation: Throughout the paper, boldface lowercase letters (e.g., x) denote column vectors

while boldface uppercase letters (e.g., M) denote matrices. We denote by tr(M), MT, and M†

the trace, transpose, and Moore-Penrose pseudoinverse of M, respectively. The identity matrix

of size N×N is denoted by IN . The notation M � N indicates that M−N is a positive semidef-

inite matrix. The set of indices of the nonzero entries of a vector x is denoted by supp(x), and

‖x‖0 is defined as the size of this set. The kth entry of x is written xk. We also use the signum

function of a real number y, sgn(y) , y/|y|. The sets of nonnegative, nonpositive, and positive

real numbers will be denoted by R+, R−, and R++, respectively.
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5.2 The Sparse Signal in Noise Model

5.2.1 Problem Setting

Let x ∈ RN be an unknown deterministic vector which is known to be S-sparse, i.e.,

x∈XS , with XS , {x∈R
N : ‖x‖0 ≤ S} .

The vector x is to be estimated based on the observation of a vector y which is the sum of x and

zero-mean white Gaussian noise. Thus

y = x + n , with x∈XS , n ∼ N (0, σ2 IN) (5.2)

where the noise variance σ2 is assumed to be nonzero and known. It follows that the pdf of y,

parameterized by the deterministic but unknown parameter x∈XS, is

f (y; x) =
1

(2πσ2)N/2
exp

(
− 1

2σ2
‖y−x‖2

2

)
. (5.3)

We refer to (5.2) as the sparse signal in noise model (SSNM). As explained previously, settings

of the form (5.1) with an orthonormal matrix A can be converted to the SSNM (5.2). The case

S = N corresponds to the situation in which no sparsity assumption is made. As we will see,

this case is fundamentally different from the sparse setting S < N, which is our focus in this

paper.

An estimator x̂(y) of the parameter x is a function that maps (a realization of) the observation

y to (a realization of) the estimated vector x̂, i.e.,

x̂(·) : R
N → R

N : y 7→ x̂.

With an abuse of notation, we will use the symbol x̂ for both the estimator (which is a function)

and the estimate (a specific function value). The meaning should be clear from the context.

The question now is how we can exploit the information that x is S-sparse in order to construct

“good” estimators. Our measure of the quality of an estimator x̂(·) for a given parameter value

x∈XS will be the estimator’s MSE, which is defined as

ε(x; x̂) , Ex

{‖x̂(y)− x‖2
2

}
.

Here, the notation Ex{·} means that the expectation is taken with respect to the pdf f (y; x) of

the observation y parameterized by x. Note that even though x is known to be S-sparse, the

estimates x̂ are not constrained to be S-sparse.
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The MSE can be written as the sum of a bias term and a variance term, i.e.,

ε(x; x̂) = ‖b(x; x̂)‖2
2 + V(x; x̂)

where the bias b(x; x̂) , Ex{x̂(y)} − x accounts for systematic estimation errors and the vari-

ance V(x; x̂) , Ex{‖x̂(y)− Ex{x̂(y)}‖2
2} accounts for errors due to random fluctuations of the

estimate. Thus, for unbiased estimators (b(x; x̂) = 0 for all x ∈ XS), the MSE is equal to the

variance, i.e., ε(x; x̂) = V(x; x̂).

We will also consider the mean power (second moment) of an estimator,

P(x; x̂) , Ex

{
‖x̂(y)‖2

2

}
= V(x; x̂) + ‖Ex{x̂(y)}‖2

2 . (5.4)

For unbiased estimators, ‖Ex{x̂(y)}‖2
2 = ‖x‖2

2; thus, minimizing the variance V(x; x̂) at a fixed

x∈XS among all unbiased estimators is equivalent to minimizing P(x; x̂).

5.2.2 Estimator Design

Two well-established estimator designs are the least squares (LS) estimator defined by

x̂LS(y) , arg min
x′∈XS

‖y−x′‖2
2 (5.5)

and the maximum likelihood (ML) estimator defined by

x̂ML(y) , arg max
x′∈XS

f (y; x′). (5.6)

For the SSNM, due to (5.3), the LS and ML estimators coincide; they are easily seen to be given

by

x̂LS(y) = x̂ML(y) = PS(y) (5.7)

where PS is an operator that retains the S largest (in magnitude) components and zeros out all

others. The LS/ML estimator is biased unless S=N. Note that this estimator is not based on a

direct minimization of the MSE. Indeed, if the sparsity constraint is removed (S=N) and N≥ 3,

it has been shown [42, 44, 91] that there exist estimators which yield a better MSE performance

than that of the LS/ML estimator.

The MSE ε(x; x̂) of a specific estimator x̂(·) depends on the value of the parameter x. This

makes it difficult to define optimality in terms of minimum MSE. For example, if an estimator

x̂(·) performs well (i.e., has a small MSE) for a specific parameter value x1, it may still exhibit

poor performance (i.e., a large MSE) for a different parameter value x2. Ideally, an optimal es-

timator should have minimum MSE for all parameter values simultaneously. However, such an
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optimality criterion is unobtainable since the minimum MSE achievable at a specific parameter

value x1 is zero; it is achieved by the trivial estimator x̂(y) ≡ x1 which is constant and com-

pletely ignores the observation y. Therefore, if there were a uniformly minimum MSE estimator,

it would have to achieve zero MSE for all parameter values, which is obviously impossible.

Thus, requiring the estimator to minimize the MSE at all parameter values simultaneously

makes no sense.

One useful optimality criterion is the minimax approach, which considers the worst-case

MSE

sup
x∈XS

ε(x; x̂)

of an estimator x̂(·). An optimal estimator in the minimax sense minimizes the worst-case

MSE, i.e., is a solution of the optimization problem

inf
x̂(·)

sup
x∈XS

ε(x; x̂) .

Considerable effort has been spent to identify minimax estimators for sparse models such as

the SSNM in (5.2); see, e.g., [95–97]. However, these results only apply in the asymptotic

regime, i.e., when N, S → ∞. By contrast, our goal is to analyze estimator performance for

finite problem dimensions. There are no known closed-form expressions of the minimax risk

or of minimax-optimal estimators for the SSNM in this case.

In this work, rather than pursuing the minimax criterion, we consider unbiased estimators

x̂(·) for the SSNM. An unbiased estimator is one for which the bias b(x; x̂) is zero for all S-

sparse parameter vectors i.e.,

Ex{x̂(y)} = x for all x∈XS . (5.8)

Let U denote the set of all unbiased estimators x̂(·) for the SSNM. Constraining an estimator to

be unbiased excludes such trivial estimators as x̂(y) ≡ x1 where x1∈XS is some fixed S-sparse

parameter vector.

5.2.3 Unbiased Estimation for the SSNM

We now study the set U of unbiased estimators for the SSNM in more detail. In particular,

we will show that with the exception of the case S = N, this set is uncountably large, i.e.,

there are infinitely many unbiased estimators. We will also show that there exists no uniformly

minimum variance unbiased estimator unless S = N. In what follows, we will say that an
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estimator x̂ has a bounded MSE if ε(x; x̂) ≤ C for all x∈RN , where C is a constant which may

depend on N, S, and σ2.

Theorem 5.1. Consider the SSNM (5.2) with S= N, i.e., without a sparsity constraint, in which case

XS = RN . Then, there exists exactly one unbiased estimator having bounded MSE (up to deviations

having zero measure). This estimator is given by x̂(y) = y, which equals the LS/ML estimator in

(5.5)–(5.7).

The proof of this result can be found in Appendix 5.A. By contrast with Theorem 5.1, when

sparsity constraints are imposed there exists a large family of unbiased estimators, as we now

show.

Theorem 5.2. For 1≤S<N, there are uncountably infinitely many unbiased estimators for the SSNM.

Proof. Consider the class of estimators defined by

x̂(y) = y + ay1

[
S+1

∏
k=2

h(c,d)(yk)

]
(
1 0 · · · 0

)T
, a ∈ R, c, d ∈ R++ (5.9)

where

h(c,d)(y) ,





sgn(y), |y| ∈ [c, c + d]

0, else.
(5.10)

A straightforward calculation shows that each estimator of this uncountably infinite class is an

unbiased estimator for the SSNM. �

This (constructive) proof points at a noteworthy fact. Consider a particular parameter value

x. By an appropriate choice of the parameters a, c, d in (5.9), one can reduce the magnitude of the

estimate x̂(y) for sets of realizations y with high probability, i.e., for which f (y; x) is large. This

results in a reduced mean power and (since the estimator is unbiased) in a reduced variance

and MSE at the specific parameter value x. One can thus construct an unbiased estimator that

performs better than the (biased) LS/ML estimator at the given x.

In view of Theorems 5.1 and 5.2, we will only consider the case S<N in the following. Since

in this case there are infinitely many unbiased estimators, we would like to find an unbiased es-

timator having minimum variance (and, thus, minimum MSE) among all unbiased estimators.

If there exists an unbiased estimator x̂(·)∈ U which minimizes the variance simultaneously for

all S-sparse parameter vectors x∈XS, then this estimator is called a uniformly minimum variance

unbiased (UMVU) estimator [6]. In other words, a UMVU estimator for the SSNM solves the
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optimization problem

arg min
x̂(·)∈U

V(x; x̂) (5.11)

simultaneously for all x∈XS. In the nonsparse case S=N, it is well known that the LS estimator

is the UMVU estimator [90]; however, in light of Theorem 5.1, this is not a very strong result,

since x̂LS is the only unbiased estimator in that case. On the other hand, for the sparse case

S<N, the following negative result is shown in Appendix 5.B.

Theorem 5.3. For the SSNM with S< N, there exists no UMVU estimator, i.e., there is no unbiased

estimator x̂∈ U that minimizes V(x; x̂) simultaneously for all parameter vectors x∈XS.

Despite the fact that a UMVU estimator does not exist for the SSNM, one can still attempt

to solve the optimization problem (5.11) separately for each value of x∈XS. An unbiased esti-

mator which solves (5.11) for a specific value of x is said to be locally minimum variance unbiased

(LMVU) [6]. The MSE of this estimator at x cannot be improved upon by any unbiased esti-

mator. When viewed as a function of x, this minimum MSE is known as the Barankin bound

(BB) [52,53]. Thus, the BB characterizes the minimum MSE achievable by any unbiased estima-

tor for each value of x∈XS; it is the highest and tightest lower bound on the MSE of unbiased

estimators. As such, the BB serves as a measure of the difficulty of estimating x.

Computing the BB is equivalent to calculating minx̂(·)∈U V(x; x̂) for each parameter vector

x∈XS separately. Unfortunately, there does not appear to be a simple closed-form expression

of the BB, and the numerical computation of the BB seems to be difficult as well. Therefore, in

the remainder of this paper, we will provide lower and upper bounds on the BB. When these

bounds are close to one another, they provide an accurate characterization of the BB.

5.3 Lower Bounds on the Minimum MSE

In this section, we will develop a lower bound on the BB (which is thus a lower bound on the

MSE of any unbiased estimator) by calculating a limiting case of the Hammersley–Chapman–

Robbins bound [52] for the SSNM.

5.3.1 Review of the CRB

A variety of techniques exist for developing lower bounds on the MSE of unbiased estimators.

The simplest is the CRB [16, 45, 48], which was previously derived for a more general sparse
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estimation setting in [70,79]. In the current setting, i.e., for the SSNM (5.1), the CRB is given by

ε(x; x̂) ≥





Sσ2, ‖x‖0 = S

Nσ2, ‖x‖0 < S
(5.12)

where x̂ ∈ U , i.e., x̂(·) is any unbiased estimator for the SSNM.

In the case of parameter values x ∈XS with non-maximal support, i.e., ‖x‖0 < S, the CRB

is Nσ2. This is the MSE of the trivial unbiased estimator x̂(y) = y. Since the CRB is thus

achieved by an unbiased estimator, we conclude that the CRB is a maximally tight lower bound

for ‖x‖0 < S; no other lower bound can be tighter (higher). We also conclude that for ‖x‖0 < S,

the trivial estimator x̂(y) = y is the LMVU estimator; no other unbiased estimator can have a

smaller MSE.

For parameter values x ∈ XS with maximal support, i.e., ‖x‖0 = S, we will see that the

CRB is not maximally tight, and the trivial estimator x̂(y) = y is not the LMVU estimator.

Indeed, one problem with the CRB in (5.12) is that it is discontinuous in the transition between

‖x‖0 = S and ‖x‖0 < S. Since the MSE of any estimator is continuous [6], this discontinuity

implies that the CRB is not the tightest lower bound obtainable for unbiased estimators. In

order to obtain tighter bounds for ‖x‖0 = S, it is important to realize that the CRB is a local

bound, which assumes unbiasedness only in a neighborhood of x. Since we are interested in

estimators that are unbiased for all x ∈ XS, which is a more restrictive constraint than local

unbiasedness, tighter (i.e., higher) lower bounds can be expected for unbiased estimators in

the case ‖x‖0 = S.

5.3.2 Hammersley–Chapman–Robbins Bound

An alternative lower bound for unbiased estimators is the Hammersley–Chapman–Robbins

bound (HCRB) [50–52], which can be stated, in our context, as follows.

Proposition 5.4. Given a parameter value x ∈XS, consider a set of p “test points” {vi}p
i=1 such that

x + vi ∈ XS for all i = 1, . . . , p. Then, the covariance of any unbiased estimator x̂(·), C(x; x̂) ,

Ex

{[
x̂(y)− Ex{x̂(y)}

][
x̂(y)− Ex{x̂(y)}

]T}
, satisfies

C(x; x̂) � V J†V T (5.13)

where

V , (v1 · · · vp) ∈ R
N×p (5.14)
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and the (i, j)th entry of the matrix J ∈ Rp×p is given by

(J)i,j , exp

(
vT

i vj

σ2

)
− 1 . (5.15)

In particular, the MSE of x̂(·) satisfies

ε(x; x̂) ≥ tr
(
V J†V T

)
. (5.16)

The proof of Proposition 5.4, which can be found in Appendix 5.C, involves an application

of the multivariate HCRB of Gorman and Hero [52] to the SSNM setting. Note that both the

number of test points p and their values vi are arbitrary and can depend on x. In general,

including additional test points vi will result in a tighter HCRB [52]. Our goal in this section is

to choose test points vi which result in a tight but analytically tractable bound.

Before attempting to derive a bound which is tighter than the CRB, we first observe that the

CRB itself can be obtained as the limit of a sequence of HCRBs with appropriately chosen test

points. Indeed, consider the specific test points given by1

{tei}i∈supp(x) , ‖x‖0 = S (5.17a)

{tei}i∈{1,...,N} , ‖x‖0 < S (5.17b)

where t > 0 is a constant and ei represents the ith column of the N × N identity matrix. Note

that p = S in (5.17a) and p = N in (5.17b). Each value of t yields a different set of test points

and, via Proposition 5.4, a different lower bound on the MSE of unbiased estimators. We show

in Appendix 5.D that the CRB in (5.12) is the limit of a sequence of such bounds as t → 0, and

that it is tighter than any bound that can be obtained via Proposition 5.4 using the test points

(5.17) for a fixed t > 0.

Can a set of test points different from (5.17) yield a lower bound that is tighter than the

CRB? As discussed above, this is only possible for parameter values x having maximal support,

i.e., ‖x‖0 = S, because for ‖x‖0 < S the CRB is already maximally tight. Therefore, let us

consider a parameter x with ‖x‖0 = S. Suppose one of the entries within the support, xj

for some j ∈ supp(x), has a small magnitude. Such a parameter x just barely qualifies as

having maximal support, so it makes sense to adapt the optimal test points (5.17b) from the

non-maximal support case. However, including a test point tei with i /∈ supp(x) is not allowed,

since in this case x + tei is not in XS. Instead, one could include the test point vi = tei − xjej,

1Note that, with a slight abuse of notation, the index i of the test points is now allowed to take on non-sequential

values from the set {1, . . . , N}.
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which satisfies the requirement x + vi ∈ XS and is still close to tei if xj is small. More generally,

for any maximal-support parameter x, we propose the set of N test points given by

vi =





tei , i ∈ supp(x)

tei − ξe(S) , i /∈ supp(x)
(5.18)

for i = 1, . . . , N. Here, ξ denotes the smallest (in magnitude) of the S nonzero components

of x and e(S) denotes the corresponding unit vector. These test points vi satisfy the condition

x + vi ∈ XS. Note that the test points in (5.17a), which yield the CRB, are a subset of the test

points in (5.18). It can be shown [52] that this implies that the bound induced by (5.18) will

always be at least as tight as that obtained from (5.17a). It is important to note that (5.18) uses

N test points for parameter values with maximal support, just as (5.17b) does for parameter

values with non-maximal support. In fact, there is a smooth transition between the optimal

test points (5.17b) for non-maximal support and the proposed test points (5.18) for maximal

support.

While an expression of the HCRB can be obtained by simply plugging (5.18) into (5.16), the

resulting bound is extremely cumbersome and not very insightful. Instead, in analogy to the

derivation of the CRB above, one can obtain a simple result by taking the limit for t → 0. This

leads to the following theorem, which combines the cases of maximal support ((5.16) using

(5.18) for t → 0) and non-maximal support ((5.16) using (5.17b) for t → 0), and whose proof

can be found in Appendix 5.E.

Theorem 5.5. The MSE of any unbiased estimator x̂ ∈ U for the SSNM satisfies

ε(x; x̂) ≥ HCRB(x) ,





Sσ2 + (N−S−1)e−ξ2/σ2
σ2, ‖x‖0 = S

Nσ2, ‖x‖0 < S ,
(5.19)

where, in the case ‖x‖0 = S, ξ is the smallest (in magnitude) of the S nonzero entries of x.

For simplicity, we will continue to refer to (5.19) as an HCRB, even though it was obtained

as a limit of HCRBs. Note that when ‖x‖0 < S, the HCRB in (5.19) is identical to the CRB in

(5.12), since in that case the CRB is maximally tight and cannot be improved. The HCRB also

approaches the CRB when ‖x‖0 = S and all components of x are much larger than σ: here

e−ξ2/σ2
is negligible and the respective bound in (5.19) converges to Sσ2, which is equal to the

CRB in (5.12). This is due to the fact that the CRB is achieved by the ML estimator asymptot-

ically2 as ξ2/σ2 → ∞, and is therefore also maximally tight when ξ ≫ σ. Furthermore, if we

2This can be explained by the fact that according to (5.7), the ML estimator for the SSNM retains the S largest
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define the “worst-case component SNR” (briefly denoted as SNR) as ξ2/σ2, then Theorem 5.5

hints that the convergence to the high-SNR limit is exponential in the SNR.

One of the motivations for improving the CRB (5.12) was that (5.12) is discontinuous in the

transition between ‖x‖0 = S and ‖x‖0 < S. While the HCRB (5.19) is still discontinuous in this

transition, the discontinuity is much smaller than that of the CRB. Indeed, the transition from

‖x‖0 = S to ‖x‖0 < S corresponds to ξ → 0, in which case the first bound in (5.19) tends to

(N−1)σ2, whereas the second bound, valid for ‖x‖0 < S, is Nσ2; thus, the difference between

the two bounds in (5.19) is σ2. By contrast, the difference between the two bounds in (5.12)

is (N−S)σ2, which is typically much larger. Again, the discontinuity of (5.19) implies that

(5.19) is not the tightest lower bound obtainable for unbiased estimators. In Section 5.5, we

will demonstrate experimentally that this discontinuity can be eliminated altogether by using

a much larger number of test points. However, in that case the resulting bound no longer has

a simple closed-form expression and can only be evaluated numerically.

5.4 Upper Bound on the Minimum MSE

As pointed out in the previous section, the lower bound HCRB(x) on the BB is not maximally

tight since it is discontinuous in the transition between parameter vectors with ‖x‖0 = S and

those with ‖x‖0 < S. In other words, there is a gap between the HCRB and the BB. How large

is this gap? We will address this issue by deriving an upper bound on the BB. This will be done

by finding a constrained solution of (5.11). If this upper bound is close to the lower bound

HCRB(x), we can conclude that both bounds are fairly tight and thus provide a fairly accurate

characterization of the BB. As before, we consider the nontrivial case ‖x‖0 = S.

We first note (cf. (5.4)) that (5.11) is equivalent to the optimization problem

arg min
x̂(·)∈U

Ex

{
‖x̂(y)‖2

2

}
= arg min

x̂(·)∈U

N

∑
k=1

Ex

{
(x̂k(y))

2
}

, (5.20)

where x̂k denotes the kth entry of x̂. This, in turn, is equivalent to the N individual scalar

optimization problems

arg min
x̂k(·)∈U k

Ex

{
(x̂k(y))

2
}

, k = 1, . . . , N (5.21)

components in y and zeros out all other components. For noise variances σ2 that are extremely small compared to

the nonzero entries, i.e., for ξ2/σ2 → ∞, the probability that the ML estimator selects the true components becomes

very close to one. Therefore, for high ξ2/σ2, the ML estimator behaves like an oracle estimator which knows the

support of x and whose MSE is equal to Sσ2.
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where U k denotes the set of unbiased estimators of the kth entry of x, i.e.,

U k ,
{

x̂k(·)
∣∣ Ex{x̂k(y)} = xk for all x∈XS

}
.

By combining the unbiased estimators x̂k(·) for k = 1, . . . , N into a vector, we obtain an unbi-

ased estimator of the parameter x.

It will be convenient to write the kth scalar estimator as

x̂k(y) = yk + x̂′k(y) (5.22)

with x̂′k(y) , x̂k(y)− yk. Since for any x̂k(·)∈ U k we have Ex{x̂k(y)} = Ex{yk}+ Ex{x̂′k(y)} =

xk + Ex{x̂′k(y)}, the unbiasedness condition x̂k(·) ∈ U k is equivalent to

Ex{x̂′k(y)} = 0 for all x∈XS .

For k ∈ supp(x), the solution of the optimization problem (5.21) is stated in the following

lemma, which is proved in Appendix 5.F. In what follows, it will be convenient to denote by

x̂(x)(y) a solution of the optimization problem (5.11) for a given parameter vector x ∈ XS. We

recall that the estimator x̂(x)(y) is an LMVU at the parameter value x, and its MSE, ε(x; x̂(x)) =

minx̂(·)∈U V(x; x̂), equals the BB at x.

Lemma 5.6. Consider a parameter vector x∈XS with maximal support, i.e., ‖x‖0 = S. Then, for any

k ∈ supp(x), the solution of the optimization problem (5.21) is given by

x̂
(x)
k (y) = yk , k ∈ supp(x) .

Moreover, this is the LMVU for k ∈ supp(x). The MSE of this estimator is σ2.

Because Lemma 5.6 describes the scalar LMVU estimators for all indices k ∈ supp(x), it

remains to consider the scalar problem (5.21) for k /∈ supp(x). Since ε(x; x̂(x)) is the minimum

of ε(x; x̂) as defined by the optimization problem (5.11), we can obtain an upper bound on

ε(x; x̂(x)) by placing further constraints on the estimator x̂(·) to be optimized. We will thus

consider the modified optimization problem

arg min
x̂(·)∈U∩Ax

V(x; x̂) (5.23)

where the set Ax is chosen such that a simpler problem is obtained. We will define Ax in a com-

ponentwise fashion. More specifically, the kth component x̂k(y) of x̂(y), where k /∈ supp(x), is

said to belong to the set Ak
x if the correction term x̂′k(y) = x̂k(y) − yk (see (5.22)) satisfies the

following two properties.
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• Odd symmetry with respect to k and all indices in supp(x):

x̂′k(. . . ,−yl , . . .) = − x̂′k(. . . , yl , . . .) , for all l ∈ {k} ∪ supp(x) . (5.24)

• Independence with respect to all other indices:

x̂′k(. . . , yl, . . .) = x̂′k(. . . , 0, . . .) , for all l /∈ {k} ∪ supp(x) . (5.25)

We then define Ax as the set of estimators x̂(y) such that x̂k(y) ∈ Ak
x for all k /∈ supp(x).

Note that any function x̂(y) ∈ Ak
x is fully specified by its values for all arguments y such that

supp(y) = {k} ∪ supp(x) and all entries of y are nonnegative. The values of x̂(y) for all other

y follow by the decomposition (5.22) and the properties (5.24) and (5.25).

To solve the modified optimization problem (5.23), we consider the equivalent scalar form

arg min
x̂k(·)∈U k∩Ak

x

Ex

{
(x̂k(y))

2
}

, k /∈ supp(x) . (5.26)

The resulting minimum MSE is stated by the following lemma, whose proof can be found in

Appendix 5.G.

Lemma 5.7. Consider a parameter vector x∈XS with maximal support, i.e., ‖x‖0 = S. Then, for any

k /∈ supp(x), the minimum MSE of any estimator x̂k(·) ∈ U k ∩Ak
x, denoted by BBk

c(x), is given by

BBk
c(x) =

[
1 − ∏

l∈supp(x)

g(xl ; σ2)

]
σ2 (5.27)

with

g(x; σ2) =
1√

2πσ2

∫ ∞

0
e−(x2+y2)/(2σ2) sinh

(
xy

σ2

)
tanh

(
xy

σ2

)
dy . (5.28)

Lemma 5.7 identifies the minimum MSE of any unbiased estimator of the kth component of

x (where k /∈ supp(x)) that is also constrained to be an element of Ak
x. Note that BBk

c(x) does

not depend on k. It provides an upper bound on the minimum MSE of any unbiased estimator

of the kth component of x, for any k /∈ supp(x).

The total MSE of a vector estimator x̂(·) can be decomposed as ε(x; x̂) = ∑k∈supp(x) ε(x; x̂k)+

∑k/∈supp(x) ε(x; x̂k) with the component MSE ε(x; x̂k) , Ex

{
(x̂k(y) − xk)

2
}

. Inserting the mini-

mum component MSE for k ∈ supp(x) (which is σ2 according to Lemma 5.6) in the first sum

and the upper bound BBk
c(x) on the minimum component MSE for k /∈ supp(x) in the second

sum, we obtain the following upper bound on the minimum total MSE of any unbiased vector

estimator.
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Theorem 5.8. The minimum MSE achievable by any unbiased estimator for the SSNM at a parameter

vector x∈XS with ‖x‖0 = S satisfies

ε(x; x̂(x)) ≤ BBc(x) , Sσ2 + (N−S)BBk
c(x) (5.29)

with BBk
c(x) given by (5.27).

Depending on the parameter vector x, the upper bound BBc(x) varies between two extreme

values. For decreasing SNR ξ2/σ2, it converges to the low-SNR value Nσ2 (because the factor

g(ξ, σ2) in (5.27) vanishes for ξ2/σ2 → 0). On the other hand, we will show below that for

increasing SNR, BBc(x) converges to its high-SNR value, which is given by Sσ2.

The lower bound HCRB(x) in (5.19) for the case ‖x‖0 = S, i.e., Sσ2 + (N − S − 1)e−ξ2/σ2
σ2,

exhibits an exponential transition between the low-SNR and high-SNR regimes. More specif-

ically, when considering a sequence of parameter vectors x ∈ XS with increasing SNR ξ2/σ2,

the bound transitions from the low-SNR value (N−1)σ2 (obtained for ξ2/σ2 = 0) to the high-

SNR value Sσ2 (obtained for ξ2/σ2 → ∞); this transition is exponential in the SNR. The upper

bound BBc(x) in (5.29) also exhibits a transition that is exponential in ξ2/σ2. In fact, it is shown

in Appendix 5.H that

BBc(x) ≤ Sσ2 + (N−S) 3Se−ξ2/(2σ2)σ2. (5.30)

This shows that for increasing ξ2/σ2, the upper bound BBc(x)—just like the lower bound

HCRB(x)—decays exponentially to its asymptotic value Sσ2, which is also the asymptotic

value of HCRB(x). It follows that the BB itself also converges exponentially to Sσ2 as ξ2/σ2

increases. This result will be further explored in Section 5.5.3.

5.5 Numerical Results

In this section, we describe several numerical studies which explore and extend the theoretical

bounds developed above. These include a numerical improvement of the bounds, a compari-

son with practical (biased) estimation techniques, an analysis of the performance at high SNR,

and an examination of the ability to estimate the threshold region in which the transition from

low to high SNR occurs.

We will first show that it is possible to obtain significantly tighter versions of the lower and

upper bounds developed in Sections 5.3 and 5.4. These tightened versions can only be com-

puted numerically and no longer have a simple form; consequently, they are less convenient
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Figure 5.1: Lower bounds HCRB(x), HCRBV (x) and upper bounds BBc(x), BB′
c(x) on the MSE

ε(x; x̂(x)) of the LMVU estimator at x = c (1 0 0 0 0)T, with c varied to obtain different values

of SNR(x) = ξ2/σ2. The SSNM parameters are N=5, S=1, and σ2=1.

for theoretical analyses. Nevertheless, they characterize the BB very accurately and therefore

also provide an indication of the accuracy of the simpler, closed-form bounds.

5.5.1 Numerical Lower Bound

For a parameter vector x with ‖x‖0 = S, let us reconsider the HCRB in (5.16). We will show

that by using an increased number of appropriately chosen test points, we can obtain a lower

bound that is higher (thus, tighter) than (5.19). Specifically, assume without loss of generality

that supp(x) = {1, . . . , S}, and consider the set of test points

V , V0 ∪
S⋃

k=1

(Vk ∪Wk)

with the component sets

V0 ,
⋃

l∈ supp(x)

{αel}

Vk ,
⋃

l∈{S+1,...,N}
{αel − xkek} , k = 1, . . . , S

Wk ,
⋃

l∈{S+1,...,N}
{xkel − xkek} , k = 1, . . . , S

where α = 0.02σ. In Fig. 5.1, the HCRB (5.16) for the new set V of test points—denoted

HCRBV (x)—is displayed versus the SNR and compared with HCRB(x). For this figure, we

chose N = 5, S = 1, σ2 = 1, and x = c (1 0 0 0 0)T, where the parameter c ∈ R is varied
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to obtain different SNR values.3 As before, the SNR is defined as SNR(x) = ξ2/σ2, where

ξ is the S-largest (in magnitude) component of x (in our example with S = 1, ξ is simply

the single nonzero component). It can be seen from Fig. 5.1 that the numerical lower bound

HCRBV (x) computed from the above test points is indeed tighter than the closed-form lower

bound HCRB(x) in (5.19).

5.5.2 Numerical Upper Bound

It is also possible to find upper bounds on the BB that are tighter (lower) than the upper bound

BBc(x) in (5.29). Consider a parameter vector x with ‖x‖0 = S. We recall that BBc(x) was

derived by constructing, for all k /∈ supp(x), unbiased estimators x̂k(y) = yk + x̂′k(y) with

x̂′k(y) constrained by (5.24) and (5.25). We will now investigate how much we can improve

on BBc(x) if we remove the constraint (5.24). Thus, in the optimization problem (5.23), the

constraint set Ax is hereafter considered to correspond only to the constraint (5.25).

In order to numerically solve this modified optimization problem (5.23), a discrete approx-

imation for x̂′k(y) was used. More specifically, we defined x̂′k(y) to be piecewise constant in

each of the components yl with l ∈ {k} ∪ supp(x), and constant in the remaining compo-

nents yl (the latter being required by (5.25)). We used Q piecewise constant segments for each

l ∈ {k} ∪ supp(x), with each segment of length ∆=10 σ/Q. These arrays of constant segments

were centered about y = x. The remaining values of x̂′k(y) were set to 0. Thus, we obtained a

function x̂′k(y) with linear dependence on a finite number QS+1 of parameters. For functions

of this form, the optimization problem (5.23) becomes a finite-dimensional quadratic program

with linear constraints, which can be solved efficiently [98]. The MSE of the resulting estimator,

denoted by BB′
c(x), is an upper bound on the BB. This bound is tighter than the closed-form

upper bound BBc(x) in (5.29) if Q is large enough. In Fig. 5.1, we compare BB′
c(x) for Q = 20

with BBc(x) as a function of the SNR. The improved accuracy of BB′
c(x) relative to BBc(x) is ev-

ident, particularly at high SNR values. Moreover, the proximity of the numerical upper bound

BB′
c(x) to the numerical lower bound HCRBV (x) indicates that these two bounds achieve an

accurate characterization of the BB, since the BB lies between them.

3The use of a low-dimensional model is mandated by the complexity of the numerical approximation to the

upper bound on the BB which will be described in Section 5.5.2.
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Figure 5.2: MSE ε(xr; x̂ML) of the ML estimator for randomly generated parameter vectors xr at

four different SNRs ξ2/σ2, for SSNM parameters N=10, S=4, and σ2 =1.

5.5.3 The Role of ξ

We have seen in Section 5.4 that for ‖x‖0 = S, the MSE of the LMVU estimator at high SNR is

given by Sσ2, and furthermore, convergence to this value is exponential in the quantity ξ2/σ2.

A remarkable aspect of this conclusion is the fact that convergence to the high-SNR regime

depends solely on ξ, the smallest nonzero component of x, rather than having a more com-

plex dependency on all the S nonzero components of x. For example, one might imagine the

behavior of an estimator to be rather different when all nonzero components have the same

value ξ, as opposed to the situation in which one component equals ξ and the others are much

larger. However, our analysis shows that when ξ ≫ σ, the remaining components of x have no

effect on the performance of the LMVU estimator. We will next investigate whether practical

estimators also exhibit such an effect.

To answer this question, we examined the MSE of the ML estimator (5.7) for a wide range

of parameter vectors x having a predetermined smallest component ξ. More specifically, for

a given value of ξ, we randomly generated 100 parameter vectors xr, r = 1, . . . , 100, with

xr∈XS and ‖xr‖0=S, whose minimum nonzero component was equal to ξ. The other nonzero

components were generated as independent, identically distributed realizations of the random

variable x = ξ(1 + 3σ|q|), where q ∼ N (0, 1) is a standard Gaussian random variable and σ

is the standard deviation of the noise. The MSE ε(xr; x̂ML) of the ML estimator is shown in

Fig. 5.2 for N = 10, S= 4, and four different SNRs ξ2/σ2, with the horizontal axis representing

the different choices of xr in arbitrary order. It is seen that for large ξ, the performance of



5.5. NUMERICAL RESULTS 91

the ML estimator, like that of the LMVU, depends almost exclusively on ξ. This suggests that

the performance guarantees of Sections 5.3 and 5.4, while formally valid only for unbiased

estimators, can still provide general conclusions which are relevant to biased techniques such as

the ML estimator. Moreover, this result also justifies our definition of the SNR as the ratio ξ2/σ2,

since this is the most significant factor determining estimation performance for the SSNM.

5.5.4 Threshold Region Identification

In Sections 5.3 and 5.4, we characterized the performance of unbiased estimators as a means of

quantifying the difficulty of estimation for the SSNM. A common use of this analysis is in the

identification of the threshold region, a range of SNR values which constitutes a transition be-

tween low-SNR and high-SNR behavior [99–101]. Specifically, in many cases the performance

of estimators can be calculated analytically when the SNR is either very low or very high. It is

then important to identify the threshold region which separates these two regimes. Although

the analysis is based on bounds for unbiased estimators, the result is often heuristically as-

sumed to approximate the threshold region for biased techniques as well [99, 101].

For ‖x‖0 = S, the lower and upper bounds on the BB (HCRB(x) in (5.19), BBc(x) in (5.29))

exhibit a transition between a low-SNR region, where both bounds are on the order of Nσ2,

and a high-SNR region, for which both bounds converge to Sσ2. The BB therefore also displays

such a transition. One can define the threshold region of the SSNM (for unbiased estimation)

as the range of values of ¸2/σ2 in which this transition takes place. Since the BB is itself a lower

bound on the performance of unbiased estimators, one would expect the transition region of

actual estimators to occur at slightly higher SNR values than that of the BB.

To test this hypothesis, we compared the bounds of Sections 5.3 and 5.4 with the MSE of two

well-known estimation schemes, namely, the ML estimator in (5.7) and the hard-thresholding

(HT) estimator x̂HT(y), which is given componentwise as

x̂HT,k(y) =





yk, |yk| ≥ T

0, else

for a given threshold T > 0. In our simulations, we chose the commonly used value T =

σ
√

2 log N [2]. Note that since the ML and HT estimators are biased, their MSE is not bounded

by BBc(x), HCRB(x), and the CRB. Assuming SSNM parameters N = 10 and S= 4, we gener-

ated a number of parameter vectors x from the set R ,
{

c (1 1 1 1 0 0 0 0 0 0)T
}

c∈R
, where

c was varied to obtain a range of SNR values. For these x, we calculated the MSE of the two
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Figure 5.3: MSE of the ML and HT estimators compared with the performance bounds BBc(x),

HCRB(x), and CRB (≡ Sσ2), as a function of the SNR ξ2/σ2, for SSNM parameters N = 10,

S=4, and σ2=1.

estimators x̂ML and x̂HT by means of numerical integration (see Appendix 5.I for a discussion

of the computation of ε(x; x̂ML)).

The results are displayed in Fig. 5.3 as a function of the SNR ξ2/σ2. Although there is some

gap between the lower bound (HCRB) and the upper bound (BBc), a rough indication of the

behavior of the BB is conveyed. As expected, the threshold region exhibited by the ML and HT

estimators is somewhat higher than that predicted by the bounds. Specifically, the threshold

region of the BB (as indicated by the bounds) can be seen to occur at SNR values between −5

and 5 dB, while the threshold region of the ML and HT estimators is at SNR values between

5 and 12 dB. Another effect which is visible in Fig. 5.3 is the convergence of the ML estimator

to the BB at high SNR; this is a manifestation of the well-known fact that the ML estimator is

asymptotically unbiased and asymptotically optimal. Finally, at low SNR, both the ML and

HT estimators are better than the best unbiased approach. This is because unbiased methods

generally perform poorly at low SNR, so that even the best unbiased technique is outperformed

by the biased ML and HT estimators. On the other hand, for medium SNR, the MSE of the ML

and HT estimators is significantly higher than the BB. Thus, there is a potential for unbiased

estimators to perform better than biased estimators in the medium-SNR regime.

One may argue that considering only parameter vectors x in the set R is not representa-

tive, since R covers only a small part of the parameter space XS. However, the choice of R is

conservative in that the maximum deviation between HCRB(x) and BBc(x) is largest when the

nonzero entries of x have approximately the same magnitude, which is the case for each ele-
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Figure 5.4: Ratio BBc(x)/HCRB(x) versus the SNR ξ2/σ2 for different sets of parameter vectors

x.

ment of R. This is illustrated in Fig. 5.4, which shows the ratio between the two bounds versus

the SNR ξ2/σ2 for three different configurations of the nonzero entries in the parameter vector.

Specifically, we considered the two additional sets R2 ,
{

c (10 1 1 1 0 0 0 0 0 0)T
}

c∈R
and

R3 ,
{

c (0.1 1 1 1 0 0 0 0 0 0)T
}

c∈R
, in which the nonzero entries have different magni-

tudes. It can be seen from Fig. 5.4 that the ratio BBc(x)/HCRB(x) is indeed highest when x is

in R.

5.6 Conclusion

In this paper, we have studied unbiased estimation of a sparse vector in white Gaussian noise

within a frequentist setting. As we have seen, without the assumption of sparsity, there exists

only a single unbiased estimator. However, the addition of a sparsity assumption yields a rich

family of unbiased estimators. The analysis of the performance of these estimators has been

the primary goal of this paper. We first demonstrated that there exists no uniformly minimum

variance unbiased estimator, i.e., no single unbiased estimator is optimal for all parameter

values. Consequently, we focused on analyzing the Barankin bound (BB), i.e., the MSE of the

locally minimum variance unbiased estimator, or equivalently, the smallest MSE achievable by

an unbiased estimator for each value of the sparse vector.

For the sparse estimation problem considered, as for most estimation problems, the BB

cannot be computed precisely. However, we demonstrated that it can be characterized quite

accurately using numerical lower and upper bounds. Furthermore, we derived simple closed-
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form lower and upper bounds which are somewhat looser than the numerical bounds. These

closed-form bounds allow an estimation of the threshold region separating the low-SNR and

high-SNR regimes, and they indicate the asymptotic behavior of the BB at high SNR. In partic-

ular, a notable conclusion is that the high-SNR behavior of the BB depends solely on the value

of the smallest nonzero component of the sparse vector.

While the unbiasedness property is intuitively appealing and related to several desirable

asymptotic features of an estimator [6], one can often obtain biased estimators which outper-

form any unbiased estimator [42, 44, 91]. Thus, it is interesting to note that some of the conclu-

sions obtained from our analysis of unbiased estimators appear to provide insight into the be-

havior of standard biased estimators. In particular, we saw that the behavior of two commonly

used biased estimators at high SNR corresponds to the predictions of our unbiased bounds, not

only in terms of the asymptotically achievable MSE but also in certain finer details, such as the

SNR range of the threshold region and the fact that the convergence to the high-SNR regime

depends primarily on the value of the smallest nonzero component of the sparse vector, rather

than on the entire vector. This gives additional merit to the analysis of achievable estimation

performance within the unbiased setting.

5.A Proof of Theorem 5.1

We wish to show that for S= N, the only unbiased estimator with bounded MSE is the trivial

estimator x̂(y) = y. We will first show that a bounded MSE implies that x̂(y) is equivalent to

a tempered distribution. This will allow us to reformulate the unbiasedness condition in the

Fourier transform domain.

Using (5.3), the unbiasedness condition in (5.8) for S=N reads

1

(2πσ2)N/2

∫

RN
x̂(y) exp

(
− 1

2σ2
‖y−x‖2

2

)
dy = x for all x∈R

N . (5.31)

The integral in (5.31) is the convolution of x̂(y) with exp
(− 1

2σ2 ‖y‖2
2

)
. The result of this con-

volution, viewed as a function of x, must equal (2πσ2)N/2 x for all parameter vectors x. For

absolutely integrable functions, the Fourier transform maps a convolution onto a pointwise

product, and consequently it seems natural to consider the Fourier transform of condition (5.31)

in order to simplify the analysis. However, typically, the estimator function x̂(y) will be neither

absolutely integrable nor square integrable, and thus its Fourier transform can only exist in the

sense of a tempered distribution [102]. From a practical point of view, the class of tempered



5.A. PROOF OF THEOREM 5.1 95

distributions is large enough so that it does not exclude reasonable estimators such as the LS

estimator (5.7). The following lemma states that x̂(y) can be viewed as a tempered distribution

if it has a bounded MSE.

Lemma 5.9. Consider an estimator x̂ for the SSNM (5.2) with S = N. If x̂ has a bounded MSE, i.e.,

ε(x; x̂) ≤ C for all x ∈ RN (where C is a constant which may depend on N, S, and σ2), then x̂ is

equivalent to a tempered distribution.

Proof. The proof of Lemma 5.9 is based on the following result which gives a sufficient condi-

tion for a function x̂(y) to be (equivalent to) a tempered distribution.

Proposition 5.10 ([102]). If there exist constants B, n, R0∈ R+ such that

∫

‖y‖2≤R
‖x̂(y)‖2

2 dy ≤ BRn for all R ≥R0 (5.32)

then x̂(y) is equivalent to a tempered distribution.

Let x̂(y) be an estimator function with bounded MSE, i.e., there exists a constant C such

that

Ex{‖x̂(y)− x‖2
2} ≤ C for all x∈XS . (5.33)

Defining the usual norm ‖ · ‖RV on the space of of random vectors by ‖y‖RV ,

√
Ex{‖y‖2

2}, we

can use the (reverse) triangle inequality ‖x̂(y)−x‖RV ≥ ‖x̂(y)‖RV − ‖x‖RV to obtain

√
Ex{‖x̂(y)− x‖2

2} ≥
√

Ex{‖x̂(y)‖2
2} −

√
Ex{‖x‖2

2} =
√

Ex{‖x̂(y)‖2
2} − ‖x‖2 .

From this, it follows that

√
Ex{‖x̂(y)‖2

2} ≤
√

Ex{‖x̂(y)− x‖2
2}+ ‖x‖2 ≤

√
C + ‖x‖2 for all x∈XS ,

where (5.33) has been used. Squaring both sides and using the inequality (x+ y)2 ≤ 2(x2 + y2),

we obtain

Ex{‖x̂(y)‖2
2} ≤ (

√
C + ‖x‖2)

2 ≤ 2 (C + ‖x‖2
2) for all x∈XS

or equivalently

1

(2πσ2)N/2

∫

RN
‖x̂(y)‖2

2 e−‖y−x‖2
2/(2σ2)dy ≤ 2(C + ‖x‖2

2) for all x∈XS. (5.34)

We will now show that (5.32) holds for R0 = 1, i.e., R ≥ 1. We define the N-dimensional

grid

G , {−m∆,−(m−1)∆, . . . ,−∆, 0, ∆, . . . , m∆}N
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where 0 < ∆ ≤ R (hence, R/∆ ≥ 1) and m = ⌊R/∆⌋ ≤ R/∆. The number of grid points in any

single dimension satisfies

2m +1 ≤ 2R

∆
+ 1 (5.35)

so that

|G| = (2m +1)N ≤
(

2R

∆
+ 1

)N

. (5.36)

We thus have

∑
x∈G

‖x‖2
2 = ∑

x∈G

N

∑
k=1

x2
k =

N

∑
k=1

∑
x∈G

x2
k =

N

∑
k=1

[
(2m +1)N−1

m

∑
l=−m

(l∆)2

]
= N(2m +1)N−1

m

∑
l=−m

(l∆)2

≤ N(2m +1)N−1∆2
∫ R/∆

x=−R/∆
x2dx ≤ N

(
2R

∆
+ 1

)N−1 2

3

R3

∆
(5.37)

where (5.35) was used in the last step. Furthermore, for c , 1
(2πσ2)N/2 e−N∆2/(2σ2), we have

1

c

1

(2πσ2)N/2 ∑
x∈G

e−‖y−x‖2
2/(2σ2) ≥ 1 , for all y with ‖y‖2 ≤ R (5.38)

In order to verify this inequality, consider an arbitrary y∈RN with ‖y‖2 ≤ R. Since 0 < ∆ ≤ R,

and since ‖y‖2 ≤ R implies that no component yk of y can be larger than R, there always exists

a grid point x̃ ∈ G (dependent on y) such that |yk − x̃k| ≤ ∆ for all k ∈ {1, . . . , N}. It follows

that ‖y − x̃‖2
2 ≤ N∆2 and, in turn,

e−N∆2/(2σ2) ≤ e−‖y−x̃‖2
2/(2σ2) ≤ ∑

x∈G
e−‖y−x‖2

2/(2σ2) , ‖y‖2 ≤ R

which is equivalent to (5.38).

Successively using (5.38), (5.34), (5.36), (5.37), and 1 ≤ 2R/∆, we obtain the following se-

quence of inequalities:

∫

‖y‖2≤R
‖x̂(y)‖2

2 dy ≤
∫

‖y‖2≤R
‖x̂(y)‖2

2

[
1

c

1

(2πσ2)N/2 ∑
x∈G

e−‖y−x‖2
2/(2σ2)

]
dy

≤ 1

c ∑
x∈G

1

(2πσ2)N/2

∫

RN
‖x̂(y)‖2

2 e−‖y−x‖2
2/(2σ2)dy

≤ 1

c ∑
x∈G

2(C + ‖x‖2
2)

≤ 2

c

[(
2R

∆
+ 1

)N

C + N

(
2R

∆
+ 1

)N−1 2

3

R3

∆

]

≤ 2

c

[(
4R

∆

)N

C + N

(
4R

∆

)N−1 2

3

R3

∆

]
. (5.39)
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It then follows from (5.39) that for R ≥ 1

∫

‖y‖2≤R
‖x̂(y)‖2

2 dy ≤ 2

c

[(
4

∆

)N

RN+2C + N

(
4

∆

)N−1 2

3

RN+2

∆

]

≤ 2

c

RN+2

∆N

(
4NC + N4N 2

3

)

=
22N+1

c ∆N

(
C +

2N

3

)
RN+2 .

Thus, we have established that under the conditions of Lemma 5.9 (bounded MSE), the bound

(5.32) holds with R0 = 1, B = 22N+1

c ∆N (C + 2N/3), and n = N + 2. Therefore, it follows from

Proposition 5.10 that an estimator with bounded MSE is equivalent to a tempered distribution.

This concludes the proof of Lemma 5.9. �

We now continue our proof of Theorem 5.1. Any estimator x̂(y) for the SSNM (5.2) can be

written as

x̂(y) = y + x̂′(y) (5.40)

with the correction term x̂′(y) , x̂(y) − y. Because Ex{x̂(y)} = Ex{y} + Ex{x̂′(y)} = x +

Ex{x̂′(y)}, x̂(y) is unbiased if and only if

b(x; x̂) = Ex{x̂′(y)} ≡ 1

(2πσ2)N/2

∫

RN
x̂′(y) e−‖y−x‖2

2/(2σ2)dy = 0 for all x∈XS . (5.41)

Remember that we assume that x̂ has a bounded MSE, so that according to our above proof

of Lemma 5.9, the estimator function x̂(y) satisfies condition (5.32) with n = N + 2, i.e.,

∫

‖y‖2 ≤ R
‖x̂(y)‖2

2 dy ≤ BRN+2 for all R ≥ 1 (5.42)

with B as given at the end of the proof of Lemma 5.9. We will also need the following bound,

in which R , [−R, R]N :

∫

‖y‖2≤R
‖y‖2

2 dy ≤
∫

R
‖y‖2

2 dy =
N

∑
k=1

∫

R
y2

k dy =
N

∑
k=1

(2R)N−1 2

3
R3 =

N

3
2N RN+2 . (5.43)
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We then have for the correction term x̂′(y), for all R ≥ 1,

∫

‖y‖2≤R
‖x̂′(y)‖2

2 dy =
∫

‖y‖2≤R
‖x̂(y)− y‖2

2 dy

≤
∫

‖y‖2≤R
2
(
‖x̂(y)‖2

2 + ‖y‖2
2

)
dy

= 2

( ∫

‖y‖2≤R
‖x̂(y)‖2

2 dy +
∫

‖y‖2≤R
‖y‖2

2 dy

)

≤ 2

(
BRN+2 +

N

3
2N RN+2

)

=

(
2B +

N

3
2N+1

)
RN+2

where (5.42) and (5.43) have been used. Therefore, the correction term x̂′(y) also satisfies (5.32)

and thus, according to Proposition 5.10, it is equivalent to a tempered distribution.

The bias function b(x, x̂) in (5.41) is the convolution of x̂′(y) with the Gaussian function

(2πσ2)−N/2 e−‖y‖2
2/(2σ2). Because S=N, we have XS =RN, and thus (5.41) holds for all x∈RN.

Since x̂′(y) is a tempered distribution and the Gaussian function is in the Schwartz class, it

follows that the Fourier transform of the convolution product (5.41) is a smooth function which

can be calculated as the pointwise product x̄′(ȳ) e−‖ȳ‖2
2/(2σ2), where x̄′(ȳ) denotes the Fourier

transform of x̂′(y) [102]. Therefore, (5.41) is equivalent to x̄′(ȳ) e−‖ȳ‖2
2/(2σ2) = 0 for all ȳ∈RN.

This can only be satisfied if x̄′(ȳ) ≡ 0, which in turn implies that x̂′(y) ≡ 0 (up to deviations of

zero measure) and further, by (5.40), that x̂(y) = y. Recalling that XS =RN, it is clear from (5.5)

that x̂(y) = y is the LS estimator. Thus, we have shown that x̂LS(y) = y is the unique unbiased

estimator for the SSNM with S=N.

5.B Proof of Theorem 5.3

We must show that there exists no UMVU estimator for the SSNM with S < N. The outline

of our proof is as follows. We first demonstrate that the unique solution of the optimization

problem (5.11) at the parameter value x=0, i.e., arg minx̂(·)∈U V(0; x̂), is the estimator x̂(0)(y) =

y. We then show that there exist unbiased estimators which have lower variance than x̂(0) at

other points x. This implies that neither x̂(0) nor any other estimator uniformly minimizes the

variance for all x among all unbiased estimators.

The estimator x̂(0)(y) = y is a solution of (5.11) when x=0 because the minimum variance

at x = 0 of any unbiased estimator is bounded below by Nσ2 and x̂(0)(y) = y achieves this
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lower bound [70]. To show that x̂(0) is the unique solution of (5.11) for x = 0, suppose by

contradiction that there exists a second unbiased estimator x̂a different from x̂(0), also having

variance Nσ2 at x = 0. Consider the estimator x̂new , (x̂(0) + x̂a)/2. Since x̂(0) and x̂a are

unbiased, x̂new is unbiased as well. Thus, its variance is (see (5.4)) V(x; x̂new) = P(x; x̂new) −
‖x‖2

2. In particular, we obtain for x=0

V(0; x̂new) = P(0; x̂new) = Ex=0

{∥∥∥∥
1

2
(x̂(0) + x̂a)

∥∥∥∥
2

2

}

=
1

4

[
Ex=0

{‖x̂(0)‖2
2

}
+ Ex=0

{‖x̂a‖2
2

}
+ 2Ex=0

{
(x̂(0))T x̂a

}]

(∗)
<

1

4

[
Ex=0

{
‖x̂(0)‖2

2

}
+ Ex=0

{
‖x̂a‖2

2

}
+ 2
√

Ex=0

{
‖x̂(0)‖2

2

}
Ex=0

{
‖x̂a‖2

2

} ]

=
1

4
· 4Nσ2 = Nσ2

where the strict inequality (∗) follows from the Cauchy-Schwarz inequality applied to the inner

product Ex=0

{
(x̂(0))T x̂a

}
, combined with the fact that x̂(0) and x̂a are not linearly dependent

(indeed, x̂a 6= cx̂(0) since x̂(0) and x̂a were assumed to be different unbiased estimators). This

inequality means that the variance of x̂new at x = 0 is lower than Nσ2. But this is impossible,

as Nσ2 is the minimum variance at x = 0 achieved by any unbiased estimator. Thus, we have

shown that x̂(0) is the unique solution of (5.11) for x=0.

Next, still for S < N, we consider the specific parameter value x′ ∈ XS whose components

are given by

x′k =





1, k = 2, . . . , S+1,

0, else.

The estimator x̂(0) has variance V(x′; x̂(0))=Nσ2 at x′ (and at all other x∈XS). We will now con-

struct an unbiased estimator x̂b(y) whose variance at x′ is smaller than Nσ2. The components

of this estimator are defined as

x̂b,k(y) ,





y1 + Ay1 ∏
S+1
l=2 h(yl), k = 1

yk , k = 2, . . . , N
(5.44)

where

h(y) ,





sgn(y), |y| ∈ [0.4, 0.6]

0, else

and A ∈ R is a parameter to be determined shortly.4 A direct calculation shows that x̂b(y) is

4The interval [0.4, 0.6] in the definition of h(y) is chosen rather arbitrarily. Any interval which ensures that β in

(5.45) is nonzero can be used.



100 CHAPTER 5. BOUNDS FOR SPARSE ESTIMATION WITH A UNITARY DICTIONARY

unbiased for all x∈XS. Note that x̂b(y) is identical to x̂(0)(y) = y except for the first component,

x̂b,1(y).

We recall that for unbiased estimators, minimizing the variance V(x; x̂) is equivalent

to minimizing the mean power P(x; x̂) = Ex

{
‖x̂(y)‖2

2

}
(see (5.4)); furthermore, P(x; x̂) =

∑
N
k=1 P(x; x̂k) with P(x; x̂k) , Ex

{
(x̂k(y))

2
}

. For the proposed estimator x̂b, P(x′; x̂b,k) =

P
(
x′; x̂

(0)
k

)
except for k = 1. Therefore, our goal is to choose A such that P(x′; x̂b,1) is smaller

than P
(

x′; x̂
(0)
1

)
= σ2 + (x′1)

2 = σ2. We have

P(x′; x̂b,1) = Ex′

{(
y1 + Ay1

S+1

∏
l=2

h(yl)

)2}
= αA2 + βA + γ (5.45)

with

α = Ex′

{
y2

1

S+1

∏
l=2

h2(yl)

}
, β = Ex′

{
2y2

1

S+1

∏
l=2

h(yl)

}
, γ = Ex′

{
y2

1

}
= σ2.

Note that γ = P
(

x′; x̂
(0)
1

)
. From (5.45), the A minimizing P(x′; x̂b,1) is obtained as −β/(2α);

the associated minimum P(x′; x̂b,1) is given by γ − β2/(4α2). It can be shown that β is nonzero

due to the construction of h(y). It follows that β is positive, and therefore P(x′; x̂b,1) is smaller

than γ = P
(

x′; x̂
(0)
1

)
. Thus, using A = −β/(2α) in (5.44), we obtain an estimator x̂b which has

a smaller component power P(x′; x̂b,1) than x̂(0). Since P(x′; x̂b,k) = P
(
x′; x̂

(0)
k

)
for k = 2, . . . , N,

it follows that the overall mean power of x̂b at x′ is smaller than that of x̂(0), i.e., P(x′; x̂b) <

P(x′; x̂(0)). Since both estimators are unbiased, this moreover implies that at x′, the variance of

x̂b is smaller than that of x̂(0). Thus, x̂(0) cannot be the LMVU estimator at x= x′. On the other

hand, as we have seen, x̂(0) is the unique LMVU estimator at x = 0. We conclude that there

does not exist a single unbiased estimator which simultaneously minimizes the variance for all

parameters x∈XS.

5.C Proof of Proposition 5.4

We begin by stating the multivariate HCRB.

Proposition 5.11 (Gorman and Hero [52]). Let f (y; x) be a family of pdf’s of y indexed by x ∈XS,

and let x + v1, . . . , x + vp be a set of points in XS. Given an estimator x̂, define

mx , Ex{x̂}

δimx , mx+vi
− mx

δmx , (δ1mx · · · δpmx)
T
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and

δi f , f (y; x + vi)− f (y; x)

δ f , (δ1 f · · · δp f )T

Q , Ex

{
δ f

f

δ f T

f

}
. (5.46)

Then, the covariance matrix of x̂ satisfies

C(x; x̂) � δmT
x Q†δmx. (5.47)

We will now prove Proposition 5.4 by applying the multivariate HCRB (5.47) to the case of

unbiased estimation under Gaussian noise. For an unbiased estimator x̂, we have mx = x, so

δimx = vi and further

δmx = V , (v1 · · · vp) (5.48)

(see (5.14)). We next show that the matrix Q in (5.46) coincides with J in (5.15). Because of the

Gaussian noise, f (y; x) = (2πσ2)−N/2 exp
(−‖y − x‖2

2/(2σ2)
)
, and thus we obtain by direct

calculation
δi f

f
= exp

(
2vT

i (y−x)− ‖vi‖2
2

2σ2

)
− 1

and consequently

(Q)i,j = Ex

{
δi f

f

δj f

f

}

= 1 − exp

(
−‖vi‖2

2

2σ2

)
Ex

{
exp

(
vT

i (y−x)

σ2

)}
− exp

(
−‖vj‖2

2

2σ2

)
Ex

{
exp

(
vT

j (y−x)

σ2

)}

+ exp

(
−‖vi‖2

2 + ‖vj‖2
2

2σ2

)
Ex

{
exp

(
(vi + vj)

T(y−x)

σ2

)}
.

Now Ex

{
exp

(
aT(y−x)

)}
is the moment-generating function of the zero-mean Gaussian ran-

dom vector y−x, which equals exp
(
‖a‖2

2 σ2/2
)
. We thus have

(Q)i,j = 1 − exp

(
−‖vi‖2

2

2σ2

)
exp

(‖vi‖2
2

2σ2

)
− exp

(
−‖vj‖2

2

2σ2

)
exp

(
‖vj‖2

2

2σ2

)

+ exp

(
−‖vi‖2

2 + ‖vj‖2
2

2σ2

)
exp

(
‖vi + vj‖2

2

2σ2

)

= −1 + exp

(
vT

i vj

σ2

)
(5.49)

which equals (J)i,j in (5.15). Inserting (5.48) and (5.49) into (5.47), we obtain (5.13). Finally,

taking the trace of both sides of (5.13) yields (5.16).
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5.D Obtaining the CRB from the HCRB

We will demonstrate that the CRB (5.12) can be obtained as a limit of HCRBs (5.16) by choosing

the test points vi according to (5.17) and letting t → 0. Since the test points (5.17) are orthogonal

vectors, it follows from (5.15) that the matrix J is diagonal. More specifically, we have

J =





[
exp(t2/σ2)− 1

]
IS , ‖x‖0=S

[
exp(t2/σ2)− 1

]
IN , ‖x‖0<S .

Thus, both for ‖x‖0=S and for ‖x‖0<S, the pseudoinverse of J is obtained simply by inverting

the diagonal entries of J. From (5.16), we then obtain

ε(x; x̂) ≥





St2

exp(t2/σ2)− 1
, ‖x‖0=S

Nt2

exp(t2/σ2)− 1
, ‖x‖0<S .

(5.50)

We now use the third-order Taylor series expansion

exp

(
t2

σ2

)
= 1 +

t2

σ2
+

τ4

2σ4
, where τ∈ [0, t] . (5.51)

Substituting (5.51) into (5.50) yields

ε(x; x̂) ≥





St2

t2/σ2 + τ4/(2σ4)
, ‖x‖0=S

Nt2

t2/σ2 + τ4/(2σ4)
, ‖x‖0<S .

(5.52)

In the limit as t → 0, τ4 ∈ [0, t4] decays faster than t2, and thus the bound (5.52) converges to

the CRB (5.12).

The CRB can also be obtained by formally replacing exp
(
t2/σ2

)
with 1 + t2/σ2 in (5.50).

From (5.51), we have exp
(
t2/σ2

)
≥ 1 + t2/σ2 for all t > 0. This shows that for any t > 0, the

bound (5.50) is lower than the CRB (5.12). Thus, the CRB (which, as shown above, is obtained

using the test points (5.17) in the limit t → 0) is tighter than any bound that is obtained using

the test points (5.17) for any fixed t > 0.

5.E Proof of Theorem 5.5

We will prove the HCRB-type bound in (5.19). For ‖x‖0<S, (5.19) was already demonstrated by

the CRB (5.12), and thus it remains to show (5.19) for ‖x‖0 = S. This will be done by plugging
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the test points (5.18) into the HCRB (5.16), calculating the resulting bound for an arbitrary

constant t > 0, and then taking the limit as t → 0. We will use the following lemma, whose

proof is provided at the end of this appendix.

Lemma 5.12. Let P be an (r + 1)× (r + 1) matrix with the following structure:

P =


 a b1T

b1 M


 =




a b b b · · · b

b d c c · · · c

b c d c · · · c

b c c
. . .

. . .
...

...
...

...
. . .

. . . c

b c c · · · c d




(5.53)

where 1 is the column vector of dimension r whose entries all equal 1, and

M = (d−c)Ir + c11T. (5.54)

Let

q , rb2 − ad − (r−1)ac (5.55)

and assume that

d−c 6= 0 , d + (r−1)c 6= 0 , q 6= 0 . (5.56)

Then, P is nonsingular and its inverse is given by

P−1 =


 a′ b′1T

b′1 M ′


 =




a′ b′ b′ b′ · · · b′

b′ d′ c′ c′ · · · c′

b′ c′ d′ c′ · · · c′

b′ c′ c′
. . .

. . .
...

...
...

...
. . .

. . . c′

b′ c′ c′ · · · c′ d′




(5.57)

where M ′ = (d′− c′)Ir + c′11T and

a′ = −d + (r−1)c

q
, b′ =

b

q
, c′ =

ac − b2

(d−c)q
, d′ =

(r−1)b2 − (r−2)ac − ad

(d−c)q
. (5.58)

Let ‖x‖0 = S, and assume for concreteness and without loss of generality that supp(x) =

{1, . . . , S} and that ξ, the smallest (in magnitude) nonzero component of x, is the Sth entry. A

direct calculation of the matrix J in (5.15) based on the test points (5.18) then yields

J =


 aIS−1 0(S−1)×(r+1)

0(r+1)×(S−1) P


 .
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Here, P is an (r + 1)× (r + 1) matrix, where r = N− S, having the structure (5.53) with entries

a = et2/σ2− 1 , b = e−tξ/σ2− 1 , c = eξ2/σ2− 1 , d = e(t
2+ξ2)/σ2− 1 . (5.59)

We now apply Lemma 5.12 in order to show that J is nonsingular and to calculate its in-

verse. More precisely, it suffices to calculate the inverse for all but a finite number of values of

t, since any finite set of values can simply be excluded from consideration when t tends to 0.

When applying Lemma 5.12, we first have to verify that the conditions (5.56) hold for all but

a finite number of values of t. By substituting (5.59), it is seen that the left-hand sides of (5.56)

are nonconstant entire functions of t, and thus have a finite number of roots on any compact

set of values of t. By Lemma 5.12, this implies that J is nonsingular for all but a finite number

of values of values of t, and that the inverse (if it exists) is given by

J−1 =




1
a IS−1 0(S−1)×(r+1)

0(r+1)×(S−1) P−1


 (5.60)

where P−1 is given by (5.57) and (5.58), again with r = N− S. Next, we observe that for our

choice of test points (5.18),

V TV =


 t2 IS−1 0(S−1)×(r+1)

0(r+1)×(S−1) P̃


 (5.61)

where P̃ is an (r + 1)× (r + 1) matrix having the structure (5.53) with entries

ã = t2, b̃ = −tξ , c̃ = ξ2, d̃ = t2 + ξ2.

Using (5.16) together with (5.60) and (5.61), a direct calculation yields

ε(x; x̂) ≥ tr
(
V J†V T

)
= Tr

(
V TV J−1

)
=

N

∑
i=1

N

∑
j=1

(V TV)i,j(J−1)i,j

= (S−1)
t2

a
+ t2a′ − 2rtξb′ + r(r−1)ξ2c′ + r(t2+ ξ2)d′. (5.62)

We now take the limit t → 0 in (5.62). For the first term, we obtain

(S−1)
t2

a
= (S−1)

t2

et2/σ2− 1
= (S−1)

t2

t2/σ2 + o(t2)
−→ (S−1)σ2 (5.63)

where we have expanded et2/σ2
into a second-oder Taylor series. Here, o( f (t)) indicates terms

which are negligible compared with f (t) when t→ 0, i.e., limt→0 o( f (t))/ f (t) = 0. To find the

limit of the second term in (5.62), t2a′ = −(t2/q)[d + (r−1)c], we first consider the reciprocal

of the first factor, t2/q. We have

q

t2
=

1

t2

[
r
(
e−tξ/σ2− 1

)2 −
(
et2/σ2− 1

)(
e(t

2+ξ2)/σ2− 1
)
− (r−1)

(
et2/σ2− 1

)(
eξ2/σ2− 1

)]
.
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Expanding some of the t-dependent exponentials into Taylor series, dropping higher-order

terms, and simplifying, we obtain

q

t2
=

1

t2

[
r

(−tξ

σ2
+ o(t)

)2

−
(

t2

σ2
+ o(t2)

)(
e(t

2+ξ2)/σ2− 1
)
− (r−1)

(
t2

σ2
+ o(t2)

)(
eξ2/σ2− 1

)]

−→ r
ξ2

σ4
− 1

σ2

(
eξ2/σ2− 1

)
− (r−1)

1

σ2

(
eξ2/σ2− 1

)
=

r

σ4

[
ξ2 − σ2

(
eξ2/σ2− 1

)]
.

(5.64)

For the second factor, we obtain

d + (r−1)c = e(t
2+ξ2)/σ2− 1 + (r−1)

(
eξ2/σ2− 1

)
−→ r

(
eξ2/σ2− 1

)
. (5.65)

Then, using (5.64) and (5.65), it is seen that the second term in (5.62) converges to

t2a′ = − t2

q
[d + (r−1)c] −→ − r(eξ2/σ2− 1)

r
σ4

[
ξ2 − σ2(eξ2/σ2− 1)

] = σ2

[
1 +

ξ2

σ2(eξ2/σ2− 1)− ξ2

]
. (5.66)

Next, we consider the third term in (5.62), −2rtξb′ , which can be written as −2rξ b/t
q/t2 . We have

b

t
=

1

t

(
e−tξ/σ2− 1

)
=

1

t

(−tξ

σ2
+ o(t)

)
−→ − ξ

σ2
.

Combining with (5.64), we obtain

−2rtξb′ −→ 2rξ
ξ/σ2

r
σ4

[
ξ2 − σ2(eξ2/σ2− 1)

] = 2σ2ξ2

ξ2 − σ2(eξ2/σ2− 1)
. (5.67)

The fourth and fifth terms in (5.62) have to be calculated together because each of them by

itself diverges. The sum of these terms is

r(r−1)ξ2c′ + r(t2+ ξ2)d′ =
r

(d−c)q

[
(r−1)ξ2(ac − b2) + (t2+ ξ2)[(r−1)b2 − (r−2)ac − ad]

]

=
r

(d−c)q

[
−ξ2a(d−c) + t2[(r−1)b2 − (r−2)ac − ad]

]

= − rξ2a

q
+

rt2

(d−c)q
(q + ac − b2)

= − rξ2a

q︸ ︷︷ ︸
z1

+
rt2

d−c︸︷︷︸
z2

+
rt2

(d−c)q
(ac − b2)

︸ ︷︷ ︸
z3

. (5.68)

Using (5.64), z1 in (5.68) becomes

z1 = − rξ2a/t2

q/t2
= −rξ2 (e

t2/σ2− 1)/t2

q/t2

−→ −rξ2 1/σ2

r
σ4 [ξ2 − σ2(eξ2/σ2− 1)]

= − σ2ξ2

ξ2 − σ2(eξ2/σ2− 1)
. (5.69)
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Furthermore, a direct calculation yields

z2 =
rt2

e(t
2+ξ2)/σ2− eξ2/σ2 = re−ξ2/σ2 t2

et2/σ2− 1
−→ rσ2e−ξ2/σ2

. (5.70)

To take the limit of z3, first note that

ac − b2

d−c
=

(et2/σ2− 1)(eξ2/σ2− 1)− (e−tξ/σ2− 1)2

e(t
2+ξ2)/σ2− eξ2/σ2

−→ (t2/σ2)(eξ2/σ2− 1)− (−tξ/σ2)2

eξ2/σ2 t2/σ2
=

σ2(eξ2/σ2− 1)− ξ2

σ2eξ2/σ2 .

Together with (5.64), we thus have

z3 = r
t2

q

ac − b2

d−c
−→ r

1
r

σ4 [ξ2 − σ2(eξ2/σ2− 1)]

σ2(eξ2/σ2− 1)− ξ2

σ2eξ2/σ2 = −σ2e−ξ2/σ2
. (5.71)

Adding the limits of z1, z2, and z3 in (5.69)–(5.71), we find that the sum of the fourth and fifth

terms in (5.62) converges to

z1 + z2 + z3 −→ −σ2ξ2

ξ2 − σ2(eξ2/σ2− 1)
+ (r−1)σ2e−ξ2/σ2

. (5.72)

Finally, adding the limits of all terms in (5.62) as given by (5.63), (5.66), (5.67), and (5.72) and

simplifying, we obtain the following result for the limit of the bound (5.62) for t → 0:

ε(x; x̂) ≥ Sσ2 + (r−1)σ2e−ξ2/σ2
.

This equals (5.19), as claimed.

Proof of Lemma 5.12: We first calculate the inverse of M in (5.54). Applying the Sherman–

Morrison–Woodbury formula [103, §2.8]

(
A + cuvT

)−1
= A−1 − c

1 + cvTA−1u
A−1uvTA−1

to (5.54) and simplifying yields

M−1 =
1

d−c
Ir −

c

(d−c)[d + (r−1)c]
11T. (5.73)

Next, we invoke the block inversion lemma [103, §2.8]


A BT

B M



−1

=


 E−1 −E−1BT M−1

−M−1BE−1 M−1 + M−1BE−1BT M−1


 , with E , A − BT M−1B .

Specializing to A = a and B = b1 as is appropriate for P in (5.53), we obtain for the inverse of

P

P−1 =


 1/e −(b/e)1T M−1

−(b/e)M−11 M−1 + (b2/e)M−111T M−1


 , with e , a − b21T M−11 . (5.74)
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We now develop the various blocks of P−1 by using the expression of M−1 in (5.73). We first

consider the upper-left block, 1/e. We have

e = a − b2

d−c
1T

[
Ir −

c

d + (r−1)c
11T

]
1 = a − b2

d−c

[
r − cr2

d + (r−1)c

]
=

ad + (r−1)ac − rb2

d + (r−1)c
.

Thus, using the definitions in (5.55) and (5.58) yields

1

e
= −d + (r−1)c

q
= a′ (5.75)

which proves the validity of the upper-left entry of P−1 in (5.57). Next, using (5.73) and (5.75)

and simplifying, the upper-right block in (5.74) becomes

−b

e
1T M−1 = −ba′

[
1

d−c
− rc

(d−c)[d + (r−1)c]

]
1T = − ba′

d + (r−1)c
1T =

b

q
1T = b′1T.

Thus, we have shown the validity of the first row and first column of P−1 in (5.57). Finally, to

develop the remaining block M−1 + (b2/e)M−111T M−1 in (5.74), we first calculate

u , M−11 =
1

d−c

[
1 − rc

d + (r−1)c

]
1 =

1

d + (r−1)c
1 . (5.76)

We then have

M−1 +
b2

e
M−111T M−1 = M−1 + b2a′uuT =

1

d−c
Ir −

1

d + (r−1)c

[
c

d−c
+

b2

q

]
11T (5.77)

where (5.73), (5.76), and the definition of a′ in (5.58) were used. Using the definition of q in

(5.55) and simplifying, the factor in brackets can be written as

c

d−c
+

b2

q
=

cq + (d−c)b2

(d−c)q
=

[d + (r−1)c](b2− ac)

(d−c)q
.

Substituting back into (5.77), we obtain

M−1 +
b2

e
M−111T M−1 =

1

d−c
Ir −

b2− ac

(d−c)q
11T =

1

d−c
Ir + c′11T.

Thus, within the r×r lower-right block of P−1, the off-diagonal entries all equal c′, as required.

Furthermore, the diagonal entries in this block are given by

1

d−c
− b2− ac

(d−c)q
=

(r−1)b2 − ad − (r− 2)ac

(d−c)q
= d′

which completes the proof of the lemma. �
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5.F Proof of Lemma 5.6

Let x∈XS with ‖x‖0 =S and consider a fixed k ∈ supp(x). We have to show that a solution of

(5.21), i.e.,

arg min
x̂(·)∈U k

Ex

{
(x̂(y))2

}
, with U k =

{
x̂(·)

∣∣ Ex̃{x̂(y)} = x̃k for all x̃∈XS

}
(5.78)

is given by x̂
(x)
k (y) = yk. Let ε0 , minx̂(·)∈U k Ex

{
(x̂(y))2

}
denote the mean power of the LMVU

estimator defined by (5.78). We will show that ε0 ≥ σ2 + x2
k and, furthermore, that σ2 + x2

k is

achieved by the estimator x̂
(x)
k (y) = yk.

Let Ck
x denote the set of all S-sparse vectors x̃ which equal x except possibly for the kth

component, i.e., Ck
x ,

{
x̃ ∈ XS

∣∣ x̃l = xl for all l 6= k
}

. Consider the modified optimization

problem

arg min
x̂(·)∈U k

x

Ex

{
(x̂(y))2

}
, with U k

x ,
{

x̂(·)
∣∣ Ex̃{x̂(y)} = x̃k for all x̃∈ Ck

x

}
(5.79)

and let ε′0 , minx̂(·)∈U k
x
Ex

{
(x̂(y))2

}
denote the mean power of the estimator defined by (5.79).

Note the distinction between U k and U k
x : U k is the set of estimators of xk which are unbiased

for all x̃∈XS whereas U k
x is the set of estimators of xk which are unbiased for all x̃∈XS which

equal a given, fixed x except possibly for the kth component. Therefore, the unbiasedness

requirement expressed by U k is more restrictive than that expressed by U k
x , i.e., U k ⊆ U k

x , which

implies that

ε′0 ≤ ε0 . (5.80)

We will use the following result, which is proved at the end of this appendix.

Lemma 5.13. Given an arbitrary estimator x̂(y) ∈ U k
x , the estimator

x̂c(yk) , Ex{x̂(y)|yk} (5.81)

also satisfies the constraint x̂c(yk) ∈ U k
x , and its mean power does not exceed that obtained by x̂, i.e.,

Ex{(x̂c(yk))
2} ≤ Ex{(x̂(y))2}.

Thus, to each estimator x̂(y) ∈ U k
x which depends on the entire observation y, we can al-

ways find at least one estimator x̂c(yk) ∈ U k
x which depends only on the observation component

yk and is at least as good. Therefore, with no loss in optimality, we can restrict the optimization

problem (5.79) to estimators x̂(yk) ∈ U k
x which depend on y only via its kth component yk. This
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means that (5.79) can be replaced by

arg min
x̂(·)∈ Ũ k

Ex

{
(x̂(yk))

2
}

, with Ũ k ,
{

x̂(·)
∣∣ Ex̃{x̂(yk)} = x̃k for all x̃∈R

N
}

. (5.82)

Note that in the definition of Ũ k, we can use the requirement x̃∈RN instead of x̃∈Ck
x since the

expectation Ex̃{x̂(yk)} does not depend on the components x̃l with l 6= k. The corresponding

minimum mean power minx̂(·)∈ Ũ k Ex

{
(x̂(yk))

2
}

is still equal to ε′0. However, the new problem

(5.82) is equivalent to the classical problem of finding the LMVU estimator of a scalar xk based

on the observation yk = xk + nk, with nk ∼ N (0, σ2). A solution of this latter problem is the

estimator x̂(yk) = yk, whose variance and mean power are σ2 and σ2 + x2
k , respectively [90].

Thus, a solution of (5.82) or, equivalently, of (5.79) is the trivial estimator x̂(yk) = yk, and

ε′0 = σ2 + x2
k . (5.83)

Combining (5.80) and (5.83), we see that the minimum mean power for our original opti-

mization problem (5.78) satisfies

ε0 ≥ σ2 + x2
k .

As we have shown, this lower bound is achieved by the estimator x̂(yk) = yk. In addition,

x̂(yk) = yk is an element of U k, the constraint set of (5.78). Therefore, it is a solution of (5.78).

Proof of Lemma 5.13: Consider a fixed x∈XS and an estimator x̂(y) ∈ U k
x . In order to show

the first statement of the lemma, x̂c(yk) ∈ U k
x , we first note that

Ex{x̂(y)|yk} = Ex̃{x̂(y)|yk} , for any x̃∈ Ck
x . (5.84)

We now have for x̃∈ Ck
x

Ex̃{x̂c(yk)}
(a)
= Ex̃{Ex{x̂(y)|yk}}

(b)
= Ex̃{Ex̃{x̂(y)|yk}}

(c)
= Ex̃{x̂(y)} (d)

= x̃k

where we used the definition (5.81) in (a), the identity (5.84) in (b), the law of total probability

[104] in (c), and our assumption x̂(y) ∈ U k
x in (d). Thus, x̂c(yk) ∈ U k

x .

Next, the inequality Ex{(x̂c(yk))
2} ≤ Ex{(x̂(y))2} is proved as follows:

Ex{(x̂(y))2} (a)
= Ex{Ex{(x̂(y))2|yk}}

(b)

≥ Ex{(Ex{x̂(y)|yk})2} (c)
= Ex{(x̂c(yk))

2}

where we used the law of total probability in (a), Jensen’s inequality for convex functions [98]

in (b), and the definition (5.81) in (c). �
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5.G Proof of Lemma 5.7

We wish to solve the componentwise optimization problem (5.26), i.e.,

arg min
x̂(·)∈U k∩Ak

x

Ex

{
(x̂(y))2

}
, (5.85)

for k /∈ supp(x). Note that xk =0 and, thus, the variance equals the mean power Ex

{
(x̂(y))2

}
.

We first observe that the constraint x̂∈Ak
x implies that the estimator x̂ is unbiased, and thus

U k ∩Ak
x = Ak

x. Indeed, using (5.22) and xk =0, we have

Ex{x̂(y)} = Ex{yk}︸ ︷︷ ︸
xk (=0)

+ Ex{x̂′(y)}

= xk +
1

(2πσ2)N/2

∫

RN
x̂′(y) e−‖y−x‖2

2/(2σ2)dy

= xk +
1

(2πσ2)N/2

∫

RN−1
e−‖y∼k−x∼k‖2

2/(2σ2)

[ ∫ ∞

−∞
x̂′(y) e−(yk−0)2/(2σ2)dyk

︸ ︷︷ ︸
0

]
dy∼k

= xk (5.86)

where x∼k and y∼k denote the (N−1)-dimensional vectors obtained from x and y by re-

moving the kth component xk and yk, respectively, and the result in (5.86) follows because
∫ ∞

−∞
x̂′(y) e−y2

k/(2σ2)dyk = 0 due to the odd symmetry assumption (5.24). Thus, we can replace

the constraint x̂(·) ∈ U k ∩Ak
x in (5.26) by x̂(·)∈Ak

x.

A solution of (5.26) can now be found by noting that for any x̂(·)∈Ak
x, we have

Ex

{
(x̂(y))2

}
=

1

(2πσ2)N/2

∫

RN

(
yk + x̂′(y)

)2
e−‖y−x‖2

2/(2σ2)dy

=
1

(2πσ2)N/2

∫

RN
y2

k e−‖y−x‖2
2/(2σ2)dy

+
1

(2πσ2)N/2

∫

RN

[
2yk x̂′(y) + (x̂′(y))2

]
e−‖y−x‖2

2/(2σ2)dy.

The first term is equal to σ2 + x2
k = σ2. Regarding the second term, let yk be the length-(S +1)

subvector of y that comprises all yl with l ∈ {k} ∪ supp(x). Due to (5.25), x̂′(y) depends

only on yk and can thus be written (with some abuse of notation) as x̂′(yk). Let ȳk denote

the complementary subvector of y, i.e., the length-(N−S−1) subvector comprising all yl with

l 6∈ {k}∪ supp(x). Furthermore, let xk and x̄k denote the analogous subvectors of x. The second

integral can then be written as the product

1

(2πσ2)(S+1)/2

∫

RS+1

[
2yk x̂′(yk) + (x̂′(yk))

2
]

e−‖yk−xk‖2
2/(2σ2)dyk

× 1

(2πσ2)(N−S−1)/2

∫

RN−S−1
e−‖ȳk−x̄k‖2

2/(2σ2)dȳk .
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The second factor is 1, and thus we have

Ex

{
(x̂(y))2

}
= σ2 +

1

(2πσ2)(S+1)/2

∫

RS+1

[
2yk x̂′(yk) + (x̂′(yk))

2
]

e−‖yk−xk‖2
2/(2σ2)dyk . (5.87)

Using the symmetry property (5.24), this can be written as

Ex

{
(x̂(y))2

}
= σ2 +

2

(2πσ2)(S+1)/2

∫

R
S+1
+

[
2x̂′(yk)b(yk) + (x̂′(yk))

2c(yk)
]
dyk , (5.88)

with

b(yk) , yk e−y2
k/(2σ2) ∏

l∈supp(x)

[
e−(yl−xl)

2/(2σ2) − e−(yl+xl)
2/(2σ2)

]
(5.89)

c(yk) , e−y2
k/(2σ2) ∏

l∈supp(x)

[
e−(yl−xl)

2/(2σ2) + e−(yl+xl)
2/(2σ2)

]
. (5.90)

We sketch the derivation of expressions (5.89) and (5.90) by showing the first of S + 1 similar

sequential calculations. For simplicity of notation and without loss of generality, we assume

for this derivation that k =1 and supp(x) = {2, . . . , S +1}. The integral in (5.87) then becomes

∫

RS+1

[
2yk x̂′(yk) + (x̂′(yk))

2
]

e−‖yk−xk‖2
2/(2σ2)dyk

=
∫

RS+1

[
2y1 x̂′(y1) + (x̂′(y1))

2
]
[

S+1

∏
l=1

e−(yl−xl)
2/(2σ2)

]
dy1 . (5.91)

The
∫

RS+1 integration can now be represented as
∫

RS×(R+∪R−)
, where the component

∫
RS refers

to y1, . . . , yS and the component
∫

R+∪R−
refers to yS+1. Then (5.91) can be further processed as

∫

RS×R+

[
2y1 x̂′(y1) + (x̂′(y1))

2
]
[

S+1

∏
l=1

e−(yl−xl)
2/(2σ2)

]
dy1

+
∫

RS×R−

[
2y1 x̂′(y1) + (x̂′(y1))

2
]
[

S+1

∏
l=1

e−(yl−xl)
2/(2σ2)

]
dy1

(∗)
=
∫

RS×R+

[
2y1 x̂′(y1)

(
e−(yS+1−xS+1)

2/(2σ2) − e−(yS+1+xS+1)
2/(2σ2)

)

+ (x̂′(y1))
2
(
e−(yS+1−xS+1)

2/(2σ2) + e−(yS+1+xS+1)
2/(2σ2)

)]
[

S

∏
l=1

e−(yl−xl)
2/(2σ2)

]
dy1

where the odd symmetry property (5.24) was used in (∗). After performing this type of manip-

ulation S times, the integral is obtained in the form

∫

R×RS
+

[
2y1 x̂′(y1)

S+1

∏
l=2

(
e−(yl−xl)

2/(2σ2) − e−(yl+xl)
2/(2σ2)

)

+ (x̂′(y1))
2

S+1

∏
l=2

(
e−(yl−xl)

2/(2σ2) + e−(yl+xl)
2/(2σ2)

)
]

e−y2
1/(2σ2) dy1
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where x1= 0 was used. With y1 x̂′(y1, . . .) = (−y1)x̂′(−y1, . . .), this becomes further

∫

R+×RS
+

[
2y1 x̂′(y1)2e−y2

1/(2σ2)
S+1

∏
l=2

(
e−(yl−xl)

2/(2σ2) − e−(yl+xl)
2/(2σ2)

)

+ (x̂′(y1))
22e−y2

1/(2σ2)
S+1

∏
l=2

(
e−(yl−xl)

2/(2σ2) + e−(yl+xl)
2/(2σ2)

)
]

dy1 .

Finally, removing our “notational simplicity” assumptions k =1 and supp(x) = {2, . . . , S +1},

this can be written for general k and supp(x) as

2e−y2
k/(2σ2)

∫

R
S+1
+

[
2yk x̂′(yk) ∏

l∈supp(x)

(
e−(yl−xl)

2/(2σ2) − e−(yl+xl)
2/(2σ2)

)

+ (x̂′(yk))
2 ∏
l∈supp(x)

(
e−(yl−xl)

2/(2σ2) + e−(yl+xl)
2/(2σ2)

)
]

dyk . (5.92)

Inserting (5.92) into (5.87) yields (5.88).

The integral
∫

R
S+1
+

[
2x̂′(yk)b(yk) + (x̂′(yk))

2c(yk)
]
dyk is minimized with respect to x̂′(yk)

by minimizing the integrand 2x̂′(yk)b(yk) + (x̂′(yk))
2c(yk) pointwise for each value of yk ∈

R
S+1
+ . This is easily done by completing the square in x̂′(yk), yielding the optimization problem

minx̂′(yk)

[
x̂′(yk) + b(yk)/c(yk)

]2
. Thus, the optimal x̂′(yk) is obtained as

x̂′k,x(yk) , −b(yk)

c(yk)
= − yk ∏

l∈supp(x)

tanh

(
xlyl

σ2

)
for all yk ∈R

S+1
+

and the corresponding pointwise minimum of the integrand is given by −(b(yk))
2/c(yk). The

extension x̂′k,x(y) to all y ∈ RN is then obtained using the properties (5.24) and (5.25), and the

optimal component estimator solving (5.26) follows as x̂k,x(y) = yk + x̂′k,x(y). The correspond-

ing minimum variance, denoted by BBk
c(x), is obtained by substituting the minimum value of

the integrand, −(b(yk))
2/c(yk), in (5.88). This yields

BBk
c(x) , Ex

{
(x̂k,x(y))

2
}
= σ2 − 2

(2πσ2)(S+1)/2

∫

R
S+1
+

(b(yk))
2

c(yk)
dyk . (5.93)

Inserting (5.89) and (5.90) into (5.93) and simplifying gives (5.27).

5.H Proof of Equation (5.30)

To show (5.30), we consider g(x; σ2) for x ≥ 0 (this is sufficient since g(−x; σ2) = g(x; σ2)), and

we use the simple bound tanh(x) ≥ 1 − e−x, which can be verified using elementary calculus.
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We then obtain from (5.28), for x ≥ 0,

g(x; σ2) ≥ 1√
2πσ2

∫ ∞

0
e−(x2+y2)/(2σ2) sinh

(
xy

σ2

)(
1 − e−xy/σ2)

dy

=
1√

2πσ2

∫ ∞

0

[
e−(x−y)2/(2σ2) − e−(x+y)2/(2σ2)

](
1 − e−xy/σ2)

dy

=
1√

2πσ2

∫ ∞

0

[
e−(x−y)2/(2σ2) − e−(x2+y2)/(2σ2) − e−(x+y)2/(2σ2) + e−(x+y)2/(2σ2)e−xy/σ2]

dy

≥ 1√
2πσ2

∫ ∞

0

[
e−(x−y)2/(2σ2) − e−(x2+y2)/(2σ2) − e−(x+y)2/(2σ2)

]
dy

=
1√

2πσ2

∫ ∞

0
e−(x−y)2/(2σ2)dy − 1√

2πσ2

∫ ∞

0

[
e−(x2+y2)/(2σ2) + e−(x+y)2/(2σ2)

]
dy .

The first integral can be written as 1√
2πσ2

∫ ∞

0
e−(x−y)2/(2σ2)dy = 1 − 1√

2πσ2

∫ 0
−∞

e−(x−y)2/(2σ2)dy =

1 − 1√
2πσ2

∫ ∞

0 e−(x+y)2/(2σ2)dy. The bound thus becomes

g(x; σ2) ≥ 1 − 1√
2πσ2

∫ ∞

0

[
2e−(x+y)2/(2σ2) + e−(x2+y2)/(2σ2)

]
dy

= 1 − 1√
2πσ2

∫ ∞

0

[
2e−2xy/(2σ2) + 1

]
e−(x2+y2)/(2σ2)dy

(∗)
≥ 1 − 1√

2πσ2

∫ ∞

0
3e−(x2+y2)/(2σ2)dy

= 1 − 3√
2πσ2

e−x2/(2σ2)
∫ ∞

0
e−y2/(2σ2) dy

= 1 − 3

2
e−x2/(2σ2)

where e−2xy/(2σ2) ≤ 1 was used in (∗). This bound on g(x; σ2) is actually valid for all x ∈ R

because g(−x; σ2) = g(x; σ2). Inserting it in (5.27), we obtain

BBk
c(x) ≤

[
1 − ∏

l∈supp(x)

(
1 − 3

2
e−x2

l /(2σ2)

)]
σ2 . (5.94)
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The statement in (5.30) follows since we have (note that ∑I⊆supp(x) denotes the sum over all

possible subsets I of supp(x), including supp(x) and the empty set ∅)

1 − ∏
l∈supp(x)

(
1 − 3

2
e−x2

l /(2σ2)

)
= 1 − ∑

I⊆supp(x)
∏
l∈I

(
− 3

2
e−x2

l /(2σ2)

)

= − ∑
I⊆supp(x), I 6=∅

∏
l∈I

(
− 3

2
e−x2

l /(2σ2)

)

≤ ∑
I⊆supp(x), I 6=∅

∏
l∈I

(
3

2
e−x2

l /(2σ2)

)

≤ ∑
I⊆supp(x), I 6=∅

∏
l∈I

(
3

2
e−ξ2/(2σ2)

)

= ∑
I⊆supp(x), I 6=∅

(
3

2
e−ξ2/(2σ2)

)|I |

≤ ∑
I⊆supp(x), I 6=∅

(
3

2

)S

e−ξ2/(2σ2)

≤ 2S

(
3

2

)S

e−ξ2/(2σ2)

= 3Se−ξ2/(2σ2)

where we have used the fact that the number of different subsets I ⊆ supp(x) is 2| supp(x)|=2S.

Inserting the last bound in (5.94) and, in turn, the resulting bound on BBk
c(x) in (5.29) yields

(5.30).

5.I MSE of the ML Estimator

We calculate the MSE ε(x; x̂ML) of the ML estimator x̂ML in (5.7). Let x̂ML,k denote the kth

component of x̂ML. We have

ε(x; x̂ML) =
N

∑
k=1

Ex

{
(x̂ML,k − xk)

2
}

=
N

∑
k=1

[
Ex

{
x̂2

ML,k

}− 2Ex

{
x̂ML,k

}
xk + x2

k

]

=
N

∑
k=1

[
Ex{x̂2

ML,k}+
(
Ex{x̂ML,k} − xk

)2 − (Ex{x̂ML,k}
)2]

. (5.95)

Thus, we have to calculate the quantities Ex{x̂ML,k} and Ex{x̂2
ML,k}.

We recall that x̂ML,k(y) =
(
PS(y)

)
k
, where PS is an operator that retains the S largest (in

magnitude) components and zeros out all others. Let Lk denotes the set of vectors y for which
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yk is not among the S largest (in magnitude) components. We then have

x̂ML,k(y) =





yk , y 6∈Lk

0 , y∈Lk .

Equivalently, x̂ML,k(y) = yk[1− I(y∈Lk)], where I(y∈Lk) is the indicator function of the event

{y∈Lk} (i.e., I(y∈Lk) is 1 if y∈Lk and 0 else). Thus, we obtain Ex{x̂ML,k} as

Ex{x̂ML,k} = Ex

{
yk[1 − I(y∈Lk)]

}

= xk − Ex

{
ykI(y∈Lk)

}

(a)
= xk − E

(yk)
x

{
E
(y∼k)
x

{
ykI(y∈Lk)

∣∣yk

}}

(b)
= xk − E

(yk)
x

{
yk E

(y∼k)
x

{
I(y∈Lk)

∣∣yk

}}

= xk − E
(yk)
x

{
yk Px(y∈Lk|yk)

}
(5.96)

where the notations E
(yk)
x and E

(y∼k)
x indicate that the expectation is taken with respect to the

random quantities yk and y∼k, respectively (here, y∼k denotes y without the component yk)

and Px(y∈Lk|yk) is the conditional probability that y∈Lk, given yk. Furthermore, we used the

law of total probability in (a) and the fact that yk is held constant in the conditional expectation

Ex

{
ykI(y∈Lk)

∣∣yk

}
in (b). Similarily,

Ex{x̂2
ML,k} = Ex

{
y2

k [1 − I(y∈Lk)]
2
}

= Ex

{
y2

k [1 − I(y∈Lk)]
}

= σ2 + x2
k − Ex

{
y2

k I(y∈Lk)
}

= σ2 + x2
k − E

(yk)
x

{
y2

k Px(y∈Lk|yk)
}

. (5.97)

Calculating Ex{x̂ML,k} and Ex{x̂2
ML,k} is thus reduced to calculating the conditional probability

Px(y∈Lk|yk).

Let Mk , {1, . . . , N} \ {k}, and let P denote the set of all binary partitions (A,B) of the set

Mk, where A is at least of cardinality S:

P ,
{
(A,B)

∣∣A⊆Mk,B⊆Mk,A∩ B = ∅,A∪ B = Mk, |A| ≥ S
}

.

In order to evaluate the conditional probability Px(y∈Lk|yk) of the event {y∈Lk}, i.e., of the

event that a given yk is not among the S largest (in magnitude) components of y, we split the

event {y∈Lk} into several elementary events. More specifically, let EA,B denote the event that

every component yl with l ∈A satisfies |yl | > |yk| and every component yl with l ∈B satisfies
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|yl | ≤ |yk|. The events EA,B for all (A,B)∈P are mutually exclusive, i.e., (A,B) 6= (A′,B′) ⇒
EA,B ∩ EA′,B′ = ∅, and their union corresponds to the event {y∈Lk}, i.e.,

⋃
(A,B)∈P EA,B = {y∈

Lk}. Consequently,

Px(y∈Lk|yk = y) = ∑
(A,B)∈P

Px(EA,B|yk = y)

= ∑
(A,B)∈P

∏
l∈A

Px

(|yl | > |yk|
∣∣yk = y

)
∏

m∈B
Px

(|ym| ≤ |yk|
∣∣yk = y

)

= ∑
(A,B)∈P

∏
l∈A

Px(|yl | > |y|) ∏
m∈B

Px(|ym| ≤ |y|)

= ∑
(A,B)∈P

∏
l∈A∩ supp(x)

Px(|yl | > |y|) ∏
m∈B ∩ supp(x)

Px(|ym| ≤ |y|)

× ∏
n∈A\supp(x)

Px(|yn | > |y|) ∏
p∈B\supp(x)

Px(|yp| ≤ |y|)

= ∑
(A,B)∈P

∏
l∈A∩ supp(x)

[
Q

( |y|− xl

σ

)
+ 1 − Q

(−|y|− xl

σ

)]

× ∏
m∈B∩ supp(x)

[
− Q

( |y|− xm

σ

)
+ Q

(−|y|− xm

σ

)]

× ∏
n∈A\supp(x)

2Q

( |y|
σ

)
∏

p∈B\supp(x)

[
1 − 2Q

( |y|
σ

)]
(5.98)

where we have used the fact that the yl are independent and k /∈ Mk; furthermore, Q(y) ,

1√
2π

∫ ∞

y e−x2/2dx is the right tail probability of a standard Gaussian random variable. Plugging

(5.98) into (5.96) and (5.97) and, in turn, the resulting expressions into (5.95) yields a (very

complicated) expression of ε(x; x̂ML). This expression is evaluated numerically in Section 5.5.



Chapter 6

Performance Guarantees for Sparse

Estimation

This chapter is a reprint of the paper:

• Z. Ben-Haim, Y. C. Eldar, and M. Elad, “Coherence-based performance guarantees for

estimating a sparse vector under random noise,” IEEE Trans. Signal Proc., vol. 58, no. 10,

pp. 5030-5043, Oct. 2010.

6.1 Introduction

Estimation problems with sparsity constraints have attracted considerable attention in recent

years because of their potential use in numerous signal processing applications, such as de-

noising, compression, and sampling [15]. In a typical setup, an unknown deterministic pa-

rameter x0 ∈ Rm is to be estimated from measurements b = Ax0 + w, where A ∈ Rn×m is

a deterministic matrix and w is a noise vector. Typically, the dictionary A consists of more

columns than rows (i.e., m > n), so that without further assumptions, x0 is unidentifiable from

b. The impassé is resolved by assuming that the parameter vector is sparse, i.e., that most ele-

ments of x0 are zero. Under the assumption of sparsity, several estimation approaches can be

used. These include greedy algorithms, such as thresholding and orthogonal matching pursuit

(OMP) [17], and ℓ1 relaxation methods, such as the Dantzig selector [8] and basis pursuit de-

noising (BPDN) [19, 20] (also known as the Lasso). A comparative analysis of these techniques

is crucial for determining the appropriate strategy in a given situation.

There are two standard approaches to modeling the noise w in the sparse estimation prob-

117
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lem. The first is to assume that w is deterministic and bounded [7, 12, 105]. This leads to a

worst-case analysis in which an estimator must perform adequately even when the noise max-

imally damages the measurements. The noise in this case is thus called adversarial. By contrast,

if one assumes that the noise is random, then the analysis aims to describe estimator behavior

for typical noise values [8,22,23]. In this paper, we focus on the random noise scenario. As one

might expect, stronger performance guarantees can be obtained in this setting.

It is common to judge the quality of an estimator by comparing its mean-squared error

(MSE) with the Cramér–Rao bound (CRB) [16]. In the case of sparse estimation under Gaussian

noise, it has recently been shown that the unbiased CRB is identical (for almost all values of

x0) to the MSE of the “oracle” estimator, which knows the locations of the nonzero elements of

x0 [70]. Thus, a gold standard for estimator performance is the MSE of the oracle. Indeed, it

can be shown that ℓ1 relaxation algorithms come close to the oracle when the noise is Gaussian.

Results of this type are sometimes referred to as “oracle inequalities.” Specifically, Candès and

Tao [8] have shown that, with high probability, the ℓ2 distance between x0 and the Dantzig

estimate is within a constant times log m of the performance of the oracle. Recently, Bickel

et al. [23] have demonstrated that the performance of BPDN is similarly bounded, with high

probability, by C log m times the oracle performance, for a constant C. However, the constant

involved in this analysis is considerably larger than that of the Dantzig selector. Interestingly,

it turns out that the log m gap between the oracle and practical estimators is an unavoidable

consequence of the fact that the nonzero locations in x0 are unknown [24].

The contributions [8, 23] state their results using the restricted isometry constants (RICs).

These measures of the dictionary quality can be efficiently approximated in specific cases, e.g.,

when the dictionary is selected randomly from an appropriate ensemble. However, in general

it is NP-hard to evaluate the RICs for a given matrix A, and they must then be bounded by

efficiently computable properties of A, such as the mutual coherence [106]. In this respect,

coherence-based results are appealing since they can be used with arbitrary dictionaries [28,

107, 108].

In this paper, we seek performance guarantees for sparse estimators based directly on the

mutual coherence of the matrix A [109]. While such results are suboptimal when the RICs of

A are known, the proposed approach yields tighter bounds than those obtained by applying

coherence bounds to RIC-based results. Specifically, we demonstrate that BPDN, OMP and

thresholding all achieve performance within a constant times log m of the oracle estimator, un-

der suitable conditions. In the case of BPDN, our result provides a tighter guarantee than the
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coherence-based implications of the work of Bickel et al. [23]. To the best of our knowledge,

there are no prior performance guarantees for greedy approaches such as OMP and threshold-

ing when the noise is random.

It is important to distinguish the present work from Bayesian performance analysis, as prac-

ticed in [4, 5, 21, 110, 111], where on top of the assumption of stochastic noise, a probabilistic

model for x0 is also used. Our results hold for any specific value of x0 (satisfying appropriate

conditions), rather than providing results on average over realizations of x0; this necessarily

leads to weaker guarantees. It also bears repeating that our results apply to a fixed, finite-sized

matrix A; this distinguishes our work from asymptotic performance guarantees for large m and

n, such as [112, 113].

The rest of this paper is organized as follows. We begin in Section 6.2 by comparing dictio-

nary quality measures and reviewing standard estimation techniques. In Section 6.3, our main

results are presented in the form of performance guarantees for various sparse estimation al-

gorithms. Subsequently, in Section 6.4, these results are compared with previous findings for

different sparse models, including the case of adversarial noise and the random design matrix

setting. Finally, in Section 6.5, the validity of our results is examined by simulation in practical

estimation scenarios.

The following notation is used throughout the paper. Vectors and matrices are denoted,

respectively, by boldface lowercase and boldface uppercase letters. The set of indices of the

nonzero entries of a vector x is called the support of x and denoted supp(x). Given an index

set Λ and a matrix A, the notation AΛ refers to the submatrix formed from the columns of A

indexed by Λ. The identity matrix is denoted by I. Furthermore, for any matrix A, AT refers to

the matrix transpose, A† is the Moore–Penrose pseudoinverse, Tr(A) is the trace, and span(A)

is the column span, while λmin(A) and λmax(A) denote the smallest and largest eigenvalues of

A. Finally, the ℓp norm of a vector x, for 1 ≤ p ≤ ∞, is denoted ‖x‖p, while ‖x‖0 denotes the

number of nonzero elements in x.

6.2 Preliminaries

6.2.1 Characterizing the Dictionary

Let x0 ∈ Rm be an unknown deterministic vector, and denote its support set by Λ0 = supp(x0).

Let s = ‖x0‖0 be the number of nonzero entries in x0. In our setting, it is typically assumed

that s is much smaller than m, i.e., that most elements in x0 are zero. Suppose we obtain noisy
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measurements

b = Ax0 + w (6.1)

where A ∈ Rn×m is a known deterministic overcomplete dictionary (m > n). We refer to the

columns ai of A as the atoms of the dictionary, and assume throughout our work that the atoms

are normalized such that

‖ai‖2 = 1. (6.2)

We further assume that w is zero-mean white Gaussian noise with covariance E
{

wwT
}

=

σ2 Im×m.

For x0 to be identifiable, one must guarantee that different values of x0 produce significantly

different values of b. One way to ensure this is to examine all possible subdictionaries, or s-

element sets of atoms, and verify that the subspaces spanned by these subdictionaries differ

substantially from one another.

More specifically, several methods have been proposed to formalize the notion of the suit-

ability of a dictionary for sparse estimation. These include the mutual coherence [106], the

cumulative coherence [22], the exact recovery coefficient (ERC) [22], the spark [7], and the

RICs [8, 12]. Except for the mutual coherence and cumulative coherence, none of these mea-

sures can be efficiently calculated for an arbitrary given dictionary A. Since the values of the

cumulative and mutual coherence are quite close, our focus in this paper will be on the mutual

coherence µ = µ(A), which is defined as

µ , max
i 6=j

∣∣∣aT
i aj

∣∣∣ . (6.3)

While the mutual coherence can be efficiently calculated directly from (6.3), it is not immedi-

ately clear in what way µ is related to the requirement that subdictionaries must span different

subspaces. Indeed, µ ensures a lack of correlation between single atoms, while we require a dis-

tinction between s-element subdictionaries. To explore this relation, let us recall the definitions

of the RICs, which are more directly related to the subdictionaries of A. We will then show that

the mutual coherence can be used to bound the constants involved in the RICs, a fact which

will also prove useful in our subsequent analysis. This strategy is inspired by earlier works,

which have used the mutual coherence to bound the ERC [22] and the spark [5, 7, 28]. Thus,

the coherence can be viewed as a tractable proxy for more accurate measures of the quality of

a dictionary, which cannot themselves be calculated efficiently.

By the RICs we refer to two properties describing “good” dictionaries, namely, the restricted

isometry property (RIP) and the restricted orthogonality property (ROP), which we now define.
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A dictionary A is said to satisfy the RIP [12] of order s with parameter δs if, for every index set

Λ of size s, we have

(1 − δs)‖y‖2
2 ≤ ‖AΛy‖2

2 ≤ (1 + δs)‖y‖2
2 (6.4)

for all y ∈ Rs. Thus, when δs is small, the RIP ensures that any s-atom subdictionary is nearly

orthogonal, which in turn implies that any two disjoint (s/2)-atom subdictionaries are well-

separated.

Similarly, A is said to satisfy the ROP [8] of order (s1, s2) with parameter θs1 ,s2 if, for every

pair of disjoint index sets Λ1 and Λ2 having cardinalities s1 and s2, respectively, we have

∣∣∣yT
1 AT

Λ1
AΛ2

y2

∣∣∣ ≤ θs1,s2‖y1‖2‖y2‖2 (6.5)

for all y1 ∈ Rs1 and for all y2 ∈ Rs2 . In words, the ROP requires any two disjoint subdictionaries

containing s1 and s2 elements, respectively, to be nearly orthogonal to each other. These two

properties are therefore closely related to the requirement that distinct subdictionaries of A

behave dissimilarly.

In recent years, it has been demonstrated that various practical estimation techniques suc-

cessfully approximate x0 from b, if the constants δs and θs1,s2 are sufficiently small [8, 9, 12, 13].

This occurs, for example, when the entries in A are chosen randomly according to an indepen-

dent, identically distributed Gaussian law, as well as in some specific deterministic dictionary

constructions.

Unfortunately, in the standard estimation setting, one cannot design the system matrix A

according to these specific rules. In general, if one is given a particular dictionary A, then there

is no known algorithm for efficiently determining its RICs. Indeed, the very nature of the RICs

seems to require enumerating over an exponential number of index sets in order to find the

“worst” subdictionary. While the mutual coherence µ of (6.3) tends to be far less accurate in

capturing the accuracy of a dictionary, it is still useful to be able to say something about the

RICs based only on µ. Such a result is given in the following lemma, whose proof can be found

in [114, 115].

Lemma 6.1 (Cai, Xu, and Zhang). For any matrix A, the RIP constant δs of (6.4) and the ROP

constant θs1,s2 of (6.5) satisfy the bounds

δs ≤ (s − 1)µ, (6.6)

θs1 ,s2 ≤ µ
√

s1s2 (6.7)

where µ is the mutual coherence (6.3).
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We will apply this lemma in Section 6.3 in order to obtain coherence-based settings from

results which use the RICs.

6.2.2 Estimation Techniques

To fix notation, we now briefly review several approaches for estimating x0 from noisy mea-

surements b given by (6.1). The two main strategies for efficiently estimating a sparse vector

are ℓ1 relaxation and greedy methods. The first of these involves solving an optimization prob-

lem wherein the nonconvex constraint ‖x0‖0 = s is relaxed to a constraint on the ℓ1 norm of the

estimated vector x0. Specifically, we consider the ℓ1-penalty version of BPDN, which estimates

x0 as a solution x̂BP to the quadratic program

min
x

1
2‖b − Ax‖2

2 + γ‖x‖1 (6.8)

for some regularization parameter γ. We refer to the optimization problem (6.8) as BPDN,

although it should be noted that some authors reserve this term for the related optimization

problem

min
x

‖x‖1 s.t. ‖b − Ax‖2
2 ≤ ν (6.9)

where ν is a given constant.

Another estimator based on the idea of ℓ1 relaxation is the Dantzig selector [8], defined as a

solution x̂DS to the optimization problem

min
x

‖x‖1 s.t. ‖AT(b − Ax)‖∞ ≤ τ (6.10)

where τ is again a user-selected parameter. The Dantzig selector, like BPDN, is a convex re-

laxation method, but rather than penalizing the ℓ2 norm of the residual b − Ax, the Dantzig

selector ensures that the residual is weakly correlated with all dictionary atoms.

Instead of solving an optimization problem, greedy approaches estimate the support set

Λ0 from the measurements b. Once a support set Λ is chosen, the parameter vector x0 can be

estimated using least-squares (LS) to obtain

x̂ =





A†
Λb on the support set Λ,

0 elsewhere.

(6.11)

Greedy techniques differ in the method by which the support set is selected. The simplest

method is known as the thresholding algorithm. This technique computes the correlation of
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the measured signal b with each of the atoms ai and defines Λ as the set of indices of the s

atoms having the highest correlation. Subsequently, the LS technique (6.11) is applied to obtain

the thresholding estimate x̂th.

A somewhat more sophisticated greedy algorithm is OMP [17]. This iterative approach

begins by initializing the estimated support set Λ0 to the empty set and setting a residual vector

r0 to b. Subsequently, at each iteration i = 1, . . . , s, the algorithm finds the single atom which is

most highly correlated with ri−1. The index of this atom, say ki, is added to the support set, so

that Λi = Λi−1 ∪ {ki}. The estimate x̂i
OMP at the ith iteration is then defined by the LS solution

(6.11) using the support set Λi. Next, the residual is updated using the formula

ri = b − Ax̂i
OMP. (6.12)

The residual thus describes the part of b which has yet to be accounted for by the estimate. The

counter i is now incremented, and s iterations are performed, after which the OMP estimate

x̂OMP is defined as the estimate at the final iteration, x̂s
OMP. A well-known property of OMP

is that the algorithm never chooses the same atom twice [7]. Consequently, stopping after s

iterations guarantees that ‖x̂OMP‖0 = s.

Finally, we also mention the so-called oracle estimator, which is based both on b and on the

true support set Λ0 of x0; the support set is assumed to have been provided by an “oracle”. The

oracle estimator x̂or calculates the LS solution (6.11) for Λ0, and is often used as a gold standard

against which the performance of practical algorithms can be compared.

6.3 Performance Guarantees

Under the setting (6.1), it cat be shown [70] that the MSE of any unbiased estimator x̂ of x0

satisfies the Cramér–Rao bound [44]

MSE(x̂) , E
{
‖x̂ − x0‖2

2

}
≥ σ2 Tr((AT

Λ0
AΛ0

)−1) , CRB. (6.13)

Interestingly, CRB is also the MSE of the oracle estimator mentioned above [8]. It follows from

the Gershgorin disc theorem [116] that all eigenvalues of AT
Λ0

AΛ0
are between 1 − (s − 1)µ and

1 + (s + 1)µ. Therefore, for reasonable sparsity levels, Tr((AT
Λ0

AΛ0
)−1) is not much larger than

s, and consequently (6.13) is on the order of sσ2. Considering that the mean power of w is nσ2, it

is evident that the oracle estimator has substantially reduced the noise level. In this section, we

will demonstrate that comparable performance gains are achievable using practical methods,

which do not have access to the oracle.



124 CHAPTER 6. PERFORMANCE GUARANTEES FOR SPARSE ESTIMATION

6.3.1 ℓ1-Relaxation Approaches

Review of previous results Historically, performance guarantees under random noise were

first obtained for the Dantzig selector (6.10) by Candès and Tao [8]. Their result is derived

using the RICs (6.4)–(6.5); by applying the bounds of Lemma 6.1, it is possible to obtain from

their work a coherence-based guarantee. More recently, Cai, Wang, and Xu [107] have shown

that one can obtain a tighter performance guarantee for the Dantzig selector directly from the

mutual coherence, as shown in the following theorem.

Theorem 6.2 (Cai, Wang, and Xu). Under the setting (6.1), assume that

s <
1

2

(
1 +

1

µ

)
(6.14)

and consider the Dantzig selector (6.10) with parameter

τ = σ
√

2 log m + 3
2 σ. (6.15)

Then, with probability exceeding

1 − 1√
π log m

, (6.16)

the Dantzig selector x̂DS satisfies

‖x0 − x̂DS‖2
2 ≤ 8

(
3
2 +

√
2 log m

)2

(1 − (2s − 1)µ)2
(s + 1)σ2. (6.17)

Thus, while x̂DS does not quite reach the performance of the oracle estimator, it does come

within a constant factor multiplied by log m, with high probability. Interestingly, the log m

factor is an unavoidable result of the fact that the locations of the nonzero elements in x0 are

unknown (see [24, §7.4] and the references therein).

Recently, a performance guarantee has also been demonstrated for BPDN [23]. Once again,

this result is based on RIC-like properties. Its translation to a coherence-based guarantee is

given in the following theorem, whose derivation from [23] is described in Appendix 6.A.

Theorem 6.3 (Bickel, Ritov, and Tsybakov). Under the setting (6.1), assume that

s <
1 + µ

(2 + 3
√

2)µ
(6.18)

and consider the BPDN estimator (6.8) with parameter

γ =
√

8σ2(1 + α) log m (6.19)
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for some α > 0. Then, with probability exceeding

1 − 1

mα
, (6.20)

BPDN satisfies

‖x0 − x̂BP‖2
2 ≤ 2048(1 + α)

1

κ4
sσ2 log m (6.21)

where

κ =
√

1 − (2s − 1)µ − sµ3
√

2√
1 − (2s − 1)µ

< 1. (6.22)

Coherence-based guarantee for BPDN The constant in the BPDN performance guarantee

(6.21) is typically much larger than that given in (6.17) for the Dantzig selector. The necessary

condition (6.18) is also more stringent than the requirements for the Dantzig selector. However,

following the experience in the case of the Dantzig selector, one may hope for substantially

better guarantees to be obtained by directly relying on the mutual coherence. This approach

indeed bears fruit, as we now show. We begin by stating the following somewhat more general

result, whose proof is found in Appendix 6.B.

Theorem 6.4. Let x0 be an unknown deterministic vector with known sparsity ‖x0‖0 = s, and let

b = Ax0 + w, where w ∼ N(0, σ2 I) is a random noise vector. Suppose that1

s <
1

3µ
. (6.23)

Then, with probability exceeding

(
1 − (m − s) exp

(
− γ2

8σ2

))(
1 − e−s/7

)
, (6.24)

the solution x̂BP of BPDN (6.8) is unique, its support is contained in the true support Λ0, and

‖x0 − x̂BP‖2
2 ≤

(
σ
√

3 + 3
2 γ
)2

s. (6.25)

To compare this result with the previous theorems, we now derive from Theorem 6.4 a

result which holds with a probability on the order of (6.20). Observe that for (6.24) to be a

high probability, we require exp(−γ2/(8σ2)) to be substantially smaller than 1/(m − s). This

requirement can be used to select a value for the regularization parameter γ. In particular, one

1As in [22], analogous findings can also be obtained under the weaker requirement s < 1/(2µ), but the resulting

expressions are somewhat more involved.
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requires γ to be at least on the order of
√

8σ2 log(m − s). However, γ should not be much larger

than this value, as this will increase the error bound (6.25). Therefore, it is natural to use

γ =
√

8σ2(1 + α) log(m − s) (6.26)

for some fairly small α > 0; note the encouraging similarity of this value of γ to (6.19). Substi-

tuting γ of (6.26) into Theorem 6.4 yields the following result.

Corollary 6.5. Under the conditions of Theorem 6.4, let x̂BP be a solution of BPDN (6.8) with γ given

by (6.26). Then, with probability exceeding

(
1 − 1

(m − s)α

)(
1 − e−s/7

)
, (6.27)

the solution x̂BP is unique, its support is a subset of Λ0, and

‖x0 − x̂BP‖2
2 ≤

(√
3 + 3

√
2(1 + α) log(m − s)

)2

sσ2. (6.28)

To compare the BPDN guarantees of Corollary 6.5 and Theorem 6.3, we first examine the

probability (6.27). This expression consists of a product of two terms, both of which converge to

1 as the problem dimensions increase. The right-hand term may seem odd because it appears

to favor non-sparse signals; however, this is an artifact of the method of proof, which requires a

sufficient number of nonzero coefficients for large number approximations to hold. This right-

hand term converges to 1 exponentially and therefore typically has a negligible effect on the

overall probability of success; for example, for s ≥ 50 this term is larger than 0.999.

The left-hand term in (6.27) tends to 1 polynomially as m − s increases. This is a slightly

lower rate than that of Theorem 6.3; however, this difference is compensated for by a corre-

spondingly lower multiplicative factor of log(m − s) in the error bound (6.28), as opposed to

the log m factor in previous results. In any case, for any of the theorems to hold, m must increase

much more quickly than s, so that these differences are negligible.

Whereas the probability of success of Corollary 6.5 is comparable to that of Theorem 6.3,

the required sparsity level (6.23) in the proposed guarantee is substantially better than that of

previous results. Furthermore, the constant (6.25) in the new result is also much smaller than

that of the previous BPDN guarantee (6.21). Thus, it appears that the direct application of the

mutual coherence is successful in obtaining tighter performance guarantees.

What can be learned by comparing the guarantees for BPDN and the Dantzig selector? In

some respects, the BPDN result appears stronger; in particular, the probability of success in

Corollary 6.5 is better than that of Theorem 6.2, and the resulting guarantee has somewhat
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smaller constants. On the other hand, the sparsity requirements of Theorem 6.2 are somewhat

less stringent. Choosing the most accurate guarantee (and, consequently, the preferred esti-

mator) will thus depend on the specifics of the setting under consideration. One such specific

example will be presented in Section 6.5.

6.3.2 Greedy Approaches

The performance guarantees obtained for the ℓ1-relaxation techniques required only the as-

sumption that x0 is sufficiently sparse. By contrast, for greedy algorithms, successful estimation

can only be guaranteed if one further assumes that all nonzero components of x0 are somewhat

larger than the noise level. The reason is that greedy techniques are based on a LS solution for

an estimated support, an approach whose efficacy is poor unless the support is correctly iden-

tified. Indeed, when using the LS technique (6.11), even a single incorrectly identified support

element may cause the entire estimate to be severely incorrect. To ensure support recovery, all

nonzero elements must be large enough to overcome the noise.

To formalize this notion, denote x0 = (x0,1, . . . , x0,m)T and define

|xmin| = min
i∈Λ0

|x0,i|,

|xmax| = max
i∈Λ0

|x0,i|. (6.29)

A performance guarantee for both OMP and the thresholding algorithm is then given by the

following theorem.

Theorem 6.6. Let x0 be an unknown deterministic vector with known sparsity ‖x0‖0 = s, and let

b = Ax0 + w, where w ∼ N(0, σ2 I) is a random noise vector. Suppose that

|xmin| − (2s − 1)µ|xmin| ≥ 2σ
√

2(1 + α) log m (6.30)

for some constant α > 0. Then, with probability at least

1 − 1

mα
√

π(1 + α) log m
, (6.31)

the OMP estimate x̂OMP identifies the correct support Λ0 of x0 and, furthermore, satisfies

‖x̂OMP − x0‖2
2 ≤

2(1 + α)

(1 − (s − 1)µ)2
sσ2 log m (6.32a)

≤ 8(1 + α)sσ2 log m. (6.32b)
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If the stronger condition

|xmin| − (2s − 1)µ|xmax| ≥ 2σ
√

2(1 + α) log m (6.33)

holds, then with probability exceeding (6.31), the thresholding algorithm also correctly identifies Λ0 and

satisfies (6.32).

The performance guarantee (6.32) is better than that provided by Theorem 6.2 and Corol-

lary 6.5. However, this result comes at the expense of requirements on the magnitude of the en-

tries of x0. Our analysis thus suggests that greedy approaches may outperform ℓ1-based meth-

ods when the entries of x0 are large compared with the noise, but that the greedy approaches

will deteriorate when the noise level increases. As we will see in Section 6.5, simulations also

appear to support this conclusion.

It is interesting to compare the success conditions (6.30) and (6.33) of the OMP and thresh-

olding algorithms. For given problem dimensions, the OMP algorithm requires |xmin|, the

smallest nonzero element of x0, to be larger than a constant multiple of the noise standard de-

viation σ. This is required in order to ensure that all elements of the support of x0 will be iden-

tified with high probability. The requirement of the thresholding algorithm is stronger, as befits

a simpler approach: In this case |xmin| must be larger than the noise standard deviation plus a

constant times |xmax|. In other words, one must be able to separate |xmin| from the combined

effect of noise and interference caused by the other nonzero components of x0. This results

from the thresholding technique, in which the entire support is identified simultaneously from

the measurements. By comparison, the iterative approach used by OMP identifies and removes

the large elements in x0 first, thus facilitating the identification of the smaller elements in later

iterations.

6.4 Comparison with Related Estimation Settings

The difficulty of an estimation problem naturally depends on the strength of the assumptions

in the underlying model. We now compare the results of the previous section with prior per-

formance guarantees for sparse estimation algorithms in different settings.

The equation b = Ax0 + w describes a variety of situations, depending on what is assumed

to be known about A, x0, and w. The focus in this paper is on the frequentist estimation setting,

wherein the known matrix A and the unknown parameter vector x0 are both deterministic, and

the noise w is Gaussian and white. In the following, we compare the performance guarantees
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obtained for this setting with known results for other scenarios. This comparison emphasizes

that better performance can be guaranteed if a more detailed model is assumed. We note that

many of the results cited in this section are obtained up to an unknown numerical constant,

and consequently the discussion herein likewise performs qualitative comparisons based on

asymptotic rates.

Adversarial noise In the adversarial or bounded noise scenario, the noise w is assumed to be

deterministic and unknown, and to have a bounded ℓ2 norm, ‖w‖2 ≤ ε. The matrix A and the

unknown vector x0 are also deterministic. Since no probabilistic information is assumed about

w, one must perform a worst-case analysis, namely, in this case guarantees for an estimator x̂

ensure that ‖x̂− x0‖ is small for all noise realizations and all feasible values of x0. Consequently,

adversarial performance guarantees are relatively weak, and indeed no denoising capability

can be ensured for any known algorithm.

Typical “stability” results under adversarial noise guarantee that if the mutual coherence

µ of A is sufficiently small, and if x0 is sufficiently sparse, then the distance between x0 and

its estimate is on the order of the noise magnitude. Such results can be derived for algorithms

including BPDN, OMP, and thresholding. Consider, for example, the following theorem, which

is based on the work of Tropp [22, §IV-C].2

Theorem 6.7 (Tropp). Let x0 be an unknown deterministic vector with known sparsity ‖x0‖0 = s,

and let b = Ax0 + w, where ‖w‖2 ≤ ε. Suppose the mutual coherence µ of the dictionary A satisfies

s < 1/(3µ). Let x̂BP denote a solution of BPDN (6.8) with regularization parameter γ = 2ε. Then, x̂BP

is unique, the support of x̂BP is a subset of the support of x0, and

‖x0 − x̂BP‖∞ <

(
3 +

√
3
2

)
ε ≈ 4.22ε. (6.34)

Results similar to Theorem 6.7 have also been obtained [7,12,13,107] for the related ℓ1-error

estimation approach (6.9), as well as for the OMP algorithm [7]. Furthermore, the technique

used in the proof for the OMP [7] can also be applied to demonstrate a (slightly weaker) per-

formance guarantee for the thresholding algorithm.

In all of the aforementioned results, the only guarantee is that the distance between x̂BP and

x0 is on the order of the noise power ε. As expected, these results are much weaker than those

2Tropp considers only the case in which the entries of x0 belong to the set {0,±1}. However, since the anal-

ysis performed in [22, §IV-C] can readily be applied to the general setting considered here, we omit the proof of

Theorem 6.7.
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obtained in Section 6.3 for the frequentist setting. Indeed, in the frequentist setting, which

differs only in the adoption of the Gaussian distribution for the noise, typical performance

guarantees ensure that ‖x̂ − x0‖2 is on the order of sσ2 log m, while the average noise power

is nσ2, which is much larger. This difference is due to the fact that results in the adversarial

context must take into account values of w which are chosen so as to cause maximal damage

to the estimation algorithm.

Random design matrix Whereas the adversarial setting assumes less about the signal and

consequently provides weak guarantees, incorporating further probabilistic assumptions can

provide much more optimistic assurances of the achievable performance than those obtained

in our setting. For example, a common setting in the compressed sensing literature assumes

that the matrix A is known, but chosen randomly from an appropriate ensemble. The primary

advantage of such an assumption is that with high probability, the RICs of the resulting matrix

will be low, and performance guarantees obtained based on the use of the RICs are typically

sharper than those based on the mutual coherence.

Specifically, suppose that the entries of A are chosen from a white Gaussian distribution

and are then normalized to satisfy (6.2). Also suppose that x0 is deterministic and that w is

white Gaussian noise, as in our setting. Then it can be shown that, with high probability, the

Dantzig selector achieves an error on the order of sσ2 log m as long as the sparsity level s is on

the order of n/ log(m/n) [8]. Comparable results can also be demonstrated for OMP,3 and in

this case near-oracle performance is asymptotically guaranteed with high probability when s is

no larger than about n/ log n [113, 117].

The guarantees of Section 6.3 are much weaker than these random-matrix results. Indeed,

to obtain near-oracle performance guarantees, the results of Section 6.3 all require the sparsity

level s to be on the order of 1/µ. However, for any matrix A we have [118, Thm. 2.3]

µ ≥
√

m − n

n(m − 1)
. (6.35)

Making the reasonable assumption that m ≥ 2n, it follows that, at best, our frequentist results

hold with sparsity levels s on the order of
√

n. This is not nearly as strong as the random matrix

results, for which the number of nonzero entries in x0 is allowed to come within a log factor of

the number of measurements n.

3As in any analysis of a greedy algorithm, the OMP result requires some further assumptions on the SNR and,

in particular, on the value of |xmin| relative to the noise power.
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The difference between the random and deterministic matrix guarantees should not, how-

ever, be interpreted to mean that the proposed performance guarantees can be substantially

improved. Rather, it indicates that truly better performance should be expected in the ran-

dom matrix setting. Indeed, there exist suitably chosen deterministic matrices A and vectors

x0 for which s is on the order of 1/µ, wherein reasonable algorithms completely fail to recover

x0 [21]. In these constructions, the value of s fails to meet the requirements for the theorems of

Section 6.3 by no more than a small multiplicative constant. It follows that any performance

guarantee based solely on the mutual coherence of A cannot guarantee performance for spar-

sity levels higher than O(1/µ).

6.5 Numerical Results

In this section, we describe a number of numerical experiments comparing the performance of

various estimators to the guarantees of Section 6.3. Our first experiment measured the median

estimation error, i.e., the median of the squared ℓ2 distance between x0 and its estimate. The

median error is intuitively appealing as it characterizes the “typical” estimation error, and it

can be readily bounded by the performance guarantees of Section 6.3.

Specifically, we chose the two-ortho dictionary A = [I H], where I is the 512 × 512 identity

matrix and H is the 512× 512 Hadamard matrix with normalized columns. The RICs of this dic-

tionary are unknown, but the coherence can be readily calculated and is given by µ = 1/
√

512.

Consequently, the theorems of Section 6.3 can be used to obtain performance guarantees for

sufficiently sparse vectors. In particular, in our simulations we chose parameters x0 having a

support of size s = 7. The smallest nonzero entry in x0 was |xmin| = 0.1 and the largest entry

was |xmax| = 1. To obtain guarantees on the median error, for each of the theorems of Sec-

tion 6.3 a value of α was chosen such that the resulting error bound holds with probability 1/2

or greater.4 Under these conditions, applying the theorems of Section 6.3 yields the bounds

‖x0 − x̂OMP‖2
2 ≤ 3.7sσ2 log m w.p. 3

4 , if σ ≤ 0.057;

‖x0 − x̂BP‖2
2 ≤ 22.1sσ2 log m w.p. 1

2 ;

‖x0 − x̂DS‖2
2 ≤ 198.4sσ2 log m w.p. 3

4 . (6.36)

4In particular, the results for the Dantzig selector (Theorem 6.2) and OMP (Theorem 6.6) can only be used to

yield guarantees holding with probabilities of approximately 3/4 and higher. These are, of course, also bounds on

the median error.
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Figure 6.1: Median estimation error for practical estimators (gray regions) compared with per-

formance guarantees (solid lines) and the oracle estimator (dotted line). The gray regions report

the range of performances observed for 8 different values of the unknown parameter vector x0.

For the Dantzig selector, both the guarantee of Candes and Tao and that of Cai, Wang, and Xu

are plotted. For OMP, performance is only guaranteed for σ ≤ 0.057, while for thresholding,

nothing can be guaranteed for the given problem dimensions.
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We have thus obtained guarantees for the median estimation error of the Dantzig selector,

BPDN, and OMP. Under these settings, no guarantee can be made for the performance of the

thresholding algorithm. Indeed, as we will see, for some choices of x0 satisfying the above

requirements, the performance of the thresholding algorithm is not proportional to sσ2 log m.

To obtain thresholding guarantees, one requires a narrower range between |xmin| and |xmax|.
The RIC-based BPDN guarantee of Theorem 6.3 is not applicable in the present setting;

however, by comparing the BPDN guarantees of Theorems 6.3 and 6.4, it is evident that the

latter is substantially tighter, even when the conditions for both theorems hold. It is also in-

teresting to note that by applying Lemma 6.1 to the (RIC-based) Dantzig selector guarantee of

Candès and Tao [8], one can obtain for the current setting

‖x0 − x̂DS‖2
2 ≤ 361.8sσ2 log m w.p. 3

4 . (6.37)

This result is again looser than (6.36), once again demonstrating that considerable improvement

in performance guarantees is possible by direct use of the mutual coherence.

To measure the actual median error obtained by various estimators, 8 different parameter

vectors x0 were selected. These differed in the distribution of the magnitudes of the nonzero

components within the range [|xmin|, |xmax|] and in the locations of the nonzero elements. For

each parameter x0, a set of measurement vectors b were obtained from (6.1). The estimation

algorithms of Section 6.2.2 were then applied to each measurement realization. For the Dantzig

selector, τ was selected using (6.15), and for BPDN, γ was chosen as the smallest value such

that the probability of success (6.27) would exceed 1/2. The median over noise realizations of

the distance ‖x0 − x̂‖2
2 was then computed for each estimator. This process was repeated for 10

values of the noise variance σ2 in the range 10−8 ≤ σ2 ≤ 1. The results are plotted in Fig. 6.1 as

a function of σ2. The performance guarantees (6.36)–(6.37) are also plotted.5

It is evident from Fig. 6.1 that some parameter vectors are more difficult to estimate than

others. Indeed, there is a large variety of parameters x0 satisfying the problem requirements,

and it is likely that some of them come closer to the theoretical limits than the parameters cho-

sen in our experiment. This highlights the importance of performance guarantees in ensuring

adequate performance for all parameter values. On the other hand, it is quite possible that fur-

ther improvements of the constants in the performance bounds are possible. For example, the

Dantzig selector guarantee is almost 50 times higher than the worst of the examined parameter

5The guarantee (6.37) actually requires a slightly different value of τ, but this difference has a negligible effect

on performance and is ignored.
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Figure 6.2: MSE of various estimators as a function of the SNR. The sparsity level is s = 5 and

the dictionary is a 256 × 512 two-ortho matrix.

values.

In practice, it is more common to measure the MSE of an estimator than its median error.

Our next goal is to determine whether the behavior predicted by our theoretical analysis is also

manifested in the MSE of the various estimators. To this end, we conducted an experiment in

which the MSEs of the estimators of Section 6.2.2 were compared. In this simulation, we chose

the two-ortho dictionary A = [I H], where I is the 256 × 256 identity matrix and H is the

256× 256 Hadamard matrix with normalized columns.6 Once again, the RICs of this dictionary

are unknown. However, the coherence in this case is given by µ = 1/16, and consequently, the

ℓ1 relaxation guarantees of Section 6.3.1 hold for s ≤ 5.

We obtained the parameter vector x0 for this experiment by selecting a 5-element support

at random, choosing the nonzero entries from a white Gaussian distribution, and then nor-

malizing the resulting vector so that ‖x0‖2 = 1. The regularization parameters τ and γ of the

Dantzig selector and BPDN were chosen as recommended by Theorem 6.2 and Corollary 6.5,

respectively; for the latter, a value of α = 1 was chosen. The MSE of each estimate was then

calculated by averaging over repeated realizations of x0 and the noise. The experiment was

conducted for 10 values of the noise variance σ2 and the results are plotted in Fig. 6.2 as a

6Similar experiments were performed on a variety of other dictionaries, including an overcomplete DCT and a

matrix containing Gaussian random entries. The different dictionaries yielded comparable results, which are not

reported here.
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function of the signal-to-noise ratio (SNR), which is defined by

SNR =
‖x0‖2

2

nσ2
=

1

nσ2
. (6.38)

To compare this plot with the theoretical results of Section 6.3, observe first the situation at

high SNR. In this case, OMP, BPDN, and the Dantzig selector all achieve performance which

is proportional to the oracle MSE (or CRB) given by (6.13). Among these, OMP is closest to the

CRB, followed by BPDN and, finally, the Dantzig selector. This behavior matches the propor-

tionality constants given in the theorems of Section 6.3. Indeed, for small σ, the condition (6.30)

holds even for large α, and thus Theorem 6.6 guarantees that OMP will recover the correct

support of x0 with high probability, explaining the convergence of this estimator to the oracle.

By contrast, the performance of the thresholding algorithm levels off at high SNR; this is again

predicted by Theorem 6.6, since, even when σ = 0, the condition (6.33) does not always hold,

unless |xmin| is not much smaller than |xmax|. Thus, for our choice of x0, Theorem 6.6 does not

guarantee near-oracle performance for the thresholding algorithm, even at high SNR.

With increasing noise, Theorem 6.6 requires a corresponding increase in |xmin| to guarantee

the success of the greedy algorithms. Consequently, Fig. 6.2 demonstrates a deterioration of

these algorithms when the SNR is low. On the other hand, the theorems for the relaxation

algorithms make no such assumptions, and indeed these approaches continue to perform well,

compared with the oracle estimator, even when the noise level is high. In particular, the Dantzig

selector outperforms the CRB at low SNR; this is because the CRB is a bound on unbiased

techniques, whereas when the noise is large, biased techniques such as an ℓ1 penalty become

very effective. Robustness to noise is thus an important advantage of ℓ1-relaxation techniques.

It is also interesting to examine the effect of the support size s on the performance of the

various estimators. To this end, 15 support sizes in the range 2 ≤ s ≤ 30 were tested. For

each value of s, random vectors x0 having s nonzero entries were selected as in the previous

simulation. The dictionary A was the 256 × 512 two-ortho matrix defined above; as in the pre-

vious experiment, other matrices were also tested and provided similar results. The standard

deviation of the noise for this experiment was σ = 0.01. The results are plotted in Fig. 6.3.

As mentioned above, the mutual coherence of the dictionary A is 1/16, so that the proposed

performance guarantees apply only when x0 is quite sparse (s ≤ 5). Nevertheless, Fig. 6.3

demonstrates that the estimation algorithms (with the exception of the thresholding approach)

exhibit a graceful degradation as the support of x0 increases. At first sight this would appear to

mean that the performance guarantees provided are overly pessimistic. For example, it is pos-
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Figure 6.3: MSE of various estimators as a function of the support size s. The noise standard

deviation is σ = 0.01 and the dictionary is a 256 × 512 two-ortho matrix.

sible that the RICs in the present setting, while unknown, are fairly low and permit a stronger

analysis than that of Section 6.3. It is also quite reasonable to expect, as mentioned above, that

some improvement in the theoretical guarantees is possible. However, it is worth recalling

that the performance guarantees proposed in this paper apply to all sparse vectors, while the

numerical results describe the performance averaged over different values of x0. Thus it is

possible that there exist particular parameter values for which the performance is considerably

poorer than that reported in Fig. 6.3. Indeed, there exist values of A and x0 for which BPDN

yields grossly incorrect results even when ‖x0‖0 is on the order of 1/µ [21]. However, identify-

ing such worst-case parameters numerically is quite difficult; this is doubtlessly at least part of

the reason for the apparent pessimism of the performance guarantees.

6.6 Conclusion

The performance of an estimator depends on the problem setting under consideration. As

we have seen in Section 6.4, under the adversarial noise scenario, the estimation error of any

algorithm can be as high as the noise power; in other words, the assumption of sparsity has not

yielded any denoising effect. On the other hand, when both the noise and the design matrix A

are random, practical estimators come close to the performance of the oracle estimator. In this

paper, we examined a middle ground between these two cases, namely the setting in which x0
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and A are deterministic but the noise is random. As we have shown, despite the fact that less

information is available in this case, a variety of estimation techniques are still guaranteed to

achieve performance close to that of the oracle estimator.

Our theoretical and numerical results suggest some conclusions concerning the choice of

an estimator. In particular, at high SNR values, it appears that the greedy OMP algorithm has

an advantage over the other algorithms considered herein. In this case the support set of x0

can be recovered accurately and OMP thus converges to the oracle estimator; by contrast, ℓ1

relaxations have a shrinkage effect which causes a loss of accuracy at high SNR. This is of

particular interest since greedy algorithms are also computationally more efficient than relax-

ation methods. On the other hand, the ℓ1 relaxation techniques, and particularly the Dantzig

selector, appear to be more effective than the greedy algorithms when the noise level is signifi-

cant: in this case, shrinkage is a highly effective denoising technique. Indeed, as a result of the

bias introduced by the shrinkage, ℓ1-based approaches can even perform better than the oracle

estimator and the Cramér–Rao bound.

6.A Proof of Theorem 6.3

To prove the theorem, we will adapt Theorem 7.2 and Lemma 4.1 of [23] to the present setting,

and then apply the coherence bounds of Lemma 6.1. Note that the normalization of the matrix

A differs between the present paper and that of [23], and consequently the results stated herein

differs by a factor of n from the original.

We begin by recalling the definition of the “restricted eigenvalue condition” RE(s, q, 3) of

[23]. Let

κ = min
J0⊆{1,...,m}:|J0|≤s

min
x 6=0:‖xJc

0
‖1≤3‖xJ0

‖1

‖Ax‖2

‖xJ0∪J1
‖2

(6.39)

where xJ denotes the subvector of x indexed by the elements of the set J, Jc
0 is the complement

of the set J0, and J1 contains the indices of the q largest elements in x which are not contained

in J0. If κ > 0, then the matrix A is said to satisfy the restricted eigenvalue condition RE(s, q, 3)

with parameter κ. Note that κ ≤ 1, since one could, for example, choose J0 = {1} and x =

[1, 0, . . . , 0]T , whereupon it follows from (6.2) that the objective function in (6.39) equals 1.

Using this definition, the following result follows directly from [23, Theorem 7.2].

Theorem 6.8 (Bickel, Ritov and Tsybakov). Under the setting (6.1), assume that the restricted eigen-

value condition RE(s, q, 3) holds for some q. Consider the BPDN estimator (6.8) with γ given by (6.19)
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and choose a > 2
√

2. Then, with probability exceeding 1 − m1−a2/8, we have

‖x̂BP − x0‖2
2 ≤ 16

(
1 + 3

√
s

q

)2 a2

κ4
sσ2 log m. (6.40)

From [23, Lemma 4.1], it follows that a sufficient condition for RE(s, s, 3) to hold is δ2s +

3θs,2s < 1, where δ2s and θs,2s are the RICs defined in Section 6.2.1. Applying the bounds of

Lemma 6.1, it follows that RE(s, s, 3) holds if (6.18) holds. Furthermore, from [23, Lemma 4.1]

we have that in this case,

κ ≥
√

1 − δ2s −
3θs,2s√
1 − δ2s

(6.41)

from which, again by applying Lemma 6.1, we obtain

κ ≥
√

1 − (2s − 1)µ − sµ3
√

2√
1 − (2s − 1)µ

. (6.42)

Since decreasing κ does not violate the bound (6.40), our coherence-based bound must choose

κ given by (6.22). Defining 1 + α = a2/8 and choosing q = s, we obtain the probability of

success (6.20) and the bound (6.21). Thus we have translated the results of Bickel et al. to the

coherence-based Theorem 6.3.

6.B Proof of Theorem 6.4

The proof is based closely on the work of Tropp [22]. From the triangle inequality,

‖x0 − x̂BP‖2 ≤ ‖x0 − x̂or‖2 + ‖x̂or − x̂BP‖2 (6.43)

where x̂or is the oracle estimator. Our goal is to separately bound the two terms on the right-

hand side of (6.43). Indeed, as we will see, the two constants σ
√

3 and 3
2 γ in (6.25) arise, respec-

tively, from the two terms in (6.43).

Beginning with the term ‖x0 − x̂or‖2, let x0,Λ denote the s-vector containing the elements of

x0 indexed by Λ0, and similarly, let x̂or,Λ denote the corresponding subvector of x̂or. We then

have

x0,Λ − x̂or,Λ = x0,Λ − A†
Λ0
(Ax0 + w)

= x0,Λ − A†
Λ0
(AΛ0

x0,Λ + w)

= −A†
Λ0

w, (6.44)

where we have used the fact that AΛ0
has full column rank, which is a consequence [82] of the

condition (6.23). Thus, x0,Λ − x̂or,Λ is a Gaussian random vector with mean 0 and covariance

σ2 A†
Λ0

A†T
Λ0

= σ2(AT
Λ0

AΛ0
)−1.
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For future use, we note that the cross-correlation between A†
Λ0

w and (I − AΛ0
A†

Λ0
)w is

E
{

A†
Λ0

wwT(I − AΛ0
A†

Λ0
)T
}
= σ2 A†

Λ0
(I − AΛ0

A†
Λ0
)T

= 0, (6.45)

where we have used the fact [71, Th. 1.2.1] that for any matrix M

M†M†T MT = (MT M)†MT = M†. (6.46)

Since w is Gaussian, it follows that A†
Λ0

w and (I − AΛ0
A†

Λ0
)w are statistically independent.

Furthermore, because x0,Λ − x̂or,Λ depends on w only through A†
Λ0

w, we conclude that

x0 − x̂or is statistically independent of (I − AΛ0
A†

Λ0
)w. (6.47)

We now wish to bound the probability that ‖x0 − x̂or‖2
2 > 3sσ2. Let z be a normalized

Gaussian random variable, z ∼ N(0, Is). Then

Pr
{
‖x0 − x̂or‖2

2 > 3sσ2
}

= Pr

{∥∥∥σ(AT
Λ0

AΛ0
)−1/2z

∥∥∥
2

2
≥ 3sσ2

}

≤ Pr

{∥∥∥(AT
Λ0

AΛ0
)−1/2

∥∥∥
2
‖z‖2

2 ≥ 3s

}
(6.48)

where ‖M‖ denotes the maximum singular value of the matrix M. Thus, ‖(AT
Λ0

AΛ0
)−1/2‖ =

1/smin, where smin is the minimum singular value of AΛ0
. From the Gershgorin disc theorem

[116, p. 320], it follows that smin ≥
√

1 − (s − 1)µ. Using (6.23), this can be simplified to smin ≥
√

2/3, and therefore ∥∥∥(AT
Λ0

AΛ0
)−1/2

∥∥∥ ≤
√

3

2
. (6.49)

Combining with (6.48) yields

Pr
{
‖x0 − x̂or‖2

2 > 3sσ2
}
≤ Pr

{
‖z‖2

2 ≥ 2s
}

. (6.50)

Observe that ‖z‖2
2 is the sum of s independent normalized Gaussian random variables. The

right-hand side of (6.50) is therefore 1 − Fχ2
s
(2s), where Fχ2

s
(·) is the cumulative distribution

function of the χ2 distribution with s degrees of freedom. Using the formula [119, §16.3] for

Fχ2
s
(·), we have

Pr
{‖x0 − x̂or‖2

2 > 3sσ2
} ≤ Q

(
1
2 s, s

)
(6.51)

where Q(a, z) is the regularized Gamma function

Q(a, z) ,

∫ ∞

z
ta−1e−tdt∫ ∞

0 ta−1e−tdt
. (6.52)



140 CHAPTER 6. PERFORMANCE GUARANTEES FOR SPARSE ESTIMATION

Q
(

1
2 s, s

)
decays exponentially as s → ∞, and it can be seen that

Q
(

1
2 s, s

)
< e−s/7 for all s. (6.53)

We thus conclude that the event

‖x0 − x̂or‖2
2 ≤ 3sσ2 (6.54)

occurs with probability no smaller than 1 − e−s/7. Note that the same technique can be applied

to obtain bounds on the probability that ‖x0 − x̂or‖2
2 > αsσ2, for any α >

2
3 . The only difference

will be the rate of exponential decay in (6.53). However, the distance between x0 and x̂or is

usually small compared with the distance between x̂or and x̂BP, so that such an approach does

not significantly affect the overall result.

The above calculations provided a bound on the first term in (6.43). To address the second

term ‖x̂or − x̂BP‖2, define the random event

G : max
i

∣∣∣aT
i (I − AΛ0

A†
Λ0
)b
∣∣∣ ≤ 1

2 γ (6.55)

where ai is the ith column of A. It is shown in [22, App. IV-A] that

Pr{G} ≥ 1 − (m − s) exp

(
− γ2

8σ2

)
. (6.56)

If G indeed occurs, then the portion of the measurements b which do not belong to the range

space of AΛ0
are small, and consequently it has been shown [22, Cor. 9] that, in this case, the

solution x̂BP to (6.8) is unique, the support of x̂BP is a subset of Λ0, and

‖x̂BP − x̂or‖∞ ≤ 3
2 γ. (6.57)

Since both x̂BP and x̂or are nonzero only in Λ0, this implies that

‖x̂BP − x̂or‖2 ≤ 3
2 γ

√
s. (6.58)

The event G depends on the random variable w only through (I − AΛ0
A†

Λ0
)w. Thus, it

follows from (6.47) that G is statistically independent of the event (6.48). The probability that

both events occur simultaneously is therefore given by the product of their respective proba-

bilities. In other words, with probability exceeding (6.24), both (6.58) and (6.54) hold. Using

(6.43) completes the proof of the theorem.
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6.C Proof of Theorem 6.6

The claims concerning both algorithms are closely related. To emphasize this similarity, we first

provide several lemmas which will be used to prove both results. These lemmas are all based

on an analysis of the random event

B =

{
max

1≤i≤m
|aT

i w| < τ

}
(6.59)

where

τ , σ
√

2(1 + α) log m (6.60)

and α > 0. Our proof will be based on demonstrating that B occurs with high probability, and

that when B does occur, both thresholding and OMP achieve near-oracle performance.

Lemma 6.9. Suppose that w ∼ N(0, σ2 I). Then, the event B of (6.59) occurs with a probability of at

least (6.31).

Proof. The random variables {aT
i w}m

i=1 are jointly Gaussian. Therefore, by Šidák’s lemma [120,

Th. 1]

Pr{B} = Pr

{
max

1≤i≤m
|aT

i w| < τ

}
≥

m

∏
i=1

Pr
{
|aT

i w| ≤ τ
}

. (6.61)

Since ‖ai‖2 = 1, each random variable aT
i w has mean zero and variance σ2. Consequently,

Pr
{
|aT

i w| < τ
}
= 1 − 2Q

(τ

σ

)
(6.62)

where Q(x) = (1/
√

2π)
∫ ∞

x e−z2/2dz is the Gaussian tail probability. Using the bound

Q(x) ≤ 1

x
√

2π
e−x2/2 (6.63)

we obtain from (6.62)

Pr
{
|aT

i w| < τ
}
≥ 1 − η (6.64)

where

η ,

√
2

π
· σ

τ
e−τ2/2σ2

. (6.65)

When η > 1, the bound (6.31) is meaningless and the theorem holds vacuously. Otherwise,

when η ≤ 1, we have from (6.61) and (6.64)

Pr{B} ≥ (1 − η)m ≥ 1 − mη (6.66)

where the final inequality holds for any η ≤ 1 and m ≥ 1. Substituting the values of η and τ

and simplifying, we obtain that B holds with a probability no lower than (6.31), as required.
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The next lemma demonstrates that, under suitable conditions, correlating b with the dictio-

nary atoms ai is an effective method of identifying the atoms participating in the support of

x0.

Lemma 6.10. Let x0 be a vector with support Λ0 = supp(x0) of size s = |Λ0|, and let b = Ax0 + w

for some noise vector w. Define |xmin| and |xmax| as in (6.29), and suppose that

|xmax| − (2s − 1)µ|xmax| ≥ 2τ. (6.67)

Then, if the event B of (6.59) holds, we have

max
j∈Λ0

|aT
j b| > max

j/∈Λ0

|aT
j b|. (6.68)

If, rather than (6.67), the stronger condition

|xmin| − (2s − 1)µ|xmax| ≥ 2τ (6.69)

is given, then, under the event B, we have

min
j∈Λ0

|aT
j b| > max

j/∈Λ0

|aT
j b|. (6.70)

Proof. The proof is an adaptation of [7, Lemma 5.2]. Beginning with the term maxj/∈Λ0
|aT

j b|, we

have, under the event B,

max
j/∈Λ0

|aT
j b| = max

j/∈Λ0

∣∣∣∣∣a
T
j w + ∑

i∈Λ0

xia
T
j ai

∣∣∣∣∣

≤ max
j/∈Λ0

|aT
j w|+ max

j/∈Λ0
∑

i∈Λ0

∣∣∣xia
T
j ai

∣∣∣

< τ + sµ|xmax|. (6.71)

On the other hand, when B holds,

max
j∈Λ0

|aT
j b| = max

j∈Λ0

∣∣∣∣∣∣
xj + aT

j w + ∑
i∈Λ0\{j}

xia
T
j ai

∣∣∣∣∣∣

≥ |xmax| − max
j∈Λ0

∣∣∣∣∣∣
aT

j w + ∑
i∈Λ0\{j}

xia
T
j ai

∣∣∣∣∣∣

> |xmax| − τ − (s − 1)µ|xmax|

= |xmax| − (2s − 1)µ|xmax| − τ + sµ|xmax|. (6.72)

Together with (6.71), this yields

max
j∈Λ0

|aT
j b| > |xmax| − (2s − 1)µ|xmax| − 2τ + max

j/∈Λ0

|aT
j b|. (6.73)
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Thus, under the condition (6.67), we obtain (6.68). Similarly, when B holds, we have

min
j∈Λ0

∣∣∣aT
j b
∣∣∣ = min

j∈Λ0

∣∣∣∣∣∣
xj + aT

j w + ∑
i∈Λ0\{j}

xia
T
j ai

∣∣∣∣∣∣

> |xmin| − τ − (s − 1)µ|xmax|

= |xmin| − (2s − 1)µ|xmax| − τ + sµ|xmax|. (6.74)

Again using (6.71), we obtain

min
j∈Λ0

∣∣∣aT
j b
∣∣∣ > |xmin| − (2s − 1)µ|xmax| − 2τ + max

j/∈Λ0

|aT
j b|. (6.75)

Consequently, under the assumption (6.69), we conclude that (6.70) holds, as required.

The following lemma bounds the performance of the oracle estimator under the event B.

The usefulness of this lemma stems from the fact that, if either OMP or the thresholding algo-

rithm correctly identify the support of x0, then their estimate is identical to that of the oracle.

Lemma 6.11. Let x0 be a vector with support Λ0 = supp(x0), and let b = Ax0 + w for some noise

vector w. If the event B of (6.59) occurs, then

‖x̂or − x0‖2
2 ≤ 2sσ2(1 + α) log m

1

(1 − (s − 1)µ)2
. (6.76)

Proof. Note that both x̂or and x0 are supported on Λ0, and therefore

‖x̂or − x0‖2
2 = ‖A†

Λ0
b − x0,Λ0

‖2
2 (6.77)

where x0,Λ0
is the subvector of nonzero entries of x0. We thus have, under the event B,

‖x̂or − x0‖2
2 = ‖A†

Λ0
AΛ0

x0,Λ0
+ A†

Λ0
w − x0,Λ0

‖2
2

= ‖A†
Λ0

w‖2
2

=
∥∥∥(AT

Λ0
AΛ0

)−1AT
Λ0

w
∥∥∥

2

2

≤
∥∥∥(AT

Λ0
AΛ0

)−1
∥∥∥

2

∑
i∈Λ0

(aT
i w)2

≤ 1

(1 − (s − 1)µ)2
sσ22(1 + α) log m (6.78)

where, in the last step, we used the definition (6.59) of B and the fact that ‖AT
Λ0

AΛ0
‖ ≥ 1 − (s −

1)µ, which was demonstrated in Appendix 6.B. This completes the proof the lemma.
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We are now ready to prove Theorem 6.6. The proof for the thresholding algorithm is ob-

tained by combining the three lemmas presented above. Indeed, Lemma 6.9 ensures that the

event B occurs with probability at least as high as the required probability of success (6.31).

Whenever B occurs, we have by Lemma 6.10 that the atoms corresponding to Λ0 all have

strictly higher correlation with b than the off-support atoms, so that the thresholding algo-

rithm identifies the correct support Λ0, and is thus equivalent to the oracle estimator x̂or as

long as B holds. Finally, by Lemma 6.11, identification of the true support Λ0 guarantees the

required error (6.32).

We now prove the OMP performance guarantee. Our aim is to show that when B occurs,

OMP correctly identifies the support of x0; the result then follows by Lemmas 6.9 and 6.11. To

this end we employ the technique used in the proof of [7, Th. 5.1]. We begin by examining the

first iteration of the OMP algorithm, in which one identifies the atom ai whose correlation with

b is maximal. Note that (6.30) implies (6.67), and therefore, by Lemma 6.10, the atom having

the highest correlation with b corresponds to an element in the support Λ0 of x0. Consequently,

the first step of the OMP algorithm correctly identifies an element in Λ0.

The proof now continues by induction. Suppose we are currently in the ith iteration of

OMP, with 1 < i ≤ s, and assume that atoms from the correct support were identified in all

i − 1 previous steps. Referring to the notation used in the definition of OMP in Section 6.2.2,

this implies that supp(x̂i−1
OMP) = Λi−1 ⊂ Λ0. The ith step consists of identifying the atom ai

which is maximally correlated with the residual ri. By the definition of ri, we have

ri = Ax̃i−1 + w (6.79)

where x̃i−1 = x0 − x̂i−1
OMP. Thus supp(x̃i−1) ⊆ Λ0, so that ri is a noisy measurement of the vector

Ax̃i−1, which has a sparse representation consisting of no more than s atoms. Now, since

‖x̂i−1
OMP‖0 = i − 1 < s = ‖x0‖0, (6.80)

it follows that at least one nonzero entry in x̃i−1 is equal to the corresponding entry in x0.

Consequently

max
i

|x̃i−1
i | ≥ |xmin|. (6.81)

Note that the model (6.79) is precisely of the form (6.1), with ri taking the place of the measure-

ments b and x̃i−1 taking the place of the sparse vector x0. It follows from (6.81) and (6.30) that

this model satisfies the requirement (6.67). Consequently, by Lemma 6.10, we have that under
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the event B,

max
i∈Λ0

|aT
i ri| > max

i/∈Λ0

|aT
i ri|. (6.82)

Therefore, the ith iteration of OMP will choose an element within Λ0 to add to the support. By

induction it follows that the first s steps of OMP all identify elements in Λ0, and since OMP

never chooses the same element twice, the entire support Λ0 will be identified after s iterations.

This completes the proof of Theorem 6.6.



146 CHAPTER 6. PERFORMANCE GUARANTEES FOR SPARSE ESTIMATION



Chapter 7

Bounds and Guarantees for

Block-Sparse Estimators

This chapter has been submitted for publication as:

• Z. Ben-Haim and Y. C. Eldar, “Near-oracle performance of greedy block-sparse estimation

techniques from noisy measurements,” submitted to IEEE J. of Selected Topics in Signal

Processing, Sep. 2010.

7.1 Introduction

The success of signal processing techniques depends to a large extent on the availability of an

appropriate model which captures our knowledge of the system under consideration and trans-

lates it to a productive mathematical framework. There is consequently an ongoing search for

mathematical models which can accurately describe real-world signals. In recent years, much

research has been devoted to the sparse representation model, which stems from the observa-

tion that many signals can be approximated using a small number of elements, or “atoms,”

chosen from a large dictionary [12, 15, 84]. Thus, we may write y = Dx + w, where the signal

y is a linear combination of a small number of columns of the dictionary matrix D, corrupted

by noise w. Since only a small number of elements of D are required for this representation,

the vector x is sparse, i.e., most of its entries equal 0. It turns out that the sparsity assumption

can be used to accurately estimate x from y, even when the number of possible atoms (and

thus, the length of x) is greater than the number of measurements in y [7, 12, 22]. This model

has been used to great advantage in many fundamental fields of signal processing, including

147
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compressed sensing [12, 84], denoising [73], deblurring [121], and interpolation [122].

The assumption of sparsity is an example of a much more general class of signal models

which can be described as a union of subspaces [9, 123, 124]. Indeed, each support pattern

defines a subspace of the space of possible parameter vectors. Saying that the parameter con-

tains no more than k nonzero entries is equivalent to stating that x belongs to the union of all

such subspaces. Unions of subspaces are proving to be a powerful generalization of the spar-

sity model. Apart from ordinary sparsity, unions of subspaces have been applied to estimate

signals as diverse as pulse streams [36, 125], multi-band communications [126–128], and block

sparse vectors [9, 26–28], the latter being the focus of this paper. The common thread running

through these applications is the ability to exploit the union of subspaces structure in order to

achieve accurate reconstruction of signals from a very low number of measurements.

The block sparsity model is based on the realization that in many practical sparse represen-

tation settings, not all support patterns are equally likely. Specifically, if a particular element of

x is nonzero, then in many cases “similar” elements in x are also nonzero. The precise defini-

tion of similarity is context-dependent. For example, in Fourier-based dictionaries, neighboring

frequency bins are often jointly nonzero, while in wavelet-based dictionaries, nonzero entries

in a certain detail level are likely to be correlated with nonzeros in higher detail levels. Conse-

quently, the sparsity model does not incorporate all of the structure present in the signal. The

block sparsity approach aims to partially overcome this drawback by partitioning the vector x

into blocks, each of which contains a small number of elements. The structure imposed by the

block sparsity model is that no more than a small number k of blocks are nonzero. The model

thus favors the use of related atoms, rather than sporadic dictionary columns. Consequently,

block sparsity is well-suited for those situations described above, in which specific atoms tend

to be used together.

The usefulness of a model depends on the existence of efficient and effective methods for

estimating a signal x from its measurements. Fortunately, estimators designed for the ordinary

sparsity model can be readily adapted to the block sparse setting. Thus, previous work has

described techniques such as block orthogonal matching pursuit (BOMP) [28] and the mixed

ℓ2/ℓ1-optimization (L-OPT) [9, 27], the latter being a block version of the Lasso. In this paper,

we also describe a block-sparse version of the thresholding algorithm, which we refer to as

block-thresholding (BTH). The BOMP and BTH approaches are representatives of a class of

so-called greedy algorithms, which attempt to identify the support of x by choosing at each

step the most likely candidate. In this paper we restrict attention to these greedy techniques,
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which are simpler (and more naive) than convex relaxation techniques such as L-OPT, and

are therefore more suitable for implementation in large-scale or computationally parsimonious

settings.

Having described various estimation algorithms, it is natural to ask what can be guaranteed

analytically about the performance of these methods in practice. For example, in the ordinary

(non-block) sparsity setting, a rich collection of performance guarantees exists for various al-

gorithms under different noise models. In particular, a distinction is made between adversarial

and random noise models. In the former case, nothing is known about w except that it is

bounded, ‖w‖2 ≤ ε; in particular, w might be chosen so as to maximally harm a given estima-

tion algorithm. Consequently, guarantees in this case are relatively weak, ensuring only that

the error in x is on the order of ε [7, 12, 22]. By contrast, when the noise is random, estimation

performance is considerably improved for most noise realizations [8, 22, 78].

It is natural to seek an extension of these results to the block sparsity model. In the absence

of noise, successful recovery of a block sparse parameter x from measurements y = Dx has

been demonstrated in the past for both BOMP and L-OPT [9, 28]. However, to the best of our

knowledge, the only result providing analytical guarantees for a block sparse estimator under

noise was given in [9], where the performance of L-OPT was analyzed under adversarial noise.

The goal of this paper is to analyze the performance of the greedy algorithms BOMP and BTH

under both adversarial and random noise models. As we will see, despite the fact that these

greedy algorithms are simpler and more efficient to implement, their performance is close to

the optimal achievable results.

Specifically, we first analyze the adversarial noise model, and show that both BOMP and

BTH achieve an error on the order of ε when the noise is bounded by ‖w‖2 ≤ ε. These results

generalize previous guarantees in several ways: First, when each block contains one element,

we recover the non-block sparsity guarantee of Donoho et al. [7]. Second, when the noise

bound ε equals 0, we obtain the noise-free guarantees of Eldar et al. [28].

We next turn to the random noise model, and examine in particular the case in which w

is white Gaussian noise. We derive the Cramér–Rao bound (CRB) for estimating x from its

measurements, and show that this bound equals the error of the “oracle estimator” which

knows the locations of the nonzero blocks of x. However, while the oracle estimator relies

on information which is unavailable in practice, the CRB is known to be achievable by the

maximum likelihood (ML) technique at high SNR. Unfortunately, the ML approach is NP-

complete, and thus can probably not be implemented efficiently. Nevertheless, we proceed
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to show that both BOMP and BTH come within a nearly constant factor of the CRB at high

SNR, for dictionaries satisfying suitable requirements. Once again, when each block contains

one element, we can recover previously known guarantees for non-block sparsity [78] from

our results. Furthermore, we show that in typical block sparse situations, the performance

guarantees of block algorithms is substantially better than that of non-block techniques.

The rest of this paper is organized as follows. The block sparse setting is defined in Sec-

tion 7.2, and the BOMP and BTH techniques are described in Section 7.3. The adversarial noise

model is then analyzed in Section 7.4. The treatment of random noise begins with the deriva-

tion of the CRB in Section 7.5, while performance guarantees for this case appear in Section 7.6.

Finally, the guarantees and the CRB are compared with the actual performance of BOMP and

BTH in a numerical study in Section 7.7.

7.2 Problem Setting

7.2.1 Notation

The following notation is used throughout the paper. Matrices and vectors are denoted by

boldface uppercase letters M and boldface lowercase letters v, respectively. The ℓ2 norm of a

vector v is ‖v‖2 and the spectral norm of a matrix M is ‖M‖. The expectation of a random

vector v will be denoted E{v} or, occasionally, Ex{v}, where the subscript is intended to em-

phasize the fact that the expectation is a function of the deterministic quantity x. The adjoint

and the Moore–Penrose pseudoinverse of a matrix M are denoted, respectively, by M∗ and M†,

while the column space of M is R(M). We denote by v[i] the ith d-element block of a vector v

of length N = Md. Thus

v[i] , [v(i−1)d+1, v(i−1)d+2, . . . , vid]
T , 1 ≤ i ≤ M. (7.1)

Consequently, we may write

v =
[
vT[1], . . . , vT[M]

]T
. (7.2)

Similarly, given a matrix M having N columns, the submatrix M[i] contains the columns (i −
1)d + 1, (i − 1)d + 2, . . . , id of M, i.e., those columns of M which correspond to the ith block.

The support supp(v) of v is defined as the set of indices of nonzero blocks of v; formally

supp(v) , {i : v[i] 6= 0}. (7.3)
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Given an index set I, the vector vI is constructed as the subvector of v containing the blocks

indexed by I; in other words, if I = {i1, . . . , ip}, then

vI =
[
vT[i1], . . . , vT[ip]

]T
. (7.4)

Likewise, the submatrix M I contains the column blocks indexed by I, so that

M I =
[
M[i1], . . . , M[ip]

]
. (7.5)

To uniquely define vI and M I , we will assume as a convention that the elements of I are sorted,

i.e., i1 < i2 < · · · < ip.

7.2.2 Problem Definition

Let x ∈ CN be a deterministic block-sparse vector, i.e., x consists of M blocks x[1], . . . , x[M]

of size d, of which at most k are nonzero [28]. The maximum support size k is assumed to be

known. The block sparsity restriction can then be written as

x ∈ X , {v ∈ R
N : | supp(v)| ≤ k}. (7.6)

For convenience, let S , supp(x) be the support of the parameter x, and let s = |S|. Note

the distinction between k and s: It is known that at most k blocks are nonzero, but the actual

number of nonzero blocks s is unknown and may be smaller than k. In the sequel, it will be

useful to define

|xmax| , max
i∈S

‖x[i]‖2,

|xmin| , min
i∈S

‖x[i]‖2. (7.7)

The block sparse model differs from the more common non-block sparsity setting: in the

latter, it is assumed that a small number of entries (rather than blocks) in the vector x are

nonzero. To emphasize this difference, we will occasionally refer to the non-block sparsity

model as “ordinary” or “scalar” sparsity.

We are given noisy observations

y = Dx + w (7.8)

where D ∈ CL×N is a known, deterministic dictionary, and w is a noise vector. Our goal is to

estimate x from the measurements y. It will be convenient to denote the ith column (or “atom”)

of D as di. Thus we have

D = [d1, . . . , dd︸ ︷︷ ︸
D[1]

, dd+1, . . . , d2d︸ ︷︷ ︸
D[2]

, . . . , dN−d+1, . . . , dN︸ ︷︷ ︸
D[M]

]. (7.9)
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We assume for simplicity that the dictionary atoms are normalized, ‖di‖2 = 1. We also assume

that the measurement system is underdetermined, i.e., the number of measurements L is less

than the number of parameters N; thus, we must utilize the structure X , for otherwise we have

no hope of recovering x from its measurements. Finally, we require that for any index set I

of size |I| ≤ k, the subdictionary DI has full column rank. This latter assumption is needed

to ensure that after a support set is chosen, one may estimate x using standard techniques for

inverting an overcomplete set of linear equations, e.g., the least-squares approach.

We will provide performance guarantees for two separate noise models. First, we consider

the adversarial setting, in which the noise is unknown but bounded,

‖w‖2 ≤ ε (7.10)

for a known constant ε > 0. In this case the goal is to provide performance guarantees which

hold for all values of w satisfying (7.10). Second, we treat additive white Gaussian noise, in

which

w ∼ N(0, σ2 I). (7.11)

In this case w is unbounded, and the goal will be to provide guarantees which hold with high

probability.

Following [28], we define the block coherence of D as

µB , max
i 6=j

1

d
‖D∗[i]D[j]‖. (7.12)

We also define the sub-coherence

ν = max
1≤ℓ≤M

max
(ℓ−1)d+1≤i 6=j≤ℓd

|d∗
i dj|. (7.13)

The block coherence and sub-coherence are generalizations of the concept of the coherence,

which is defined as

µ = max
1≤i 6=j≤N

|d∗
i dj| (7.14)

and applies to dictionaries regardless of whether they have a block structure.

7.3 Techniques for Block-Sparse Estimation

For reference and in order to fix notation, we now describe the two greedy algorithms for which

we provide performance guarantees.
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Block-Thresholding (BTH) We propose the following straightforward extension of the well-

known thresholding algorithm. Given a measurement vector y ∈ CL, perform the following

steps:

1. Compute the correlations

ρi = ‖D∗[i]y‖2, i = 1, . . . , M. (7.15)

2. Find the k largest correlations and denote their indices by i1, . . . , ik. In other words, find a

set of indices Ŝ = {i1, . . . , ik} such that ρi ≥ ρj for all i ∈ Ŝ and j /∈ Ŝ.

3. The reconstructed signal is given by

x̂BTH = arg min
x̃:supp(x̃)=Ŝ

‖y − Dx̃‖2. (7.16)

Block Orthogonal Matching Pursuit (BOMP) The BOMP algorithm, based on the OMP al-

gorithm [17], was first proposed in [28].

Given a measurement vector y ∈ CL, perform the following steps:

1. Define r0 = y.

2. For each ℓ = 1, . . . , k, do the following:

(a) Set

iℓ = arg max
i

‖D∗[i]rℓ−1‖2. (7.17)

(b) Set

xℓ = arg min
x̃:supp(x̃)⊆{i1,...,iℓ}

‖y − Dx̃‖2. (7.18)

(c) Set rℓ = y − Dxℓ.

3. The estimate is given by x̂BOMP = xk.

Oracle Estimator We will find it useful to analyze the oracle estimator, which is defined as

the least-squares solution within the true support set, i.e.,

x̂or = arg min
x̃:supp(x̃)⊆S

‖x − x̃‖2
2. (7.19)
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Using the notation introduced above, we have

(x̂or)S = (D∗
SDS)

−1D∗
Sy,

(x̂or)SC = 0 (7.20)

where SC = {1, . . . , M}\S is the complement of the support set S. Note that the term “oracle

estimator” is somewhat misleading, since x̂or relies on knowledge of the true support set S,

and is therefore not a true estimator.

7.4 Guarantees for Adversarial Noise

We begin by stating our performance guarantees in the case of adversarial noise. The proofs of

these results are quite technical and can be found in Appendix 7.A.

Theorem 7.1. Consider the setting of Section 7.2 with adversarial noise (7.10). Suppose that

(1 − (d − 1)ν)|xmin| > 2ε
√

1 + (d − 1)ν + (2k − 1)dµB |xmax|. (7.21)

Then, the BTH algorithm correctly identifies all elements of the support of x, and its error is bounded by

‖x̂BTH − x‖2
2 ≤ ε2

1 − (d − 1)ν − (k − 1)dµB
. (7.22)

Theorem 7.2. Consider the setting of Section 7.2 with adversarial noise (7.10). Suppose that

(1 − (d − 1)ν)|xmin| > 2ε
√

1 + (d − 1)ν + (2k − 1)dµB|xmin|. (7.23)

Then, the BOMP algorithm identifies all elements of supp(x), and its error is bounded by

‖x̂BOMP − x‖2
2 ≤ ε2

1 − (d − 1)ν − (k − 1)dµB
. (7.24)

The following remarks should be made concerning Theorems 7.1 and 7.2.

• Scalar sparsity: The scalar sparsity setting, in which x has no more than k nonzero el-

ements, can be recovered by choosing d = 1. In this case, BOMP and BTH reduce to their

scalar versions, which are called OMP and thresholding, respectively, and the block-coherence

µB equals the coherence µ of (7.14). Theorems 7.1 and 7.2 then coincide with the well-known

results of Donoho et al. [7] for performance of scalar sparse signals under adversarial noise. As

an example (and for future reference), the OMP performance guarantee is given below.
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Corollary 7.3 (Donoho et al. [7]). Let y = Dx + w be a measurement vector of a signal x having

sparsity ‖x‖0 ≤ k. Suppose that the coherence µ of the dictionary D satisfies

|xmin|(1 − (2k − 1)µ) > 2ε. (7.25)

Then, OMP recovers the correct support pattern of x and achieves an error bounded by

‖x̂OMP − x‖2
2 ≤ ε2

1 − (k − 1)µ
. (7.26)

Note that in the case of ordinary sparsity, d = 1, and therefore |xmin| can be defined simply

as the magnitude of the smallest nonzero element in x.

• Benefits and limitations of block sparsity: It is interesting to compare the achievable perfor-

mance guarantees when one utilizes the block-sparse structure, as opposed to merely using

ordinary (scalar) sparsity information. For concreteness, we focus in this discussion on a com-

parison between OMP and BOMP, but identical conclusions can be drawn by comparing the

thresholding algorithm with its block-sparse version BTH.

Consider a block sparse signal x as defined in Section 7.2. Such a signal can also be viewed

as a scalar sparse signal of length N = Md, having no more than sd nonzero elements. It is

readily shown that the coherence µ satisfies ν ≤ µ and µB ≤ µ [28]. Consequently,

ε2

1 − (d − 1)ν − (k − 1)dµB
≤ ε2

1 − (sd − 1)µ
(7.27)

which implies that if the conditions for the performance guarantees of both BOMP and OMP

hold, then the performance guarantee (7.24) for BOMP will be at least as good as that of OMP

(7.26). Moreover, in typical block-sparse settings, both ν and µB will be substantially smaller

than µ [28], and the guarantees for BOMP will then be considerably better.

These results notwithstanding, it should be noted that BOMP should not automatically be

preferred over OMP in any setting. This is because the condition (7.23) of Theorem 7.2 can

sometimes be weaker than that of OMP. Specifically, the factor 2ε
√

1 + (d − 1)ν in (7.23) is

larger than the analogous term 2ε in (7.25).1 This implies that if the sub-coherence ν is large,

block sparse algorithms will not perform as well as their scalar counterparts. Such a result is

to be expected: Highly correlated dictionary blocks may cause noise amplification, and in such

cases, it may be preferable to separately correlate each atom with the measurements, rather

than relying on the combined correlation of the entire block. Indeed, it would be quite surpris-

ing if a partition of any dictionary D into arbitrary blocks could be shown to perform as well as

1The remaining terms in (7.23) are always no worse than the corresponding terms in (7.25).
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a scalar sparsity algorithm, since the former adds a restriction on the possible support patterns

of the vector x. The lesson to be learned from this analysis is that block sparsity techniques are

effective when the dictionary can be separated into blocks whose elements are orthogonal or

nearly orthogonal.

• Noiseless case: The situation in which y = Dx, i.e., no noise is present in the system, has

been previously analyzed in the context of block sparsity in [28]. This setting can be recovered

by choosing the noise bound ε = 0. In this case, the condition (7.24) simplifies to

(d − 1)ν + (2k − 1)dµB < 1 (7.28)

and Theorem 7.2 then amounts to a guarantee for perfect recovery of x if (7.28) holds. This

result for the noise-free setting has been previously demonstrated in [28, Thm. 3].

Similarly, by substituting ε = 0 into Theorem 7.1, one obtains a perfect recovery condition

for BTH in the noiseless setting. Specifically, if the condition

(d − 1)ν
|xmax|
|xmin|

+ (2k − 1)dµB < 1 (7.29)

is satisfied, then BTH correctly recovers x from its noiseless measurements y = Dx.

Since BTH is a much simpler algorithm than BOMP, it is not surprising that the neces-

sary condition (7.29) for BTH is somewhat stronger than the corresponding condition (7.28) for

BOMP. This difference between the conditions is indicative of the different strategies employed

by the two techniques, and will be further discussed in Section 7.6.

• Severity of the error: As in the scalar sparsity scenario, the presence of adversarial noise

severely limits the ability of any algorithm to perform denoising. This is evident from Theo-

rems 7.1 and 7.2, which guarantee only that the distance between the estimates and the true

value of x is on the order of the noise magnitude ε. Given our detailed knowledge of the struc-

ture of the signal x, one would expect more powerful denoising capabilities for typical noise

realizations. Consequently, in the remainder of this paper, we adopt the assumption of random

noise, which cannot align itself so as to maximally interfere with the recovery algorithms.

7.5 The Cramér–Rao Bound

A central goal in assessing the quality of an estimator is to check its proximity to the best

possible performance in the given setting. To this end, it is common practice to compute the

CRB for unbiased estimators [16], i.e., those techniques x̂ for which the bias b(x) , Ex{x̂} − x
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equals zero. The CRB is a lower bound on the mean-squared error MSE(x̂, x) = Ex

{
‖x̂ − x‖2

2

}

for any unbiased estimator x̂.

To utilize the information inherent in the block sparsity structure, we apply the constrained

CRB [52,56,58,70] to the present setting. In the constrained estimation scenario, one often seeks

estimators which are unbiased for all parameter values in the constraint set [52, 56]. However,

as we will see below, this requirement is too strict in the block sparse setting. Indeed, in Theo-

rem 7.4 we show that it is not possible to construct any method which is unbiased for all feasible

parameter values. Consequently, a weaker, local definition of unbiasedness is called for, which

we refer to as X -unbiasedness [70].

Intuitively, an estimator x̂ is said to be X -unbiased at a point x ∈ X if Ex{x̂} = x holds

at the point x and at all points x̃ in X which are sufficiently close to x. To formally define X -

unbiasedness, we first recall the concept of a feasible direction. A vector v ∈ CN is said to be a

feasible direction at x if, for any sufficiently small α, we have x + αv ∈ X . We then say that x̂ is

X -unbiased at x if Ex{x̂} = x and if

∂b(x + αv)

∂α

∣∣∣∣
α=0

= 0 (7.30)

for any feasible direction v. In other words, the bias is zero at x and remains unchanged, up to a

first-order approximation, when moving away from x along feasible directions. This definition

yields the following result, whose proof can be found in Appendix 7.B.

Theorem 7.4 (Cramér–Rao bound for block-sparse signals). Consider the setting of Section 7.2 in

which the block sparse parameter vector x is to be estimated from measurements corrupted by Gaussian

noise (7.11).

(a) Suppose x contains fewer than k nonzero blocks, i.e., s < k. Then, no finite-variance estimator is

X -unbiased at x.

(b) Suppose x contains precisely k nonzero blocks, i.e., s = k. Then, any estimator which is X -unbiased

at x satisfies

MSE(x̂, x) ≥ σ2 Tr
(
(D∗

SDS)
−1
)

. (7.31)

We recall that both the MSE and the CRB are functions of the unknown vector x, as is

generally the case when estimating a deterministic parameter. It follows immediately from

Theorem 7.4 that no finite-variance estimator can satisfy Ex{x̂} = x for all x ∈ X , which

explains why we previously avoided this simpler definition of unbiasedness in the constrained
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setting. Instead, restricting attention to a local unbiasedness requirement led to a finite CRB

for almost all parameter values in x: specifically, those parameters whose support is maximal,

| supp(x)| , s = k.

For maximal-support values of x, it is not difficult to show that the CRB (7.31) coincides

with the MSE of the oracle estimator (7.20). In this case it is possible to get a sense for the value

of the bound, as follows. From (7.44) of Lemma 7.8 (see Appendix 7.A), we have that none of

the eigenvalues of (D∗
SDS)

−1 are larger than 1/(1 − (d − 1)ν − (k − 1)dµB). Thus

σ2 Tr
(
(D∗

SDS)
−1
)
≤ 1

1 − (d − 1)ν − (k − 1)dµB
kdσ2 . (7.32)

In other words, when the block coherence and sub-coherence of D are low, the bound of The-

orem 7.4 will be close to kdσ2. This value is typically much lower than the total noise variance

E
{
‖w‖2

2

}
= Lσ2. Thus, at least according to the CRB, it is possible to achieve substantial de-

noising in the presence of random noise. This stands in contrast to the rather disappointing

guarantees presented for adversarial noise in the previous section. We may thus hope that the

performance will be improved when considering random noise.

As opposed to the oracle estimator, which cannot be implemented in practice, it is well-

known that the CRB can be asymptotically achieved at high SNR by the maximum likelihood

(ML) estimator [16]. However, in the present setting, computing the ML estimator is NP-hard,

and thus impractical. Consequently, it is of interest to determine whether there exist efficient

techniques which come close to the performance bound (7.31), at least for high SNR values.

As we will show in the next section, this question is answered in the affirmative: greedy block

sparsity techniques do indeed approach the CRB for sufficiently high SNR.

7.6 Guarantees for Gaussian Noise

In this section, we analyze the performance of block sparse algorithms when the noise w is

a Gaussian random variable having mean zero and covariance σ2 I. Our main performance

guarantees are summarized in Theorems 7.5 and 7.6. The proofs of these theorems are found

in Appendix 7.C.

Theorem 7.5. Consider the setting of Section 7.2 with additive white Gaussian noise w ∼ N(0, σ2 I).

Suppose it is known that

(1 − (d − 1)ν)|xmin| − (2k − 1)dµB|xmax|

≥ 2σ
√

2αd(1 + (d − 1)ν) log N (7.33)
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for some constant α ≥ 1/(2d log N). Then, with probability exceeding

1 − 0.8d(2αd log N)d/2−1

Nαd−1
(7.34)

the BTH algorithm identifies the correct support of x and achieves an error bounded by

‖x̂BTH − x‖2
2 ≤ 2α(1 + (d − 1)ν)

(1 − (d − 1)ν − (k − 1)dµB)2
dkσ2 log N. (7.35)

Theorem 7.6. Consider the setting of Section 7.2 with additive white Gaussian noise w ∼ N(0, σ2 I).

Suppose it is known that

(1 − (d − 1)ν)|xmin| − (2k − 1)dµB |xmin|

≥ 2σ
√

2αd(1 + (d − 1)ν) log N (7.36)

for some constant α ≥ 1/(2d log N). Then, with probability exceeding (7.34), the BOMP algorithm

identifies the correct support of x and achieves an error bounded by

‖x̂BOMP − x‖2
2 ≤ 2α(1 + (d − 1)ν)

(1 − (d − 1)ν − (k − 1)dµB)2
dkσ2 log N. (7.37)

We now provide some insights into the performance of block-sparse algorithms under ran-

dom noise.

• Random noise vs. adversarial noise: As noted in Section 7.4, performance guarantees in the

case of adversarial noise can ensure a recovery error on the order of the total noise magnitude.

This is a result of the fact that the noise could, in principle, be concentrated in a single nonzero

component of x, whereupon it would be indistinguishable from the signal. However, for ran-

dom noise, such an event is highly unlikely. Consequently, Theorems 7.5 and 7.6 provide much

tighter performance guarantees: both theorems demonstrate that, with high probability, the

estimation error is on the order of dkσ2 log N, i.e., within a constant times log N of the CRB

presented in Section 7.5. Since the noise variance E
{
‖w‖2

}
is given by Nσ2, and since typically

dk log N ≪ N, we conclude that the block sparse algorithms have successfully removed a large

portion of the noise, owing to the utilization of the union-of-subspaces structure.

• BOMP vs. BTH: Comparing Theorems 7.5 and 7.6 leads to an important insight concern-

ing the advantage of the more sophisticated BOMP algorithm over its simpler counterpart.

Indeed, the guarantee for BOMP requires condition (7.36), which basically states that |xmin|
must be larger than a constant multiplied by the standard deviation of the noise. By contrast,

for the BTH guarantee one requires the stronger condition (7.33), which can be interpreted as

requiring |xmin| to be larger than a small constant times |xmax|, plus another constant times the

noise standard deviation.
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To explain this difference, recall from Section 7.3 that the BTH approach relies on a single

support-identification stage in which the blocks most highly correlated with the measurements

are chosen as the estimated support set Ŝ. Thus, for BTH to correctly identify the support, each

block in S must be sufficiently large in magnitude to overcome interference from the noise and

from the remaining blocks. Condition (7.33) can therefore be interpreted as a requirement that

the magnitude |xmin| of the smallest nonzero block must be larger than the sum of the inter-

ference from the large nonzero blocks (the |xmax| term) and the noise. By contrast, the BOMP

algorithm iteratively identifies support elements, maintaining a residual vector rℓ containing

the components of the measurement vector which have yet to be identified. Thus, BOMP re-

quires only the ability to separately isolate each nonzero block, and hence its weaker condition

(7.36), which necessitates only that |xmin| be larger than the noise.

Finally, it should be noted that when BTH and BOMP both identify the correct support set,

the estimates of the two algorithms coincide, explaining the identical bounds on their perfor-

mance. The conclusion from this analysis is that BOMP should be preferred if a wide dynamic

range of block magnitudes is possible, but that when all blocks have roughly the same size, the

simpler and more efficient BTH technique can be used.

• Scalar sparsity: It is interesting to note that known results for scalar sparsity algorithms

can be recovered from our block sparsity guarantees, by substituting d = 1 into Theorems 7.5

and 7.6. For example, consider the BOMP guarantee (Theorem 7.6). In the scalar case, this

algorithm is known as OMP, and its performance guarantee can be written as follows.

Corollary 7.7. Let y = Dx + w be a measurement vector of a signal x having sparsity ‖x‖0 ≤ k.

Suppose the coherence µ of D satisfies

|xmin|(1 − (2k − 1)µ) ≥ 2σ
√

2α log N (7.38)

for some α > 1. Then, with probability exceeding

1 − 0.8/
√

2

Nα−1
√

α log N
(7.39)

the OMP algorithm recovers the correct support of x, and achieves an error bounded by

‖x̂OMP − x‖2
2 ≤ 2α

(1 − (k − 1)µ)2
kσ2 log N. (7.40)

Corollary 7.7 is nearly identical to [78, Thm. 4], with the only difference being that the con-

stant 0.8/
√

2 ≈ 0.566 in (7.39) is replaced in [78] with the slightly better constant 1/
√

π ≈ 0.564.

This slight discrepancy can be resolved if the more accurate version (7.89a) of Lemma 7.11 is
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Problem Dimensions Coherence OMP Block-OMP Cramér–Rao

M d L k µ µB Guar./σ2 σmax Guar./σ2 σmax CRB/σ2

1200 5 3000 1 0.10 0.026 301.0 0.033 37.0 0.160 5.0

1200 5 3000 2 0.10 0.026 — — 98.8 0.110 10.0

1200 5 3000 3 0.10 0.026 — — 204.4 0.063 15.1

1200 5 3000 4 0.10 0.026 — — 417.0 0.010 20.1

1200 5 3000 5 0.10 0.026 — — — — 25.2

1200 5 3000 3 0.10 0.026 — — 204.4 0.063 15.1

600 10 3000 3 0.10 0.015 — — 364.3 0.049 30.2

300 20 3000 3 0.10 0.010 — — 879.1 0.008 60.8

200 30 3000 3 0.10 0.007 — — — — 91.8

1200 5 3000 1 0.10 0.026 301.0 0.033 37.0 0.160 5.0

1200 5 1000 1 0.17 0.043 — — 37.0 0.144 5.0

1200 5 500 1 0.25 0.060 — — 37.0 0.128 5.0

1200 5 100 1 0.51 0.133 — — 37.0 0.062 5.0

1200 5 50 1 0.71 0.165 — — 37.0 0.032 5.0

1200 5 20 1 0.90 0.197 — — 37.0 0.003 5.0

1200 5 10 1 0.98 0.200 — — — — 5.0

Table 7.1: Performance Guarantees for OMP and Block-OMP
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used in the proof of Theorem 7.6, but the resulting expression becomes much more cumber-

some in the block sparse case.

• Block sparsity vs. scalar sparsity: A legitimate question is whether the incorporation of

the block sparsity structure substantially assists estimation algorithms. In other words, do

the performance guarantees of the block algorithms BOMP and BTH compare favorably with

the results achievable on identical signals using scalar sparsity algorithms, such as OMP and

thresholding? This question is examined numerically in the next section.

7.7 Numerical Experiments

From a practical point of view, it is important to determine whether the use of block sparse

algorithms contributes significantly to the performance of estimation algorithms. After all, any

block sparse signal containing k nonzero blocks of size d can also be viewed as a sparse signal

containing kd nonzero elements. Is there a significant benefit in using the block algorithms

rather than the ordinary scalar versions?

There are two possible approaches to answering this question. First, one may compare the

performance achieved in practice by block sparse and scalar sparse algorithms. This requires

a complete specification of the problem setting, including a choice of the parameter value x,

which is unknown in practice. Alternatively, one can compare the performance guarantees for

block sparse techniques, which were derived in Section 7.6, to the previously known guarantees

for scalar approaches [109]. The performance guarantees apply to all parameter values having a

specified sparsity level, and are therefore more general. However, there may be a gap between

the guarantee and the performance observed in practice. In order to take advantage of both

approaches, in the following we compare both the actual performance and the guarantees of

the various algorithms discussed in this paper.

In our experiments, we used dictionaries containing orthonormal blocks. Such dictionar-

ies were constructed by first generating a random L × N matrix containing IID, zero-mean

Gaussian random variables, and then performing a Gram–Schmidt procedure separately on

the columns of each block. As a first experiment, we generated a variety of such dictionaries,

and computed their coherence µ and block coherence µB. (The sub-coherence of dictionaries

generated in this manner is necessarily ν = 0.) These values were used to compute perfor-

mance guarantees for BOMP (using Theorem 7.6) and for OMP (using Corollary 7.7). We as-

sumed throughout that the minimum norm |xmin| among nonzero blocks equals 1 and that
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Figure 7.1: Median squared error as a function of the noise variance for block and scalar sparse

estimation algorithms. The shaded region indicates the range of errors encountered for differ-

ent parameter values. The dotted line plots the CRB. The thick solid line in Figs. 7.1(a) and

7.1(b) indicates the performance guarantees for the block sparse algorithms; no guarantee can

be made for the scalar sparsity techniques in Figs. 7.1(c) and 7.1(d).
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the minimum nonzero element equals 1/
√

d. Some typical results are listed in Table 7.1. To

compute the guarantees in this table, the smallest value of α yielding a 99% probability of suc-

cess was chosen. The resulting guarantee is listed in multiples of σ2. For example, a value

of Guarantee/σ2 = 100 means that ‖x̂ − x‖2
2 ≤ 100σ2 for 99% of the noise realizations. Also

listed in Table 7.1 are the maximum noise standard deviations σmax for which the performance

guarantees still hold. A dash (—) indicates that no guarantee can be made for the given setting

even in the noise-free case.

It is evident from Table 7.1 that the block sparse algorithm BOMP is guaranteed to perform

over a much wider range of problem settings than the scalar OMP approach. Furthermore,

even when performance guarantees are provided for both techniques, those for BOMP are sub-

stantially stronger. To provide merely one striking example from Table 7.1, note that 50 mea-

surements suffice for BOMP to identify a signal composed of a single 5-element block among a

set of 1200 possible blocks, whereas for OMP to identify such a signal at the same noise level,

as many as 3000 measurements are required. The reason for this advantage is clear: the OMP

algorithm must separately identify each nonzero component of the signal, and must therefore

choose among a total of (1200
5 ) ≈ 2.1 · 1013 possible support sets. This is obviously more chal-

lenging than identifying one nonzero block among a set of 1200 possibilities. Clearly, then,

knowledge of a block-sparse structure can substantially improve performance if it is correctly

utilized.

Table 7.1 also compares the performance guarantees with the CRB of Theorem 7.4. The CRB

is listed for a random choice of support set S containing precisely k nonzero blocks; however,

choosing different sets S only has a small effect on the value of the bound. The gap between

these lower and upper bounds is not inconsiderable, and is typically on the order of a factor

of 10. There are several reasons for this gap. First, the performance guarantees plotted above

indicate an error which is obtained with 99% confidence, whereas the CRB is a bound on the

MSE. By its very nature, the MSE averages out unusually disruptive noise realizations, and

thus tends to be more optimistic. Second, different values of x may yield significantly different

performance; the performance guarantees apply to all values of x, whereas the CRB is plotted

for a single, typical parameter value. Third, some loss of tightness undoubtedly results from

the derivations of the theorems, i.e., there may still be room for improved bounds.

To measure the relative influence of these factors, we performed another experiment, in

which the guarantees were compared with the actual performance of the various algorithms. To

overcome the aforementioned pessimistic effect of a guarantee which holds with overwhelming
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Figure 7.2: Median squared error as a function of the noise variance for block sparse estimation

algorithms. The shaded region indicates the range of errors encountered for different parame-

ter values. The dotted line plots the CRB. The thick solid line in Fig. 7.2(a) indicates the perfor-

mance guarantee for BOMP; no guarantee can be made for BTH. The deteriorated performance

of BTH is a result of the existence of low-magnitude blocks.

probability, in this second experiment we computed guarantees with a 50% confidence level.

In other words, these are assurances on the median of the distance between x and its estimate,

which captures the typical estimation error. We also computed the actual median error of the

various algorithms for a variety of parameter values.

The details of this experiment are as follows. We constructed a 3000 × 6000 dictionary

D containing M = 1200 blocks of d = 5 atoms each, using the orthogonalization algo-

rithm described above. The resulting coherence of D was µ = 0.094, the block coherence

was µB = 0.026, and since each block was orthonormal, the sub-coherence was ν = 0. We

then constructed a variety of block sparse vectors x, each having s = 3 nonzero blocks, with

|xmin| = 2
√

d and |xmax| = 3
√

d. We chose the parameter vectors so as to cover as wide a range

of scenarios as possible, within the aforementioned requirements. For example, some parame-

ter vectors contained a block with a single nonzero component whose value was |xmax|, while

other vectors contained a block with each of the d elements receiving a value of |xmax|/
√

d. Al-

though it is clearly not feasible to cover the full range of possible parameter vectors, it is hoped

that in this way some sense is given of the variability in performance for different parameter

values. Indeed, as shown below, different parameters often yield widely differing estimation

errors.
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For each choice of a parameter vector, 20 noise realizations were generated and the resulting

measurement vector y was computed using (7.8). The BOMP, BTH, OMP, and thresholding al-

gorithms were then applied to each of the measurement vectors. For every technique and each

parameter vector, the median estimation error (among the noise realizations) was computed.

The range of median estimation errors obtained for different choices of x is plotted as a shaded

area in Fig. 7.1.

In the present setting, neither of the scalar sparsity algorithms was capable of providing

a performance guarantee. For BOMP and BTH, performance guarantees were available, and

these are plotted as a solid line in Fig. 7.1. These guarantees are valid only up to a certain

maximal noise variance, at which point the solid line in Fig. 7.1 stops. The results are also

compared with the CRB of Theorem 7.4. It should be emphasized that the CRB is a bound

on the MSE, rather than the median error, although in practice the differences between these

two quantities appear to be quite small. It is also worth recalling that the CRB is a bound

on unbiased estimators, while all of the techniques discussed herein are biased; nevertheless,

it is evident that the CRB still provides a rough measure of the optimal performance of the

proposed algorithms.

Several comments are in order concerning Fig. 7.1. First, the performance of both block

sparse algorithms exhibits a transition: near-CRB performance for low noise levels deterio-

rates substantially when the noise level crosses a certain threshold. This behavior qualitatively

matches the predictions of the performance guarantees, which ensure support recovery and

near-CRB performance for sufficiently low noise levels. The threshold at which this transition

occurs is identified fairly accurately for BOMP, and less so for BTH, although it is possible that

there exist some (untested) parameter values for which the BTH transition occurs at lower noise

levels. However, the numeric value of the performance guarantee is somewhat pessimistic:

while the observed performance is close to the CRB for all parameter values, analytically one

can guarantee only that the median error will not be larger than approximately 10 times the

CRB. This result is most likely due to the various inequalities employed in the proofs of Theo-

rems 7.5 and 7.6. Indeed, since the correct support is identified with high probability for most

noise realizations, the BTH and BOMP algorithms will likely tend to coincide with the oracle

estimator, whose error equals that of the CRB. The question of formally proving such a claim

remains a topic for further research.

The advantages of the block sparse approach become evident when compared with scalar

sparsity algorithms (Figs. 7.1(c) and 7.1(d)). For the scalar techniques, no performance guar-
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antees can be made in the present setting. Unlike the block sparsity algorithms, the scalar

approaches fail to recover the correct parameter vector even when the noise is negligible, and

for some parameter values, their error does not converge to the CRB. The thresholding algo-

rithm, in particular, ceases to improve (for some parameter values) as the noise is reduced,

while the OMP approach, although significantly better than thresholding, does not converge to

the CRB as do the block sparse techniques. This demonstrates the advantages of utilizing the

fact that the signal is known to have a block-sparse structure.

The performance of BOMP (Fig. 7.1(a)) is quite similar to that of BTH (Fig. 7.1(b)) in the

experiment above. This is not surprising when one compares our problem setting with the

guarantees of Section 7.6. Indeed, as we have seen, the primary difference between the BOMP

and BTH algorithms is that the one-shot support estimation employed by BTH causes large-

magnitude blocks to overshadow small-magnitude nonzero blocks. In the setting of Fig. 7.1, the

range of magnitudes between |xmax| = 3
√

d and |xmin| = 2
√

d is not very large, and therefore

BTH performs nearly as well as BOMP. The advantages of BOMP become readily apparent

if one considers a wider dynamic range. This is illustrated in Fig. 7.2, in which the setup

is identical to that of the previous experiment, except that parameter vectors having |xmin| =
0.1

√
d and |xmax| =

√
d were chosen, yielding a 10-fold dynamic range in the block magnitudes.

In this case, while the guarantee for BOMP is hardly changed, the conditions for Theorem 7.5 no

longer hold, so that nothing can be ensured concerning the BTH technique. Indeed, in Fig. 7.2

we see that BTH performs poorly for some parameter values even when the noise level is low,

and its performance is no longer proportional to the CRB.

7.8 Conclusion

In this paper, we analyzed the performance of the greedy block algorithms BOMP and BTH

under the adversarial and Gaussian noise models. In the adversarial setting ‖w‖2 ≤ ε, we

showed that the estimation error equals a constant times the noise bound ε, which shows that

performance in this case will not necessarily reduce the noise power. The situation is much

better in the presence of random noise, where we saw that, under suitable conditions, greedy

techniques obtain an error on the order of dkσ2 log N with high probability; this is substantially

lower than the input noise power Nσ2. Indeed, the BTH and BOMP algorithms come close to

the CRB and the error of the oracle estimator.

There remain many open questions concerning the performance of block sparse techniques
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under random noise. For example, for scalar sparsity, performance guarantees for convex re-

laxation techniques do not require assumptions on the SNR. An important challenge is to de-

termine whether similar SNR-independent results can be demonstrated for block convex relax-

ation techniques such as L-OPT. Furthermore, it is well-known that scalar sparsity guarantees

can be strengthened if the restricted isometry constants of the dictionary D are known, as is the

case, for example, when D is chosen from an appropriate random ensemble. Thus, it is also of

interest to provide guarantees for block techniques under random noise based on an extension

of the RIP to the block sparse setting. One such extension has already been proposed in [9], and

its application to the Gaussian noise model may provide tighter bounds for some performance

algorithms.

7.A Proofs for Adversarial Noise

We begin by providing several lemmas which will prove useful for the analysis under both the

adversarial and the Gaussian noise models.

Lemma 7.8. Given a dictionary D having block coherence µB and sub-coherence ν, we have

‖D∗[i]D[j]‖ ≤ dµB for all i 6= j (7.41)

and

‖D[i]‖2 = ‖D∗[i]D[i]‖ ≤ 1 + (d − 1)ν. (7.42)

If 1 − (d − 1)ν > 0, then

‖(D∗[i]D[i])−1‖ ≤ 1

1 − (d − 1)ν
. (7.43)

Suppose 1 − (d − 1)ν − (k − 1)dµB > 0 and let I be an index set with |I| ≤ k. Then

‖(D∗
I DI)

−1‖ ≤ 1

1 − (d − 1)ν − (k − 1)dµB
. (7.44)

Proof. The bound (7.41) follows directly from the definition (7.12) of block coherence. To prove

(7.42)–(7.43), observe that the diagonal elements of the matrix D∗[i]D[i] equal 1, while the off-

diagonal elements are bounded in magnitude by ν. Therefore, by the Gershgorin circle theorem

[116], all eigenvalues of D∗[i]D[i] are in the range [1 − (d − 1)ν, 1 + (d − 1)ν], demonstrating

(7.42). Furthermore, it follows that the eigenvalues of (D∗[i]D[i])−1 are in the range [(1 + (d −
1)ν)−1, (1 − (d − 1)ν)−1], leading to (7.43).
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It remains to prove (7.44). To this end, let |I| = ℓ ≤ k and write D∗
I DI as

D∗
I DI =




M[1, 1] M[1, 2] · · · M[1, ℓ]

M[2, 1] M[2, 2] · · · M[2, ℓ]
...

...
. . .

...

M[ℓ, 1] M[ℓ, 2] · · · M[ℓ, ℓ]




(7.45)

where each M[i, j] is a d× d matrix containing the correlations between two blocks of dictionary

atoms. From the definition of block coherence, we have

‖M[i, j]‖ ≤ dµB, for all i 6= j. (7.46)

By a generalization of the Gershgorin circle theorem [129, Thm. 2], it follows that all eigenvalues

λ of D∗
I DI satisfy

‖M[i, i]− λI‖ ≤ ∑
j 6=i

‖M[i, j]‖ ≤ (ℓ− 1)dµB

≤ (k − 1)dµB . (7.47)

Now, from the definition of sub-coherence, the off-diagonal elements of M[i, i] are no larger

in magnitude than ν, while the diagonal elements of M[i, i] all equal 1. Therefore, by the

Gershgorin circle theorem, given an arbitrary constant λ, all eigenvalues of the d × d matrix

M[i, i]− λI are in the range [1 − λ − (d − 1)ν, 1 − λ + (d − 1)ν]. Consequently

‖M[i, i]− λI‖ ≥ 1 − λ − (d − 1)ν. (7.48)

Combining with (7.47) and rearranging, we conclude that all eigenvalues of D∗
I DI satisfy

λ ≥ 1 − (d − 1)ν − (k − 1)dµB. (7.49)

Consequently, the eigenvalues of (D∗
I DI)

−1 are no larger than (1 − (d − 1)ν − (k − 1)dµB)
−1,

establishing (7.44).

Lemma 7.9. Consider the setting of Section 7.2, and suppose it is known that

max
1≤j≤M

‖D∗[j]w‖2 < τ (7.50)

for a given value τ > 0. If the dictionary D satisfies

(1 − (d − 1)ν) |xmax| > 2τ + (2s − 1)dµB|xmax| (7.51)
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then

max
j∈S

‖D∗[j]y‖2 > max
j/∈S

‖D∗[j]y‖2 (7.52)

where S = supp(x).

If (7.51) is replaced by the stronger condition

(1 − (d − 1)ν) |xmin| > 2τ + (2s − 1)dµB |xmax| (7.53)

then

min
j∈S

‖D∗[j]y‖2 > max
j/∈S

‖D∗[j]y‖2. (7.54)

Proof. The proof is an extension of [78, Lemma 3] to the block-sparse case, and is ultimately

inspired by [7]. We first note that

max
j/∈S

‖D∗[j]y‖2 = max
j/∈S

∥∥∥∥∥D∗[j]w + ∑
i∈S

D∗[j]D[i]x[i]

∥∥∥∥∥
2

≤ max
j/∈S

‖D∗[j]w‖2 + max
j/∈S

∑
i∈S

‖D∗[j]D[i]‖ |xmax |. (7.55)

By (7.50), the first term in (7.55) is smaller than τ. Together with (7.41), we obtain

max
j/∈S

‖D∗[j]y‖2 < τ + sdµB|xmax| ≤ τ + kdµB |xmax|. (7.56)

On the other hand,

max
j∈S

‖D∗[j]y‖2 = max
j∈S

∥∥∥∥∥D∗[j]w + ∑
i∈S

D∗[j]D[i]x[i]

∥∥∥∥∥
2

≥ max
j∈S

‖D∗[j]D[j]x[j]‖2

− max
j∈S

∥∥∥∥∥∥
D∗[j]w + ∑

i∈S\{j}
D∗[j]D[i]x[i]

∥∥∥∥∥∥
2

. (7.57)

As we have seen in the proof of Lemma 7.8, the eigenvalues of D∗[j]D[j] are bounded in the

range [1 − (d − 1)ν, 1 + (d − 1)ν]. Consequently

max
j∈S

‖D∗[j]D[j]x[j]‖2 ≥ max
j∈S

(1 − (d − 1)ν)‖x[j]‖2

= (1 − (d − 1)ν)|xmax|. (7.58)

Combining this result with (7.57), we have

max
j∈S

‖D∗[j]y‖2 ≥ (1 − (d − 1)ν)|xmax|

− max
j∈S

∑
i∈S\{j}

‖D∗[j]D[i]x[i]‖2 − max
j∈S

‖D∗[j]w‖2. (7.59)
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Together with (7.50) and (7.41), this implies that

max
j∈S

‖D∗[j]y‖2

> (1 − (d − 1)ν)|xmax| − (k − 1)|xmax|dµB − τ

= (1 − (d − 1)ν)|xmax| − (2k − 1)|xmax|dµB − 2τ

+ k|xmax|dµB + τ. (7.60)

Merging the results (7.56) and (7.60) yields

max
j∈S

‖D∗[j]y‖2 > max
j/∈S

‖D∗[j]y‖2

+ (1 − (d − 1)ν)|xmax| − (2k − 1)|xmax|dµB − 2τ. (7.61)

Consequently, if (7.51) holds, then (7.52) follows, as required.

In a similar fashion, observe that

min
j∈S

‖D∗[j]y‖2 = min
j∈S

∥∥∥∥∥∑
i∈S

D∗[j]D[i]x[i] + D∗[j]w

∥∥∥∥∥
2

≥ min
j∈S

‖D∗[j]D[j]x[j]‖2

− max
j∈S

∑
i∈S\{j}

‖D∗[j]D[i]x[i]‖2 − ‖D∗[j]w‖2. (7.62)

As noted previously, all eigenvalues of D∗[j]D[j] are larger than or equal to 1 − (d − 1)ν, and

therefore

min
j∈S

‖D∗[j]D[j]x[j]‖2 ≥ (1 − (d − 1)ν)|xmin|. (7.63)

Furthermore, using (7.41) we have, for i 6= j,

‖D∗[j]D[i]x[i]‖2 ≤ ‖D∗[j]D[i]‖ |xmax | ≤ dµB|xmax|. (7.64)

Substituting (7.50), (7.63), and (7.64) into (7.62) provides us with

min
j∈S

‖D∗[j]y‖2

> (1 − (d − 1)ν)|xmin| − (k − 1)dµB|xmax| − τ

= (1 − (d − 1)ν)|xmin| − (2k − 1)dµB|xmax| − 2τ

+ kdµB |xmax|+ τ. (7.65)

Finally, using (7.56) we obtain

min
j∈S

‖D∗[j]y‖2 > max
j/∈S

‖D∗[j]y‖2

+ (1 − (d − 1)ν)|xmin| − (2k − 1)dµB|xmax| − 2τ. (7.66)
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Therefore, if the condition (7.53) is satisfied, then (7.54) holds, completing the proof.

We are now ready to prove Theorems 7.1 and 7.2.

Proof of Theorem 7.1. Using (7.10) and (7.42), we have for all j

‖D∗[j]w‖2 ≤ ‖D[j]‖ · ‖w‖2 ≤ ε
√

1 + (d − 1)ν. (7.67)

Thus, (7.50) holds with τ = ε
√

1 + (d − 1)ν.

In light of (7.21), the condition (7.53) for the second part of Lemma 7.9 holds, and therefore,

by Lemma 7.9, we conclude that (7.54) holds. It follows that all blocks D[i] with i ∈ S are

more highly correlated than the off-support blocks D[i], i /∈ S. Thus, the estimated support Ŝ

contains the true support set S (with the possible addition of superfluous indices if s < k). It

follows from the definition (7.16) of x̂BTH that (x̂BTH)Ŝ = D†
Ŝ
y, and thus

‖x − x̂BTH‖2
2 = ‖xŜ − (x̂BTH)Ŝ‖2

2

= ‖D†
Ŝ
DŜxŜ − D†

Ŝ
y‖2

2

≤ ‖D†
Ŝ
‖2 · ‖y − DŜx‖2

2

= ‖D†
Ŝ
‖2 · ‖w‖2

2 (7.68)

where we have used the fact that D†
Ŝ
DŜ = I, which follows from our assumption that DI has

full row rank for any set I of size s (see Section 7.2).

Since |xmin| ≤ |xmax|, it follows from (7.21) that

1 − (d − 1)ν > (2k − 1)dµB. (7.69)

Therefore, we may apply (7.44), yielding

‖D†
Ŝ
‖2 = ‖(D∗

SDS)
−1‖

≤ 1

1 − (d − 1)ν − (k − 1)dµB
. (7.70)

Combining this result with (7.68) and using (7.10), we obtain (7.22), as required.

Proof of Theorem 7.2. As shown in the proof of Theorem 7.1, it follows from (7.10) that (7.50)

holds with τ = ε
√

1 + (d − 1)ν. From (7.23) we then have

(1 − (d − 1)ν)|xmin| > 2τ + (2k − 1)dµB|xmin|. (7.71)

Since |xmax| ≥ |xmin|, this implies the condition (7.51) for the first part of Lemma 7.9. Thus, by

Lemma 7.9, the dictionary block most highly correlated with y is a block within the support S
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of x. In other words, the first iteration in the BOMP algorithm correctly identifies an element

within the support S.

The proof continues by induction. Assume we have reached the ℓth iteration with 2 ≤ ℓ ≤ s

and that all previous iterations have correctly identified elements of S. In other words, using

the notation of Section 7.3, we have i1, . . . , iℓ−1 ∈ S.

By definition, we now have

rℓ = y − Dxℓ−1 = Dx̃ℓ−1 + w (7.72)

where x̃ℓ−1 , x − xℓ−1 is the estimation error after ℓ − 1 iterations. Since supp(x) = S and,

by induction, supp(xℓ−1) ⊂ S, we have supp(x̃ℓ−1) ⊂ S. Furthermore, ℓ − 1 < s, so that

supp(xℓ−1) contains less than s elements, and is thus a strict subset of S. It follows that at least

one nonzero block in x̃ℓ−1 is equal to the corresponding block in x. Therefore

max
j

‖x̃ℓ−1[j]‖2 ≥ |xmin|. (7.73)

To summarize, by (7.72), rℓ can be thought of as a noisy measurement of the block sparse

vector x̃ℓ−1, which contains a block whose norm is at least |xmin|. Using (7.73) and (7.23), we

find that the condition (7.51) holds for this modified estimation problem. Consequently, by

Lemma 7.9, we have

max
j∈S

‖D∗[j]rℓ−1‖2 > max
j/∈S

‖D∗[j]rℓ−1‖2. (7.74)

Therefore, by (7.17), the ℓth iteration of the BOMP algorithm will choose an index iℓ belonging

to the correct support set S, as long as ℓ ≤ s.

Since the BOMP algorithm never chooses the same support element twice, we conclude

that precisely the s elements of S will be identified in the first s iterations. If s < k, then the

remaining iterations will identify some additional elements not in S, so that ultimately the

estimated support set Ŝ = {i1, . . . , ik} will satisfy Ŝ ⊇ S. The estimate x̂BOMP therefore satisfies

(x̂BOMP)Ŝ = D†
Ŝ
y. Following the procedure (7.68)–(7.70) in the proof of Theorem 7.1, we obtain

in an identical manner the required result (7.24).

7.B Proof of Theorem 7.4

To compute the CRB, we must first determine the Fisher information matrix J(x) for estimating

x from y of (7.8). This can be done using a standard formula [16, p. 85] and yields

J(x) =
1

σ2
D∗D. (7.75)
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We now identify, for each x ∈ X , an orthonormal basis for the feasible direction subspace,

which is defined as the smallest subspace of CN containing all feasible directions at x. To this

end, denote by ei the ith column of the N × N identity matrix. Consider first points x ∈ X for

which s < k. In other words, these are parameter values whose support S contains fewer than

k elements. For such values of x, we have, for any ε and any 1 ≤ i ≤ N,

| supp(x + εei)| ≤ |S|+ 1 < k + 1 ≤ k (7.76)

and therefore x + εei ∈ X for any ε and for any i. Consequently, the set of feasible directions

at x includes {e1, . . . , eN}, and the feasible direction subspace is therefore CN itself. Thus, for

values x containing fewer than k nonzero blocks, a convenient choice of a basis for the feasible

direction subspace consists of the columns of the identity matrix.

Next, consider maximal-support parameter values, i.e., vectors x for which s = k. It is now

no longer possible to add any vector ei to x without violating the constraints. Indeed, it is not

difficult to see that the only feasible directions are linear combinations of the unit vectors ei for

which i belongs to one of the blocks in S. These unit vectors can thus be chosen as a basis for

the feasible direction subspace.

Let U(x) be a matrix whose columns comprise the chosen orthonormal basis for the feasible

direction subspace at x. Note that the dimensions of U(x) change with x; specifically, U(x) =

IN×N when |S| < k, and U(x) is an N × sd matrix otherwise. A necessary condition for a

finite-variance X -unbiased estimator to exist at a point x is [70, Thm. 1]

R(U(x)U∗(x)) ⊆ R(U(x)U∗(x)J(x)U(x)U∗(x)). (7.77)

When s < k, we have U(x) = I. In this case, using (7.75), the condition (7.77) becomes

C
N ⊆ R(J(x)) = R(D∗D). (7.78)

Since the dimensions of D are L × N with L < N, the rank of D∗D is at most L, and thus

R(D∗D) cannot include the entire space CN . We conclude that in this case, (7.77) does not

hold, and therefore no X -unbiased estimator exists at points x for which |S| < s, proving part

(a) of the theorem.

Let us now turn to maximal-support parameter values x. As we have seen above, in this

case the matrix U(x) consists of the columns ei for which i is an element of a block within the

support of x. Therefore, the product DU(x) selects those atoms of D belonging to blocks within

S, i.e., DU(x) = DS. Using (7.75), this leads to

U∗(x)J(x)U(x) =
1

σ2
D∗

SDS (7.79)
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which is invertible by assumption (see Section 7.2). It follows that the condition (7.77) holds

for maximal-support parameters x. One can therefore apply [70, Thm. 1], which states that for

such values of x,

MSE(x̂, x) ≥ Tr
(

U(x) (U∗(x)J(x)U(x))†
U∗(x)

)
. (7.80)

Combining with (7.79) and using the fact that U∗(x)U(x) = I, we obtain (7.31), proving part

(b) of the theorem.

7.C Proofs for Gaussian Noise

We begin with two lemmas which prove some useful properties of the Gaussian distribution.

The first of these is a generalization of a result due to Šidák [120].

Lemma 7.10. Let v1, . . . , vM be a set of M jointly Gaussian random vectors. Suppose that E{vi} = 0

for all i, but that the covariances of the vectors are unspecified and that the vectors are not necessarily

independent. We then have

Pr{‖v1‖2 ≤ c1, ‖v2‖2 ≤ c2, . . . , ‖vM‖2 ≤ cM}

≥ Pr{‖v1‖2 ≤ c1} · Pr{‖v2‖2 ≤ c2} · · ·

· · · Pr{‖vM‖2 ≤ cM} . (7.81)

Proof. We will demonstrate that

Pr{‖v1‖2 ≤ c1, ‖v2‖2 ≤ c2, . . . , ‖vM‖2 ≤ cM}

≥ Pr{‖v1‖2 ≤ c1} Pr{‖v2‖2 ≤ c2, . . . , ‖vM‖2 ≤ cM} . (7.82)

The result then follows by induction. For simplicity of notation, we will prove that (7.82) holds

for the case M = 2; the general result can be shown in the same manner.

Denote by f (v1|v2) the pdf of v1 conditioned on v2. Observe that, for a deterministic value

w, the pdf f (v1|w) defines a Gaussian random vector whose mean depends linearly on w, but

whose covariance is constant in w. Therefore, using a result due to Anderson [130], it follows

that

Pr{‖v1‖2 ≤ c1|v2 = αw} =
∫

‖u1‖2≤c1

f (u1|αw)du (7.83)

is a non-increasing function of α.
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Next, denoting by f (v2) the marginal pdf of v2, we have

a(c1, c2) , Pr
{
‖v1‖2 ≤ c1

∣∣ ‖v2‖2 ≤ c2

}

=

∫
‖u‖2≤c1

∫
‖w‖2≤c2

f (u|w) f (w) dw du

Pr{‖v2‖2 ≤ c2}

=

∫
‖w‖2≤c2

Pr{‖v1‖2 ≤ c1|v2 = w} f (w) dw
∫
‖w‖2≤c2

f (w) dw
. (7.84)

Thus, the function a(c1, c2) is a weighted average of expressions of the form

Pr{‖v1‖2 ≤ c1|v2 = w} (7.85)

for values of w satisfying ‖w‖2 ≤ c2. However, as we have shown, (7.85) is non-increasing in

‖w‖2. Consequently, a(c1, c2) is non-increasing in c2.

On the other hand, observe that as c2 → ∞, the probability of the event ‖v2‖2 ≤ c2 con-

verges 1. Thus we have

lim
c2→∞

a(c1, c2) = Pr{‖v1‖2 ≤ c1} . (7.86)

Combined with the fact that a(c1, c2) is non-increasing in c2, we find that

a(c1, c2) ≥ Pr{‖v1‖2 ≤ c1} for all c1, c2. (7.87)

Using the definition of a(c1, c2) and applying Bayes’s rule, we obtain

Pr{‖v1‖2 ≤ c1, ‖v2‖2 ≤ c2}

≥ Pr{‖v1‖2 ≤ c1} Pr{‖v2‖2 ≤ c2} (7.88)

and thus complete the proof.

Our next lemma bounds the tail probability of the chi-squared distribution.

Lemma 7.11. Let u be a d-dimensional Gaussian random vector having mean zero and covariance I.

Then, for any t ≥ 1, we have

Pr
{‖u‖2

2 ≥ t2
} ≤ (d − 2)!!⌈d/2⌉

2d/2−1Γ(d/2)
td−2e−t2/2 (7.89a)

≤ 0.8dtd−2e−t2/2 (7.89b)

where Γ(z) ,
∫ ∞

0 tz−1e−tdt is the Gamma function and

n!! , ∏
0≤i<n/2

(n − 2i) (7.90)

is the double factorial operator.
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Of the two bounds provided in (7.89), the first is somewhat tighter, but obviously more

cumbersome. For analytical tractability, we will use the latter bound in the sequel.

Proof of Lemma 7.11. The expression ‖u‖2
2 is distributed as a chi-squared random variable with

d degrees of freedom. Therefore, its tail probability is given by [119, §16.3]

Pr
{‖u‖2

2 ≥ t2
}
=

Γ(d/2, t2/2)

Γ(d/2)
(7.91)

where Γ(a, z) is the incomplete Gamma function Γ(a, z) ,
∫ ∞

z ta−1 e−t dt. It follows from the

series expansion of Γ(a, z) that [131, §6.5.32]

Γ

(
d

2
,

t2

2

)
≤ e−t2/2

2d/2−1t2

[
td + (d − 2)td−2

+ (d − 2)(d − 4)td−4 + · · ·+ (d − 2)!!tm
]

(7.92)

where m = 1 when d is odd and m = 2 when d is even. Note that (7.92) holds with equality for

even d, but the inequality is strict for odd d. Since t ≥ 1, we can enlarge each of the terms in the

square brackets in (7.92) by replacing it with (d − 2)!!td. The total number of terms in brackets

is ⌈d/2⌉, yielding

Γ

(
d

2
,

t2

2

)
≤ e−t2/2

2d/2−1
td−2(d − 2)!!

⌈
d

2

⌉
. (7.93)

Substituting into (7.91) demonstrates (7.89a).

To prove (7.89b), we distinguish between even and odd values of d. Assume first that d is

even and denote d = 2p. We then have

Γ(d/2) = Γ(p) = (p − 1)! (7.94)

and

(d − 2)!! = (2p − 2)!! = 2p−1(p − 1)!. (7.95)

Substituting these values into (7.89a) and simplifying yields

Pr
{
‖u‖2

2 ≥ t2
}
≤ d

2
td−2e−t2/2 (7.96)

which clearly satisfies (7.89b).

Similarly, assume that d is odd and write d = 2p + 1. Substituting the formula

Γ(d/2) = Γ(p + 1/2) =
(2p − 1)!!

√
π

2p
(7.97)

into (7.89a), we obtain

Pr
{
‖u‖2

2 ≥ t2
}
≤
√

2

π

d + 1

2
td−2e−t2/2. (7.98)
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It is easily verified that √
2

π

d + 1

2
≤ 0.8d for all d ≥ 1. (7.99)

Substituting back into (7.98) yields the required result.

Our next result applies more specifically to the block sparse estimation setting. Following

[22, 78], we consider the event

B =

{
max

1≤i≤M
‖D∗[i]w‖2

2 ≤ τ2

}
(7.100)

where

τ2 = 2dσα(1 + (d − 1)ν) log N (7.101)

for a given α > 1/(2d log N). We then have the following lemma.

Lemma 7.12. Under the setting of Section 7.2, assume that w is a Gaussian random vector with mean

zero and covariance σ2 I. Then, the probability of the event B of (7.100) is bounded by

Pr{B} ≥ 1 − 0.8(2αd log N)d/2−1

Nαd−1
. (7.102)

Proof. Observe that D∗[i]w is a d-dimensional Gaussian random vector with mean zero and

covariance σ2D∗[i]D[i]. Therefore, the random vector

u =
1

σ
(D∗[i]D[i])−1/2D∗[i]w (7.103)

is a d-dimensional Gaussian random vector with mean zero and covariance I. We thus have

Pr
{‖D∗[i]w‖2

2 ≤ τ2
}
= Pr

{
σ2‖(D∗[i]D[i])1/2u‖2

2 ≤ τ2
}

≥ Pr
{

σ2‖D∗[i]D[i]‖ · ‖u‖2
2 ≤ τ2

}

≥ Pr

{
‖u‖2

2 ≤ τ2

σ2(1 + (d − 1)ν)

}
(7.104)

where, in the last step, we used (7.42). Using Lemma 7.11 and substituting the value (7.101) of

τ2, we obtain

Pr
{‖D∗[i]w‖2

2 ≤ τ2
} ≥ 1 − η (7.105)

where

η , 1 − 0.8d(2αd log N)d/2−1 exp(−dα log N)

= 1 − 0.8d(2αd log N)d/2−1

Nαd
. (7.106)
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Using Lemma 7.10, we have

Pr{B} ≥
M

∏
i=1

Pr
{‖D∗[i]w‖2

2 ≤ τ2
}

= (1 − η)M. (7.107)

When η > 1, the bound (7.102) is meaningless and the theorem holds vacuously. Otherwise,

when η ≤ 1, we have

Pr{B} ≥ 1 − Mη (7.108)

where we used the fact that (1 − η)M ≥ 1 − Mη whenever η ≤ 1 and M ≥ 1. Substituting the

value of η from (7.106) and recalling that N = Md yields the required result.

We are now ready to prove Theorems 7.5 and 7.6.

Proof of Theorem 7.5. By Lemma 7.12, the event B of (7.100) occurs with probability exceeding

(7.34). Furthermore, using (7.33), it follows from Lemma 7.9 that under the event B, all blocks

in the correct support set S are more highly correlated with y than the off-support blocks.

Consequently, when B occurs, we have S ⊆ Ŝ, where Ŝ is the support estimated by the BTH

algorithm. Note, however, that the estimated set Ŝ will contain additional blocks not in S if

s < k. It follows that

‖x − x̂BTH‖2
2 = ‖xŜ − (x̂BTH)Ŝ‖2

2

= ‖D†
Ŝ
DŜxŜ − D†

Ŝ
y‖2

2

≤ ‖(D∗
Ŝ
DŜ)

−1‖2 · ‖D∗
Ŝ
w‖2

2

≤ ‖(D∗
Ŝ
DŜ)

−1‖2 · ∑
i∈Ŝ

‖D∗[i]w‖2
2 (7.109)

where we have used the fact that D†
Ŝ
DŜ = I, which is a consequence of the assumption that DŜ

has full row rank (see Section 7.2). Using (7.44) and (7.100), we have that when B occurs

‖x − x̂BTH‖2
2 ≤ kτ2

(1 − (d − 1)ν − (k − 1)dµB)2
. (7.110)

Substituting the value (7.101) of τ yields the required result (7.35).

Proof of Theorem 7.6. It follows from Lemma 7.12 that the event B occurs with probability ex-

ceeding (7.34). Our goal in this proof will thus be to show that, if B does occur, then the BOMP

algorithm correctly identifies all elements of the support S of x (although some off-support ele-

ments may be identified as well if s < k). The remainder of the proof will then follow the steps

of the proof of Theorem 7.5.
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To demonstrate that the correct support is recovered, we begin by analyzing the first it-

eration of the BOMP algorithm. This iteration chooses a block i1 having maximal correlation

‖D∗[i1]y‖2 with the measurements y. Now, since |xmax| ≥ |xmin|, the condition (7.36) implies

(7.51), with τ given by (7.101). Consequently, by Lemma 7.9, under the event B we find that the

first iteration of BOMP identifies an element i1 in the correct support set S.

To show that the next s− 1 iterations of the BOMP algorithm also identify support elements,

we proceed by induction. Specifically, assume that ℓ− 1 < s iterations have correctly identified

elements i1, . . . , iℓ−1, all of which are in the support set S. As in the proof of Theorem 7.2, define

the estimation error after ℓ − 1 iterations as x̃ℓ−1 , x − xℓ−1. By the induction hypothesis,

supp(x̃) ⊂ S, and clearly supp(x) = S. Thus supp(x̃) ⊂ S, i.e., the support of x̃ is a strict subset

of S. Using the same arguments as in the proof of Theorem 7.2, we find that x̃ℓ−1 contains a

block whose norm is at least |xmin|. Therefore, we can consider a modified estimation problem,

in which rℓ is a noisy measurement vector of the block sparse signal x̃ℓ−1. Together with (7.36),

this implies that (7.51) holds for the modified setting. Therefore, by (7.52), the block in rℓ

having maximal correlation with the measurements is an element of S. Consequently, BOMP

will correctly identify a support element in the ℓth iteration. Since the BOMP algorithm never

selects a previously chosen support element, we find by induction that the support set S will

be identified in full after s iterations. If s < k, then the remaining k − s iterations will identify

arbitrary off-support elements.

Denoting by Ŝ the complete k-element support set identified by the BOMP approach, we

thus have S ⊆ Ŝ. Following the technique (7.109)–(7.110) used in the proof of Theorem 7.5 thus

yields the required result (7.37).



Chapter 8

Performance of Finite Rate of

Innovation Signals

This chapter has been submitted for publication as:

• Z. Ben-Haim, T. Michaeli, and Y. C. Eldar, “Performance bounds and design criteria for

estimating finite rate of innovation signals,” submitted to IEEE Trans. Information Theory,

Sep. 2010.

8.1 Introduction

The field of digital signal processing hinges on the availability of techniques for sampling ana-

log signals, thus converting them to discrete measurements. The sampling mechanism aims to

preserve the information present in the analog domain, ideally permitting flawless recovery of

the original signal. For example, one may wish to recover a continuous-time signal x(t) from a

discrete set of samples. The archetypical manifestation of this concept is the Shannon sampling

theorem, which states that a B-bandlimited function can be reconstructed from samples taken

at the Nyquist rate 2B [32].

Recently, considerable attention has been devoted to the extension of sampling theory to

functions having a finite rate of innovation (FRI). These are signals determined by a finite num-

ber ρ of parameters per time unit [30]. Such a definition encompasses a rich variety of signals,

including splines, shift-invariant signals, multiband signals, and pulse streams. In many FRI

settings, several existing algorithms are guaranteed to recover the signal x(t) from samples

taken at rate ρ [30,31,34,36,37,125]. In other words, signals which correspond to the FRI model

181
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can be reconstructed from samples taken at the rate of innovation, which is potentially much

lower than their Nyquist rate.

The set of signals described by an FRI model can often be viewed as a union of sub-

spaces [9, 34, 36, 125]. For example, consider a stream of pulses parameterized by pulse lo-

cations and amplitudes. The set of all pulses having a given location is a subspace of the space

of continuous-time functions. Thus, the set of all pulses having arbitrary locations is a union of

such subspaces. As we will see, this point of view yields a flexible and productive framework

for understanding the types of constraints implied by the model.

Real-world signals are often contaminated by continuous-time noise and thus do not con-

form precisely to the FRI model. Furthermore, like any mathematical model, the FRI frame-

work is an approximation which does not precisely hold in practical scenarios, an effect known

as mismodeling error [9]. It is therefore of interest to quantify the effect of noise and mismod-

eling errors on FRI techniques [31, 34, 38, 125]. In the noisy case, it is no longer possible to

perfectly recover the original signal from its samples. Nevertheless, one might hope for an

appropriate finite-rate technique which achieves the best possible estimation accuracy, in the

sense that increasing the sampling rate confers no further performance benefits. For example,

to recover a B-bandlimited signal contaminated by continuous-time white noise, one can use

an ideal low-pass filter with cutoff B prior to sampling at a rate of 2B. This strategy removes all

noise components with frequencies larger than B, while leaving all signal components intact.

Consequently, any alternative method which does not zero out frequencies above B can be im-

proved upon, whereas methods which zero out some of the signal frequencies can suffer from

an arbitrarily large reconstruction error. Thus, sampling at a rate of 2B is indeed optimal in

the case of a B-bandlimited signal, if the signal is corrupted by continuous-time noise prior to

sampling. Sampling at a rate higher than 2B can be beneficial only when the sampling process

itself introduces additional noise into the system, e.g., as a result of quantization.

By contrast, empirical observations indicate that, for some noisy FRI signals, substantial

performance improvements are achievable when the sampling rate is increased beyond the

rate of innovation [34, 37]. Thus, in some cases, there appears to be a fundamental difference

between the noiseless and noise-corrupted settings, in terms of the required sampling rate.

Our first goal in this paper will be to provide an analytical justification and quantification of

these empirical findings. As we will see, the fact that oversampling improves performance is

not merely indicative of flaws in existing algorithms; rather, it is a consequence of the inher-

ent difficulty of reconstructing FRI signals under noise. Indeed, we will demonstrate that for
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some FRI signals, unless considerable oversampling is employed, performance will necessarily

deteriorate by several orders of magnitude relative to the optimal achievable reconstruction ca-

pability. Such effects occur even when the noise level is exceedingly low. Our analysis will also

enable us to identify and characterize the types of signals for which oversampling is necessary.

To demonstrate these results, we first derive the Cramér–Rao bound (CRB) for estimating

a finite-duration segment of an FRI signal x(t) directly from continuous-time measurements

y(t) = x(t) + w(t), where w(t) is a Gaussian white noise process. This yields a lower bound on

the accuracy whereby x(t) can be recovered by any technique, regardless of its sampling rate.

This setting is to be distinguished from previous bounds in the FRI literature [38, 132] in three

respects. First and most importantly, the measurements are a continuous-time process y(t) and

the bound therefore applies regardless of the sampling method. Second, in our model, the noise

is added prior to sampling. Thus, as will be shown below, even sampling at an arbitrarily high

rate will not completely compensate for the noise. Third, we bound the mean-squared error

(MSE) in estimating x(t) and not the parameters defining it, since we seek to determine the

accuracy with which x(t) itself can be recovered. Such a bound does not depend on the specific

parametrization of the signal, and consequently, possesses a simpler analytical expression.

In practice, rather than processing the continuous-time signal y(t), it is typically desired

to estimate x(t) from a discrete set of samples {cn} of y(t). In this scenario, in addition to

the continuous-time noise w(t), digital noise may arise from the sampling process itself, for

example due to quantization. To quantify the extent to which sampling degrades the ability

to recover the signal, we next derive the CRB for estimating x(t) from the measurements {cn}.

This analysis depends on the relative power of the two noise factors. When only digital noise is

present, oversampling can be used to completely overcome its effect. On the other hand, when

there exists only continuous-time noise, the bound converges to the continuous-time CRB as the

sampling rate increases. In some cases, these bounds coincide at a finite sampling rate, which

implies that the sampling scheme has captured all of the information present in the continuous-

time signal, and any further increase in the sampling rate is useless. Conversely, when the

continuous-time and sampled CRBs differ, the gap between these bounds is indicative of the

degree to which information is lost in the sampling process. Our technique can then be used

to plot the best possible performance as a function of the sampling rate, and thus provide the

practitioner with a tool for evaluating the benefits of oversampling.

When a certain sampling technique achieves the performance of continuous-time measure-

ments, it can be identified using the method described above. However, in some cases no such
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technique exists, or the sampling rate it requires may be prohibitive. In these cases, it is desir-

able to determine the optimal sampling scheme having an allowed rate. Since different signals

are likely to perform successfully with different sampling kernels, a Bayesian or average-case

analysis is well-suited for this problem. Specifically, we assume that the signal x(t) has a known

prior distribution over the class of signals, and determine the linear sampling and reconstruc-

tion technique which minimizes the MSE for recovering x(t) from its measurements. While

nonlinear reconstruction techniques are commonly used and typically outperform the best lin-

ear estimator, this approach provides a simple means for identifying an appropriate sampling

method. The resulting method can then be used in conjunction with standard nonlinear FRI

algorithms.

We demonstrate our results via the problem of estimating a finite-duration sequence of

pulses having unknown positions and amplitudes [30, 34, 36, 37]. In this case, a simple suffi-

cient condition is obtained for the existence of a sampling scheme whose performance bound

coincides with the continuous-time CRB. This scheme is based on sampling the Fourier coef-

ficients of the pulse shape, and is reminiscent of recent time-delay estimation algorithms [34].

However, while the sampling scheme is theoretically sufficient for optimal recovery of x(t), we

show that in some cases there is room for substantial improvement in the reconstruction stage

of these algorithms. Finally, we demonstrate that the Fourier domain is also optimal (in the

sense of minimizing the reconstruction MSE) when the sampling budget is limited. Specifically,

given an allowed number of samples N, the reconstruction MSE is minimized by sampling the

N highest-variance Fourier coefficients of the signal x(t).

The rest of this paper is organized as follows. The problem setting is defined in Section 8.2,

and some examples of signals conforming to this model are presented in Section 8.3. We then

briefly summarize our main results in Section 8.4. In Section 8.5, we provide a technical gener-

alization of the CRB to general spaces. This result is used to obtain bounds on the achievable

reconstruction error from continuous-time measurements (Section 8.6) and using a sampling

mechanism (Section 8.7). Next, in Section 8.8 a Bayesian viewpoint is introduced and utilized

to determine the optimal sampling kernels having a given rate budget. The results are demon-

strated for the specific signal model of time-delay estimation in Section 8.9.
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8.2 Definitions

8.2.1 Notation

The following notation is used throughout the paper. A boldface lowercase letter v denotes a

vector, while a boldface uppercase letter M denotes a matrix. IN is the N × N identity matrix.

For a vector v, the notation ‖v‖ indicates the Euclidean norm. Given a complex number z ∈ C,

the symbols z∗ and ℜ{z} denote the complex conjugate and the real part of z, respectively. For

an operator P, the range space and null space are R(P) and N (P), respectively, while the trace

and adjoint are denoted, respectively, by Tr(P) and P∗. The Kronecker delta, denoted by δm,n,

equals 1 when m = n and 0 otherwise. The expectation of a random variable v is written as

E{v}.

The Hilbert space of square-integrable complex-valued functions over [0, T0] is denoted

L2[0, T0] or simply L2. The corresponding inner product is

〈 f , g〉 ,
∫ T0

0
f (t)g∗(t)dt (8.1)

and the induced norm is ‖ f‖2
L2

, 〈 f , f 〉. For an ordered set of K functions g1, . . . , gK in L2, we

define the associated set transformation G : CK → L2 as

(Gv)(t) =
K

∑
k=1

vkgk(t). (8.2)

By the definition of the adjoint, it follows that

G∗ f = (〈 f , g1〉 , . . . , 〈 f , gK〉)T. (8.3)

8.2.2 Setting

In this work, we are interested in the problem of estimating FRI signals from noisy measure-

ments. To define FRI signals formally, let the T0-local number of degrees of freedom NT0
(t)

of a signal x(t) at time t be the number of parameters defining the segment {x(t) : t ∈
[t − T0/2, t + T0/2]}. The T0-local rate of innovation of x(t) is then defined as [30]

ρT0
= max

t∈R

NT0
(t)

T0
. (8.4)

We then say that x(t) is an FRI signal if ρT0
is finite for all sufficiently large values of T0. In

Section 8.3, we will give several examples of FRI signals and compute their rates of innovation.
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For concreteness, let us focus on the problem of estimating the finite-duration segment

{x(t) : t ∈ [0, T0]}, for some constant T0, and let K , NT0
(T0/2) denote the number of pa-

rameters defining this segment. We then have

x ∈ X , {hθ ∈ L2[0, T0] : θ ∈ Θ} (8.5)

where hθ is a set of functions parameterized by the vector θ, and Θ is an open subset of RK.

We wish to examine the random process

y(t) = x(t) + w(t), t ∈ [0, T0] (8.6)

where w(t) is continuous-time white Gaussian noise. Recall that formally, it is not possible

to define Gaussian white noise over a continuous-time probability space [133]. Instead, we

interpret (8.6) as a simplified notation for the equivalent set of measurements

z(t) =
∫ t

0
x(τ)dτ + σcb(t), t ∈ [0, T0] (8.7)

where b(t) is a standard Wiener process (also called Brownian motion) [134]. It follows that

w(t) can be considered as a random process such that, for any f , g ∈ L2, the inner products

a = 〈 f , w〉 and b = 〈g, w〉 are zero-mean jointly Gaussian random variables satisfying E{ab∗} =

σ2
c 〈 f , g〉 [133]. The subscript c in σc is meant as a reminder of the fact that w(t) is continuous-

time noise. By contrast, when examining samples of the random process y(t), we will also

consider digital noise which is added during the sampling process.

In this paper, we consider estimators which are functions either of the entire continuous-

time process (8.6) or of some subset of the information present in (8.6), such as a discrete set of

samples of y(t). To treat these two cases in a unified way, let (Ω, F ) be a measurable space and

let {Pθ : θ ∈ Θ} be a family of probability measures over (Ω, F ). Let (Y , U ) be a measurable

space, and let the random variable y : Ω → Y denote the measurements. This random variable

can represent either y(t) itself or samples of this quantity.

An estimator can be defined in this general setting as a measurable function x̂ : Y → L2.

The MSE of an estimator x̂ at x is defined as

MSE(x̂, x) , E
{
‖x̂ − x‖2

L2

}
= E

{∫ T0

0
|x̂(t)− x(t)|2dt

}
. (8.8)

An estimator x̂ is said to be unbiased if

E{x̂(t)} = x(t) for all x ∈ X and almost all t ∈ [0, T0]. (8.9)



8.3. TYPES OF FRI SIGNALS 187

In the next section, we demonstrate the applicability of our model by reviewing several

scenarios which can be formulated using the FRI framework. Some of these settings will also

be used in the sequel to exemplify our theoretical results.

8.3 Types of FRI Signals

Numerous FRI signal structures have been proposed and analyzed in the sampling literature.

Whereas most of these can be treated within our framework, some FRI structures do not con-

form exactly to our problem setting. Thus, before delving into the derivation of the CRB, we

first provide examples for scenarios that can be analyzed via our model and discuss some of its

limitations.

8.3.1 Shift-Invariant Spaces

Consider the class of signals that can be expressed as

x(t) = ∑
m∈Z

a[m]g(t − mT) (8.10)

with some arbitrary square-integrable sequence {a[m]}m∈Z , where g(t) is a given pulse in

L2(R) and T > 0 is a given scalar. This set of signals is a linear subspace of L2(R), which

is often termed a shift-invariant (SI) space [135, 136]. The class of functions that can be repre-

sented in the form (8.10) is quite large. For example, choosing g(t) = sinc(t/T) leads to the

subspace of π/T-bandlimited signals. Other important examples include the space of spline

functions (obtained by letting g(t) be a B-spline function) and communication signals such

as pulse-amplitude modulation (PAM) and quadrature amplitude modulation (QAM). Recon-

struction in SI spaces from noiseless samples has been addressed in [137, 138] and extended to

the noisy setting in [139–141].

Intuitively, every signal lying in a SI space with spacing T has one degree of freedom per

T seconds (corresponding to one coefficient from the sequence {a[m]}). It is thus tempting to

regard the rate of innovation of such signals as 1/T. However, this is only true in an asymptotic

sense and for compactly supported pulses g(t). For any finite window size T0, the T0-local rate

of innovation ρT0
is generally larger. Specifically, suppose that the support of g(t) is contained

in [ta, tb] and consider intervals of the form [t, t + MT], where M is an integer. Then, due to

the overlaps of the pulses, for any such interval we can only assure that there are no more

than M + ⌈(tb − ta)/T⌉ coefficients affecting the values of x(t). Thus, the MT-local rate of
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innovation of signals of the form (8.10) is given by

ρMT =
1

T

(
1 +

⌈ tb−ta

T ⌉
M

)
. (8.11)

In particular, signals of the form (8.10) having a generator g(t) which is not compactly sup-

ported have an infinite T0-local rate of innovation, for any finite T0. This is the case, for exam-

ple, with bandlimited signals, which are therefore not FRI functions under our definition. As

will be discussed in the sequel, this is not a flaw of the definition we use for the rate of inno-

vation. Rather, it reflects the fact that it is impossible to recover any finite-duration segment

[T1, T2] of such signals from a finite number of measurements.

8.3.2 Nonlinearly-Distorted Shift-Invariant Spaces

In certain communication scenarios, nonlinearities are introduced in order to avoid amplitude

clipping, an operation known as companding [142]. When the original signal lies in a SI space,

the resulting transmission takes the form

x(t) = r

(

∑
m∈Z

a[m]g(t − mT)

)
, (8.12)

where r(·) is a nonlinear, invertible function. Clearly, the MT-local rate of innovation ρMT

of this type of signals is the same as that of the underlying SI function, and is thus given by

(8.11). The recovery of nonlinearly distorted SI signals from noiseless samples was treated

in [142–145]. We are not aware of research works treating the noisy case.

8.3.3 Union of Subspaces

Much of the FRI literature treats signal classes which are unions of subspaces [9, 36, 125, 126].

We now give examples of a few of these models.

Finite Union of Subspaces

There are various situations in which a continuous-time signal is known to belong to one of a

finite set of spaces. One such signal model is described by

x(t) = ∑
m∈Z

K

∑
k=1

ak[m]gk(t − mT), (8.13)

where {gk(t)}K
k=1 are a set of generators. In this model it is assumed that only L < K out of

the K sequences {a1[m]}m∈Z, . . . , {aK [m]}m∈Z are not identically zero [83]. Therefore, the signal
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x(t) is known to reside in one of (K
L) spaces, each of which is spanned by an L-element subset

of the set of generators {gk(t)}K
k=1. This class of functions can be used to describe multiband

signals [126, 127]. However, the discrete nature of these models precludes analysis using the

differential tools employed in the remainder of this paper. Therefore, in this work we will focus

on infinite unions of subspaces.

Single-Burst Channel Sounding

In certain medium identification and channel sounding scenarios, the echoes of a transmitted

pulse g(t) are analyzed to identify the positions and reflectance coefficients of scatterers in the

medium [34, 146]. In these cases, the received signal has the form

x(t) =
L

∑
ℓ=1

aℓg(t − tℓ), (8.14)

where L is the number of scatterers and the amplitudes {aℓ}L
ℓ=1 and time-delays {tℓ}L

ℓ=1 cor-

respond to the reflectance and location of the scatterers. Such signals can be thought of as

belonging to a union of subspaces, where the parameters {tℓ}L
ℓ=1 determine an L-dimensional

subspace, and the coefficients {aℓ}L
ℓ=1 describe the position within the subspace. In contrast

with the previous example, however, in this setting we have a union of an infinite number of

subspaces, since there are infinitely many possible values for the parameters t1, . . . , tL.

In this case, for any window of size T0 > maxℓ{tℓ} − minℓ{tℓ}, the T0-local rate of innova-

tion is given by

ρT0
=

2L

T0
. (8.15)

Periodic Channel Sounding

Occasionally, channel sounding techniques consist of repeatedly probing the medium [147].

Assuming the medium does not change throughout the experiment, the result is a periodic

signal

x(t) = ∑
m∈Z

L

∑
ℓ=1

aℓg(t − tℓ − mT). (8.16)

As before, the set X of feasible signals is an infinite union of finite-dimensional subspaces in

which {tℓ}L
ℓ=1 determine the subspace and {aℓ}L

ℓ=1 define the position within the subspace.

The T0-local rate of innovation in this case coincides with (8.15).
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Semi-Periodic Channel Sounding

There are situations in which a channel consists of L paths whose amplitudes change rapidly,

but the time delays can be assumed constant throughout the duration of the experiment [35,36,

147]. In these cases, the output of a channel sounding experiment will have the form

x(t) = ∑
m∈Z

L

∑
ℓ=1

aℓ[m]g(t − tℓ − mT), (8.17)

where aℓ[m] is the amplitude of the ℓth path at the mth probing experiment. This is, once again,

a union of subspaces, but here each subspace is infinite-dimensional, as it is determined by the

infinite set of parameters {aℓ[m]}. In this case, the MT-local rate of innovation can be shown to

be

ρMT =
L

T

(
1 +

1 + ⌈ tb−ta

T ⌉
M

)
. (8.18)

Multiband Signals

Multiuser communication channels are often characterized by a small number of utilized sub-

bands interspersed by large unused frequency bands [127]. The resulting signal can be de-

scribed as

x(t) = ∑
n∈Z

L

∑
ℓ=1

aℓ[n]g(t − nT)ejωℓt, (8.19)

where {aℓ[n]}n∈Z is the data transmitted by the ℓth user, and ωℓ is the corresponding carrier

frequency. In some cases the transmission frequencies are unknown [126, 127], resulting in an

infinite union of infinite-dimensional subspaces. This setting is analogous in many respects to

the semi-periodic channel sounding case; in particular, the MT-local rate of innovation can be

shown to be the same as that given by (8.18).

8.4 Summary of Main Results

Before delving into the mathematical details, we provide in this section a high-level overview

of our main contributions and summarize the resulting conclusions.

The overarching objective of this paper is to design and analyze sampling schemes for re-

constructing FRI signals from noisy measurements. This goal is accomplished in three stages.

First, we identify the best achievable MSE for estimating an FRI signal x(t) from its continuous-

time measurements y(t) = x(t) + w(t), providing a fundamental lower bound which is in-

dependent of the sampling method. We then compare this continuous-time bound with the
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lowest possible MSE for a given sampling scheme, thus measuring the loss entailed in any par-

ticular technique. Finally, we provide a mechanism for choosing the optimal sampling kernels

(in a specific Bayesian sense) utilizing a pre-specified sampling rate budget. Our results can be

applied to specific families of FRI signals, but they also yield some general conclusions as to

the relative difficulty of various classes of estimation problems. These general observations are

summarized below.

8.4.1 Continuous-Time Bound

Our first goal in this paper is to derive the continuous-time CRB, which defines a fundamental

limit on the accuracy with which an FRI signal can be estimated, regardless of the sampling

technique. This bound turns out to have a particularly simple closed form expression which

depends on the rate of innovation, but not on the class X of FRI signals being estimated. Specif-

ically, under suitable regularity conditions, the MSE of any unbiased estimator x̂ satisfies

1

T0
MSE(x̂, x) ≥ ρT0

σ2
c . (8.20)

Thus, the rate of innovation can be given a new interpretation as the ratio between the best

achievable MSE and the noise variance σ2
c . This is to be contrasted with the characterization

of the rate of innovation in the noise-free case as the lowest sampling rate allowing for perfect

recovery of the signal; indeed, when noise is present, perfect recovery is no longer possible.

8.4.2 Bound for Sampled Measurements

We next consider lower bounds for estimating x(t) from samples of the signal y(t). In this

setting, the samples inherit the noise w(t) embedded in the signal y(t), and may suffer from

additional discrete-time noise, for example, due to quantization. We derive the CRB for esti-

mating x(t) from sampled measurements in the presence of both types of noise. However, the

combination of the two noise models complicates the mathematical analysis. Consequently,

since the sampling noise model has been previously analyzed [38, 132], we focus in this paper

on the assumption that the discrete-time noise is negligible.

In this setting, the sampled CRB can be designed so as to converge to the continuous-time

bound as the sampling rate increases. Moreover, if the family X of FRI signals is contained in a

finite-dimensional subspace M of L2, then a sampling scheme achieving the continuous-time

CRB can be constructed. Such a sampling scheme is obtained by choosing kernels which span

the subspace M, and yields samples which fully capture the information present in the signal
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y(t). Contrariwise, if X is not contained in a finite-dimensional subspace, then no finite-rate

sampling method achieves the continuous-time CRB. In this case, any increase in the sampling

rate can improve performance, and the continuous-time bound is obtained only asymptotically.

It is interesting to examine this distinction from a union of subspaces viewpoint. Suppose

that, as in the examples of Section 8.3.3, the family X can be described as a union of an infinite

number of subspaces {Uα} indexed by the continuous parameter α, so that

X =
⋃

α

Uα. (8.21)

In this case, a finite sampling rate captures all of the information present in the signal if and

only if

dim

(

∑
α

Uα

)
< ∞ (8.22)

where dim(M) is the dimension of the subspace M. By contrast, in the noise-free case, it has

been previously shown [123] that the number of samples required to recover x(t) is given by

max
α1,α2

dim(Uα1
+ Uα2), (8.23)

i.e., the largest dimension among sums of two subspaces belonging to the union. In general, the

dimension of (8.22) will be much higher than (8.23), illustrating the qualitative difference be-

tween the noisy and noise-free settings. For example, if the subspaces Uα are finite-dimensional,

then (8.23) is also necessarily finite, whereas (8.22) need not be.

Nevertheless, one may hope that the structure embodied in X will allow nearly optimal re-

covery using a sampling rate close to the rate of innovation. This is certainly the case in many

noise-free FRI settings. For example, there exist techniques which recover the pulse stream

(8.14) from samples taken at the rate of innovation, despite the fact that in this case X is typ-

ically not contained in a finite-dimensional subspace. However, this situation often changes

when noise is added, in which case standard techniques improve considerably under over-

sampling. This empirical observation can be quantified using the CRB: as we show, the CRB

for samples taken at the rate of innovation is substantially higher in this case than the optimal,

continuous-time bound. This demonstrates that the sensitivity to noise is a fundamental aspect

of estimating signals of the form (8.14), rather than a limitation of existing algorithms. On the

other hand, other FRI models, such as the semi-periodic pulse stream (8.17), exhibit consider-

able noise resilience, and indeed in these cases the CRB converges to the continuous-time value

much more quickly.
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As we discuss in Section 8.9.5, the different levels of robustness to noise can be explained

when the signal models are examined in a union of subspaces context. In this case, the parame-

ters θ defining x(t) can be partitioned into parameters defining the subspace Uα and parameters

pinpointing the position within the subspace. Our analysis hints that estimation of the posi-

tion within a subspace is often easier than estimation of the subspace itself. Thus, when most

parameters are used to select an intra-subspace position, estimation at the rate of innovation is

successful, as occurs in the semi-periodic case (8.17). By contrast, when a large portion of the

parameters define the subspace in use, a sampling rate higher than the rate of innovation is

necessary; this is the case in the non-periodic pulse stream (8.14), wherein θ is evenly divided

among subspace-selecting parameters {tℓ} and intra-subspace parameters {aℓ}. Thus we see

that the CRB, together with the union of subspaces viewpoint, provide valuable insights into

the relative degrees of success of various FRI estimation techniques.

8.4.3 Choosing the Sampling Kernels

In some cases, one may choose the sampling system according to design specifications, leading

to the question: What sampling kernels should be chosen given an allotted number of samples?

We tackle this problem by adopting a Bayesian framework, wherein the signal x(t) is a random

process distributed according to a known prior distribution. We further assume that both the

sampling and reconstruction techniques are linear. While nonlinear reconstruction methods are

often used for estimating FRI signals, this assumption is required for analytical tractability, and

is used only for the purpose of identifying sampling kernels. Once these kernels are chosen,

they can be used in conjunction with nonlinear reconstruction algorithms.

Under these assumptions, we identify the sampling kernels yielding the minimal MSE. An

additional advantage of our assumption of linearity is that in this case, the optimal kernels

depend only on the autocorrelation

RX(t, τ) = E{x(t)x∗(τ)} (8.24)

of the signal x(t), rather than on higher-order statistics. Indeed, given a budget of N samples,

the optimal sampling kernels are given by the N eigenfunctions of RX corresponding to the N

largest eigenvalues. This is reminiscent of the Karhunen–Loève transform (KLT), which can be

used to identify the optimal sampling kernels in the noiseless setting. However, in our case,

shrinkage is applied to the measurements prior to reconstruction, as is typically the case with

Bayesian estimation of signals in additive noise.
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A setting of particular interest occurs when the autocorrelation RX is cyclic, in the sense

that

RX(t, τ) = RX((t − τ)mod T) (8.25)

for some T. This scenario occurs, for example, in the periodic pulse stream (8.16) and the semi-

periodic pulse stream (8.17), assuming a reasonable prior distribution on the parameters θ. It

is not difficult to show that the eigenfunctions of RX are given, in this case, by the complex

exponentials

ψn(t) =
1√
T

ej 2π
T nt, n ∈ Z. (8.26)

Furthermore, in the case of the periodic and semi-periodic pulse streams, the magnitudes of the

eigenvalues of RX are directly proportional to the magnitudes of the respective Fourier coeffi-

cients of the pulse shape g(t). It follows that the optimal sampling kernels are the exponentials

(8.26) corresponding to the largest Fourier coefficients of g(t). This result is encouraging in

light of recently proposed FRI reconstruction techniques which utilize exponential sampling

kernels [125], and demonstrates the suitability of the Bayesian approach for designing practical

estimation kernels.

8.5 Mathematical Prerequisites: CRB for General Parameter Spaces

In statistics and signal processing textbooks, the CRB is typically derived for parameters be-

longing to a finite-dimensional Euclidean space [6, 16, 69]. However, this result is insufficient

when it is required to estimate a parameter x belonging to other Hilbert spaces, such as the L2

space defined above. When no knowledge about the structure of the parameter x is available,

a bound for estimating x(t) from measurements contaminated by colored noise was derived

in [59]. However, this bound does not hold when the noise w(t) is white. Indeed, in the white

noise case, it can be shown that no finite-MSE unbiased estimators exist, unless further in-

formation about x(t) is available. For example, the naive estimator x̂(t) = y(t) has an error

x̂(t)− x(t) equal to w(t), whose variance is infinite.

In our setting, we are given the additional information that x belongs to the constraint set

X of (8.5). To the best of our knowledge, the CRB has not been previously defined for any

type of constraint set X ∈ L2, a task which will be accomplished in the present section. As we

show below, a finite-valued CRB can be constructed by requiring unbiasedness only within the

constraint set X , as per (8.9). As we will see, the CRB increases linearly with the dimension of

the manifold X . Thus, in particular, the CRB is infinite when X = L2. However, for FRI signals,
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the dimension of X is finite by definition, implying that a finite-valued CRB can be constructed.

Although the development of this bound invokes some deep concepts from measure theory, it

is a direct analog of the CRB for finite-dimensional parameters [6, Th. 2.5.15].

To derive the bound in the broadest setting possible, in this section we temporarily gen-

eralize the scenario of Section 8.2, and consider estimation of a parameter x belonging to an

arbitrary measurable and separable Hilbert space H. The MSE of an estimator x̂ in this set-

ting is defined as MSE(x̂, x) = E
{
‖x̂ − x‖2

H
}

. The concept of bias can similarly be extended if

one defines the expectation E{v} of a random variable v : Ω → H as an element k ∈ H such

that 〈k, ϕ〉 = E{〈v, ϕ〉} for any ϕ ∈ H. If no such element exist, the expectation is said to be

undefined.

The derivation of the CRB requires the existence of a “probability density” pθ(y) (more

precisely, a Radon–Nikodym derivative) which is differentiable with respect to θ, and such

that its differentiation with respect to θ can be interchanged with integration with respect to y.

The CRB also requires the mapping hθ between θ and x to be non-redundant and differentiable.

The formal statement of these regularity conditions is specified below. For the measurement

setting (8.6), with reasonable mappings hθ, these conditions are guaranteed to hold, as we will

demonstrate in the sequel; in this section, however, we list these conditions in full so that a

more general statement of the CRB will be possible.

P1) There exists a value θ0 ∈ Θ such that the measure Pθ0
dominates {Pθ : θ ∈ Θ}. In other

words, there exists a Radon–Nikodym derivative pθ(y) , dPθ/dPθ0
such that, for any

event A ∈ U ,

Pθ(A) =
∫

A
pθ(y)Pθ0

(dy). (8.27)

P2) For all y such that pθ(y) > 0, the functions pθ(y) and log pθ(y) are continuously differen-

tiable with respect to θ. We denote by ∂pθ(y)/∂θ and ∂ log pθ(y)/∂θ the column vectors of

the gradients of these two functions.

P3) The support {y ∈ Y : pθ(y) > 0} of pθ(y) is independent of θ.

P4) There exists a measurable function q : Y ×Θ → R such that for all sufficiently small ∆ > 0,

for all i = 1, . . . , K, for all y, and for all θ,

1

∆
|pθ+∆ei

(y)− pθ(y)| ≤ q(y, θ) (8.28)

and such that for all θ, ∫
q2(y, θ)Pθ0

(dy) < ∞. (8.29)
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In (8.28), ei represents the ith column of the K × K identity matrix.

P5) For each θ, the K × K Fisher information matrix (FIM)

Jθ , E

{(
∂ log pθ(y)

∂θ

)(
∂ log pθ(y)

∂θ

)∗}
(8.30)

is finite and invertible.

P6) hθ is Fréchet differentiable with respect to θ, in the sense that for each θ, there exists a

continuous linear operator ∂hθ/∂θ : RK → L2 such that, for any sufficiently small δ ∈ RK,

hθ+δ − hθ

‖δ‖ =
∂hθ

∂θ
δ + o(‖δ‖) as ‖δ‖ → 0. (8.31)

P7) The null space of the mapping ∂hθ/∂θ contains only the zero vector. This assumption is

required to ensure that the mapping from θ to x is non-redundant, in the sense that there

does not exist a parametrization of X in which the number of degrees of freedom is smaller

than K.

We are now ready to state the CRB for the estimation of a parameter x ∈ L2[0, T] parame-

terized by a finite-dimensional vector θ. The proof of this theorem is given in Appendix 8.A.

Theorem 8.1. Let θ ∈ Θ be a deterministic parameter, where Θ is an open set in RK. Let H be a

measurable, separable Hilbert space and let hθ be a mapping from Θ to H. Let {Pθ : θ ∈ Θ} be a family

of probability measures over a measurable space (Ω, F ), and let y : Ω → Y be a random variable, where

Y is a measurable Hilbert space. Assume regularity conditions P1–P6. Let x̂ : Y → H be an unbiased

estimator of x from the measurements y such that

E
{
‖x̂(y)‖2

H
}
< ∞. (8.32)

Then, the MSE of x̂ satisfies

MSE(x̂, x) ≥ Tr

[(
∂hθ

∂θ

)∗ (∂hθ

∂θ

)
J−1

θ

]
(8.33)

where Jθ is the FIM (8.30).

Theorem 8.1 enables us to obtain a lower bound on the estimation error of x based on the

FIM for estimating θ. The latter can often be computed relatively easily since θ is a finite-

dimensional vector. Even more conveniently, the trace on the right-hand side of (8.33) is taken

over a K × K matrix, despite the involvement of continuous-time operators. Thus, the com-

putation of (8.33) is often possible either analytically or numerically, a fact which will be used

extensively in the sequel.
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8.6 CRB for Continuous-Time Measurements

We now apply Theorem 8.1 to the problem of estimating a deterministic signal x from

continuous-time measurements y given by (8.6).

Theorem 8.2. Let x be a deterministic function defined by (8.5), where θ ∈ Θ is an unknown determin-

istic parameter and Θ is an open subset of RK. Suppose that Assumptions P6–P7 are satisfied. Then,

the MSE of any unbiased, finite-variance estimator x̂ is bounded by

MSE(x̂, x) ≥ Kσ2
c . (8.34)

The bound of Theorem 8.2 can be translated to units of the rate of innovation ρT0
if we as-

sume that the segment [0, T0] under analysis achieves the maximum (8.4), i.e., this is a segment

containing the maximum allowed number of degrees of freedom. In this case ρT0
= K/T0, and

any unbiased estimator x̂(t) satisfies

1
T0

E
{∫ T0

0 |x(t)− x̂(t)|2dt
}

σ2
c

≥ ρT0
. (8.35)

In the noisy setting, ρT0
loses its meaning as a lower bound on the sampling rate required for

perfect recovery, since the latter is no longer possible at any sampling rate. On the other hand,

it follows from (8.35) that the rate of innovation gains an alternative meaning; namely, ρT0
is a

lower bound on the ratio between the average MSE achievable by any unbiased estimator and

the noise variance σ2
c , regardless of the sampling method.

Before formally proving Theorem 8.2, note that (8.34) has an intuitive geometric interpre-

tation. Specifically, the constraint set X is a K-dimensional differential manifold in L2[0, T]. In

other words, for any point x ∈ X , there exists a K-dimensional subspace U tangent to X at

x. We refer to U as the feasible direction subspace [70]: any perturbation of x which remains

within the constraint set X must be in one of the directions in U . Formally, U can be defined as

the range space of ∂hθ/∂θ.

If one wishes to use the measurements y to distinguish between x and its local neighbor-

hood, then it suffices to observe the projection of y onto U . Projecting the measurements onto

U removes most of the noise, retaining only K independent Gaussian components, each hav-

ing a variance of σ2
c . Thus we have obtained an intuitive explanation for the bound of Kσ2

c in

Theorem 8.2. To formally prove this result, we apply Theorem 8.1 to the present setting, as

follows.
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Proof of Theorem 8.2. The problem of estimating the parameters θ from a continuous-time signal

y(t) of the form (8.6) was examined in [134, Example I.7.3], where the validity of Assumptions

P1–P4 was demonstrated. It was further shown that the FIM Jcont
θ for estimating θ from y(t) is

given by [134, ibid.]

Jcont
θ =

1

σ2
c

(
∂hθ

∂θ

)∗ (∂hθ

∂θ

)
. (8.36)

Our goal will be to use (8.36) and Theorem 8.1 to obtain a bound on estimators of the

continuous-time function x(t). To this end, observe that the FIM Jcont
θ is finite since, by As-

sumption P6, the operator ∂hθ/∂θ is a bounded operator into L2. Furthermore, by Assump-

tion P7, ∂hθ/∂θ has a trivial null space, and thus Jcont
θ is invertible. Therefore, Assumption P5

has been demonstrated. We may consequently apply Theorem 8.1, which yields

MSE(x̂, x)

≥ σ2
c Tr

[(
∂hθ

∂θ

)∗ (∂hθ

∂θ

)((
∂hθ

∂θ

)∗ (∂hθ

∂θ

))−1
]

= σ2
c Tr (IK)

= Kσ2
c (8.37)

thus completing the proof.

To illustrate the use of Theorem 8.2 in practice, let us consider as a simple example a signal

x(t) belonging to a finite-dimensional subspace G. Specifically, assume that

x(t) =
K

∑
k=1

akgk(t) (8.38)

for some coefficient vector θ = (a1, . . . , aK)
T and a given set of linearly independent func-

tions {gk} spanning G. This includes, for example, families of shift-invariant subspaces with

a compactly supported generator (see Section 8.3.1). From Theorem 8.2, the MSE of any unbi-

ased estimator of x is bounded by Kσ2
c , where K is the dimension of the subspace G. We now

demonstrate that this bound is achieved by the unbiased estimator

x̂ = PG y (8.39)

where PG is the orthogonal projector onto the subspace G.

To verify that (8.39) achieves the CRB, let G denote the set transformation (8.2) associated

with the functions {gk}K
k=1. One may then write x = Gθ and PG = G(G∗G)−1G∗. Thus (8.39)
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becomes

x̂ = G(G∗G)−1G∗Gθ+ G(G∗G)−1G∗w

= Gθ+ PG w (8.40)

and therefore

E
{
‖x̂ − x‖2

L2

}
= E

{
‖PG w‖2

L2

}
. (8.41)

Since G is a K-dimensional subspace, it is spanned by a set of K orthonormal1 functions

u1, . . . , uK ∈ L2. Thus

E
{
‖PG w‖2

L2

}
=

K

∑
k=1

E
{
|〈w, uk〉|2

}
= Kσ2

c (8.42)

which demonstrates that x̂ indeed achieves the CRB in this case.

In practice, a signal is not usually estimated directly from its continuous-time measure-

ments. Rather, the signal y(t) is typically sampled and digitally manipulated. In the next

section, we will compare the results of Theorem 8.2 with the performance achievable from

sampled measurements, and demonstrate that in some cases, a finite-rate sampling scheme is

sufficient to achieve the continuous-time bound of Theorem 8.2.

8.7 CRB for Sampled Measurements

In this section, we consider the problem of estimating x(t) of (8.5) from a finite number of

samples of the process y(t) given by (8.6). Specifically, suppose our measurements are given

by

cn = 〈y, sn〉+ vn =
∫ T0

0
y(t)s∗n(t)dt + vn, n = 1, . . . , N (8.43)

where {sn}N
n=1 ⊂ L2[0, T0] are sampling kernels, and vn is a discrete white Gaussian noise

process, independent of w(t), having mean zero and variance σ2
d . Note that the model (8.43)

includes both continuous-time noise, which is present in the signal y(t) = x(t) + w(t) prior

to sampling, and digital noise vn, which arises from the sampling process, e.g., as a result

of quantization. In this section, we will separately examine the effect of each of these noise

components.

From (8.6) and (8.43), it can be seen that the measurements c1, . . . , cN are jointly Gaussian

with mean

µn , E{cn} = 〈x, sn〉 (8.44)

1We require the new functions u1, . . . , uK since the functions g1, . . . , gK are not necessarily orthonormal. The

choice of non-orthonormal functions g1, . . . , gK will prove useful in the sequel.
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and covariance

Γij , Cov(ci, cj) = σ2
c

〈
si, sj

〉
+ σ2

d δij. (8.45)

A somewhat unusual aspect of this estimation setting is that the choice of the sampling

kernels sn(t) affects not only the measurements obtained, but also the statistics of the noise.

One example of the impact of this fact is the following. Suppose first that no digital noise is

present, i.e., σd = 0, and consider a modified set of sampling kernels {s̃n(t)}N
n=1 which are an

invertible linear transformation of {sn(t)}N
n=1, so that

s̃n(t) =
N

∑
i=1

Bnisi(t) (8.46)

where B ∈ RN×N is an invertible matrix. Then, the resulting measurements c̃ are given by

c̃ = Bc, and similarly the original measurements c can be recovered from c̃. It follows that these

settings are equivalent in terms of the accuracy with which x can be estimated. In particular,

the FIM for estimating x in the two settings is identical [134, Th. I.7.2].

When digital noise is present in addition to continuous-time noise, the sampling schemes

{sn(t)} and {s̃n(t)} are no longer necessarily equivalent, since the gain introduced by the trans-

formation B will alter the ratio between the energy of the signal and the digital noise. The two

estimation problems are then equivalent if and only if B is a unitary transformation.

How should one choose the space S = span{s1, . . . , sN} spanned by the sampling kernels?

Suppose for a moment that there exist elements in the range space of ∂hθ/∂θ which are or-

thogonal to S . This implies that one can perturb x in such a way that the constraint set X
is not violated, without changing the distribution of the measurements c. This situation oc-

curs, for example, when the number of measurements N is smaller than the dimension K of the

parametrization of X . While it may still be possible to reconstruct some of the information con-

cerning x from these measurements, this is an undesirable situation from an estimation point

of view. Thus we will assume henceforth that

R
(

∂hθ

∂θ

)
∩ S⊥ = {0}. (8.47)

As an example of the necessity of the condition (8.47), consider again the signal (8.38), which

belongs to a K-dimensional subspace G ⊂ L2 spanned by the functions g1, . . . , gK. In this case

it is readily seen that for any vector v

∂hθ

∂θ
v =

K

∑
k=1

vkgk(t). (8.48)
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Since the functions {gk} span the space G, this implies that R(∂hθ/∂θ) = G, and therefore the

condition (8.47) can be written as

G ∩ S⊥ = {0} (8.49)

which is a standard requirement in the design of a sampling system for signals belonging to a

subspace G [148].

By virtue of Theorem 8.1, a lower bound on unbiased estimation of x can be obtained by

first computing the FIM J
samp
θ for estimating θ from c. This yields the following result. For

simplicity of notation, in this theorem we assume that the function hθ and the sampling kernels

sn are real. If complex sampling kernels are desired (as will be required in the sequel), the result

below can still be used by translating each measurement to an equivalent pair of real-valued

samples.

Theorem 8.3. Let x be a deterministic real function defined by (8.5), where θ ∈ Θ is an unknown

deterministic parameter and Θ is an open subset of RK. Assume regularity conditions P6–P7, and let x̂

be an unbiased estimator of x from the real measurements c = (c1, . . . , cN)
T of (8.43). Then, the FIM

J
samp
θ for estimating θ from c is given by

J
samp
θ =

(
∂hθ

∂θ

)∗
S
(
σ2

c S∗S + σ2
d IN

)−1
S∗
(

∂hθ

∂θ

)
(8.50)

where S is the set transformation corresponding to the functions {sn}N
n=1. If (8.47) holds, then J

samp
θ is

invertible. In this case, any finite-variance, unbiased estimator x̂ for estimating x from c satisfies

MSE(x̂, x) ≥ Tr

[(
∂hθ

∂θ

)∗ (∂hθ

∂θ

)
(J

samp
θ )−1

]
. (8.51)

Proof. In the present setting, the FIM J
samp
θ is given by [16]

J
samp
θ =

(
∂µ

∂θ

)∗
Γ
−1

(
∂µ

∂θ

)
(8.52)

where the matrix Γ ∈ RN×N is defined by (8.45) and the matrix ∂µ/∂θ ∈ RN×K is given by
(

∂µ

∂θ

)

nk

=
∂µn

∂θk
(8.53)

with µn defined in (8.44).

By the definition of the set transformation, the ijth element of the N × N matrix S∗S is given

by

(S∗S)ij =
〈
Sej, Sei

〉
=
〈
sj, si

〉
(8.54)

where ei is the ith column of the N × N identity matrix. Therefore, we have

Γ = σ2
c S∗S + σ2

d IN . (8.55)



202 CHAPTER 8. PERFORMANCE OF FINITE RATE OF INNOVATION SIGNALS

Similarly, observe that

(
S∗ ∂hθ

∂θ

)

nk

=

〈
∂hθ

∂θ
ẽk, Sen

〉
=

〈
∂hθ

∂θk
, sn

〉
=

∂µn

∂θk
(8.56)

where ẽk is the kth column of the K × K identity matrix. Thus

∂µ

∂θ
= S∗ ∂hθ

∂θ
. (8.57)

Substituting (8.55) and (8.57) into (8.52) yields the required expression (8.50).

We next demonstrate that if (8.47) holds, then J
samp
θ is invertible. To see this, note that from

(8.50) we have

N
(

J
samp
θ

)
= N

(
S∗
(

∂hθ

∂θ

))
. (8.58)

Now, consider an arbitrary function f ∈ R(∂hθ/∂θ). If (8.47) holds, then f is not orthogonal to

the subspace S . Therefore, 〈 f , sn〉 6= 0 for at least one value of n, and thus by (8.3), S∗ f 6= 0.

This implies that

N
(

S∗
(

∂hθ

∂θ

))
= N

(
∂hθ

∂θ

)
= {0}. (8.59)

Combined with (8.58), we conclude that N
(

J
samp
θ

)
= {0}. This demonstrates that J

samp
θ is

invertible, proving Assumption P5. Moreover, in the present setting, Assumptions P1–P4 are

fulfilled for any value of θ0 [6]. Applying Theorem 8.1 yields (8.51) and completes the proof.

In the following subsections we draw several conclusions from Theorem 8.3.

8.7.1 Discrete-Time Noise

Suppose first that σ2
c = 0, so that only digital noise is present. This setting has been ana-

lyzed previously [38,132], and therefore only briefly examine the contrast with continuous-time

noise. When only digital noise is present, its effects can be surmounted either by increasing the

gain of the sampling kernels, or by increasing the number of measurements. These intuitive

conclusions can be verified from Theorem 8.3 as follows. Assume that condition (8.47) holds,

and consider the modified kernels s̃n(t) = 2sn(t). The set transformation S̃ corresponding to

the modified kernels is S̃ = 2S, and since σ2
c = 0, this implies that the FIM obtained from the

modified kernels is given by J̃
samp
θ = 4J

samp
θ . Thus, a sufficient increase in the sampling gain

can arbitrarily increase J
samp
θ and consequently reduce the bound (8.51) arbitrarily close to zero.

Of course, from a practical point of view, increasing the gain also increases the likelihood

that the sampled signal will exceed the dynamic range of the quantizer. It is therefore not

feasible to arbitrarily increase the sampling gain. As an alternative, it is possible to increase
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the number of measurements. For example, suppose one simply repeats each measurement

twice. Let S and S̃ denote the transformations corresponding to the original and doubled sets

of measurements. It can then readily be seen from the definition of the set transformation (8.2)

and its adjoint (8.3) that S̃S̃∗ = 4SS∗. Consequently, by the same argument, in the absence

of continuous-time noise one can achieve arbitrarily low error by repeated measurements, or

more generally, by increasing the sampling rate.

8.7.2 Continuous-Time Noise

As we have seen, sampling noise can be mitigated by increasing the sampling rate. Further-

more, digital noise is inherently dependent on the sampling scheme being used. Since our

goal is to determine the fundamental performance limits regardless of the sampling technique,

we will focus here and in subsequent sections on continuous-time noise. Thus, suppose that

σ2
d = 0, so that only continuous-time noise is present. In this case, as we now show, it is

generally impossible to achieve arbitrarily low reconstruction error, regardless of the sampling

kernels used; indeed, it is never possible to outperform the continuous-time CRB of Section 8.6,

which is typically nonzero. To see this formally, observe first that in the absence of digital noise,

the FIM for estimating θ can be written as

J
samp
θ =

1

σ2
c

(
∂hθ

∂θ

)∗
S (S∗S)−1 S∗

(
∂hθ

∂θ

)

=
1

σ2
c

(
∂hθ

∂θ

)∗
PS

(
∂hθ

∂θ

)
(8.60)

where PS is the orthogonal projection onto the subspace S . It is insightful to compare this

expression with the FIM Jcont
θ obtained from continuous-time measurements in (8.36). In both

cases, a lower bound on the MSE for unbiased estimation of x was obtained from Jθ by applying

Theorem 8.1. Consequently, if it happens that Jcont
θ = J

samp
θ , then the continuous-time bound

of Theorem 8.2 and the sampled bound of Theorem 8.3 coincide. Thus, if no digital noise is

added, then it is possible (at least in terms of the performance bounds) that estimators based

on the samples c will suffer no degradation compared with the “ideal” estimator based on the

entire set of continuous-time measurements. This occurs if and only if R(∂hθ/∂θ) ⊆ S ; in this

case, the projection PS will have no effect on the FIM J
samp
θ , which will then coincide with Jcont

θ

of (8.36). In the remainder of this section, we will discuss several cases in which this fortunate

circumstance arises.



204 CHAPTER 8. PERFORMANCE OF FINITE RATE OF INNOVATION SIGNALS

8.7.3 Example: Sampling in a Subspace

One situation in which samples provide all of the information present in the continuous-time

signal is the case in which x(t) belongs to a K-dimensional subspace G of L2. This is the case,

for example, when the signal lies in a shift-invariant subspace having a compactly supported

generator (see Section 8.3.1). As we have seen above (cf. (8.48)), in this scenario ∂hθ/∂θ is a

mapping onto the subspace G. Assuming that there is no discrete-time noise, it follows from

(8.60) that the optimal choice of a sampling space S is G itself. Such a choice requires N = K

samples and yields Jcont
θ = J

samp
θ . Of course, such an occurrence is not possible if the sampling

process contributes additional noise to the measurements.

In some cases, it may be difficult to implement a set of sampling kernels spanning the

subspace G. It may then be desirable to choose a K-dimensional subspace S which is close

to G but does not equal it. We will now compute the CRB for this setting and demonstrate that

it can be achieved by a practical estimation technique. This will also demonstrate achievability

of the CRB in the special case S = G. We first note from (8.2) and (8.48) that ∂hθ/∂θ = G, where

G is the set transformation corresponding to the generators {gk}K
k=1. Furthermore, it follows

from (8.49) that S∗G and G∗S are invertible K × K matrices [148]. Using Theorem 8.3, we thus

find that the CRB is given by

MSE(x̂, x) ≥ σ2
c Tr

(
G
(

G∗S(S∗S)−1S∗G
)−1

G∗
)

= σ2
c Tr

(
G(S∗G)−1S∗S(G∗S)−1G∗

)
. (8.61)

It is readily seen that when S = G, the bound (8.61) reduces to Kσ2
c , which is (as expected) the

continuous-time bound of Theorem 8.2. When S 6= G, the bound (8.61) will generally be higher

than Kσ2
c , since J

samp
θ of (8.60) will exceed Jcont

θ of (8.36). In this case, it is common to use the

consistent, unbiased estimator [137, 148]

x̂ = G(S∗G)−1c. (8.62)

As we now show, the bound (8.61) is achieved by this estimator. Indeed, observe that c =

S∗y = S∗Gθ+ S∗w, and thus

E
{
‖x̂ − x‖2

L2

}
= E

{
‖G(S∗G)−1S∗w‖2

L2

}

= E
{

Tr
(

G(S∗G)−1S∗ww∗S(G∗S)−1G∗
)}

= Tr
(

G(S∗G)−1 Cov(S∗w)(G∗S)−1G∗
)

. (8.63)
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Note that Cov(S∗w) = Cov(c), which by (8.55) is equal to σ2
c S∗S. Substituting this result into

(8.63) and comparing with (8.61) verifies that x̂ achieves the CRB.

8.7.4 Nyquist-Equivalent Sampling

We refer to situations in which the dimension of the sampling space equals the dimension

of the signal space as “Nyquist-equivalent” sampling schemes. In the previous section, we

saw that Nyquist-equivalent sampling is possible using K samples when the signal lies in a

K-dimensional subspace X , and that the resulting system achieves the continuous-time CRB.

A similar situation occurs when the set of possible signals X is a subset of an M-dimensional

subspace M of L2 with M > K. In this case, it can be readily shown that R(∂hθ/∂θ) ⊆ M.

Thus, by choosing N = M sampling kernels such that S = M, we again achieve Jcont
θ = J

samp
θ ,

demonstrating that all of the information content in x has been captured by the samples. This

is again a Nyquist-equivalent scheme, but the number of samples it requires is higher than the

number of parameters K defining the signals. Therefore, in this case it is not possible to sample

at the rate of innovation without losing some of the information content of the signal.

In general, the constraint set X will not be contained in any finite-dimensional subspace of

L2. In such cases, it will generally not be possible to achieve the performance of the continuous-

time bound using any finite number of samples, even in the absence of digital noise. This im-

plies that in the most general setting, sampling above the rate of innovation can often improve

the performance of estimation schemes. This conclusion will be verified by simulation in Sec-

tion 8.9.

8.8 Optimal Sampling Kernels: A Bayesian Viewpoint

In this section, we address the problem of designing a sampling method which minimizes the

MSE. One route towards this goal could be to minimize the sampled CRB of Theorem 8.3 with

respect to the sampling space S . However, the CRB is a function of the unknown parameter

vector θ. Consequently, for each value of θ, there may be a different sampling space S which

minimizes the bound. To obtain a sampling method which is optimal on average over all

possible choices of θ, we now make the additional assumption that the parameter vector θ is

random and has a known distribution. Our goal, then, is to determine the sampling space S
that minimizes the MSE E

{
‖x̂ − x‖2

L2

}
within a class of allowed estimators. Note that the mean

is now taken over realizations of both the noise w(t) and the parameter θ.
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Since θ is random, the signal x(t) is random as well. To make our discussion general,

we will derive the optimal sampling functions for estimating a general random process x(t)

(not necessarily having realizations in X of (8.5)) from samples of the noisy process y(t) =

x(t) + w(t). We will then specialize the results to several specific types of FRI signals and

obtain explicit expressions for the optimal sampling kernels in these scenarios.

Let x(t) denote a zero-mean random process defined over t ∈ [0, T0], and suppose that its

autocorrelation function

RX(t, η) , E{x(t)x∗(η)} (8.64)

is continuous in t and η. Our goal is to estimate x(t) based on a finite number N of samples of

the signal y(t) = x(t) + w(t), t ∈ [0, T0], where w(t) is a white noise process (not necessarily

Gaussian) with variance σ2
c which is uncorrelated with x(t). We focus our attention on linear

sampling schemes, i.e., we assume the samples are given by

cn = 〈y, sn〉 . (8.65)

Finally, we restrict the discussion to linear estimation methods, namely those techniques in

which the estimate x̂(t) is constructed as

x̂(t) =
N

∑
n=1

cnvn(t), (8.66)

for some set of reconstruction functions {vn(t)}N
n=1. It is important to note that for any given

set of sampling functions {sn(t)}N
n=1, the minimum MSE (MMSE) estimator of x(t) is often

a nonlinear function of the measurements {cn}N
n=1. Indeed, typical FRI reconstruction tech-

niques involve a nonlinear stage. Consequently, restricting the discussion to linear recovery

schemes may seem inadequate. However, this choice has two advantages. First, as we will

see, the optimal linear scheme is determined only by the second-order statistics of x(t) and

w(t), whereas the analysis of nonlinear methods necessitates exact knowledge of their entire

distribution functions. Second, it is not the final estimate x̂(t) that interests us in this discus-

sion, but merely the set of optimal sampling functions. Once such a set is determined, albeit

from a linear recovery perspective, it can be used in conjunction with existing nonlinear FRI

techniques. As we will see in Section 8.9, the conclusions obtained through our analysis appear

to apply to FRI techniques in general. Under the above assumptions, our goal is to design the

sampling kernels {sn(t)}N
n=1 and reconstruction functions {vn(t)}N

n=1 such that the MSE (8.8) is

minimized.
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As can be seen from (8.65), we assume henceforth that only continuous-time noise is present

in the sampling system. The situation is considerably more complicated in the presence of

digital noise. First, without digital noise, one must choose only the subspace spanned by the

sampling kernels, as the kernels themselves do not affect the performance; this is no longer the

case when digital noise is added. Second, digital noise may give rise to a requirement that a

particular measurement be repeated in order to average out the noise. This is undesirable in

the continuous noise regime, since the repeated measurement will contain the exact same noise

realization.

8.8.1 Relation to the Karhunen–Loève Expansion and Finite-Dimensional Gener-

alizations

The problem posed above is closely related to the Karhunen–Loève transform (KLT) [149,150],

which is concerned with the reconstruction of a random signal x(t) from its noiseless samples.

Specifically, one may express x(t) in terms of a complete orthonormal basis {ψk(t)}∞
k=1 for L2

as

x(t) =
∞

∑
k=1

〈x, ψk〉ψk(t). (8.67)

The goal of the KLT is to choose the functions {ψk(t)}∞
k=1 such that the MSE resulting from the

truncation of this series after N terms is minimal. It is well known that the solution to this

problem is given by the N-term truncation of the Karhunen–Loève expansion [149, 151].

Since RX(t, η) is assumed to be continuous in our setting, by Mercer’s theorem [151] it

possesses a discrete set of eigenfunctions {ψk(t)}∞
k=1, which constitute an orthonormal basis

for L2. These functions satisfy the equations

λkψk(t) =
∫ T0

0
RX(t, η)ψk(η)dη, (8.68)

in which the corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 are nonnegative and are assumed

to be arranged in descending order. With these functions, (8.67) is known as the Karhunen–

Loève expansion. It can be easily shown that the first N terms in this series constitute the best

N-term approximation of x(t) in an MSE sense [151]. In other words, in the noiseless case, the

optimal sampling and reconstruction functions are sn(t) = vn(t) = ψn(t).

In our setting, we do not have access to samples of x(t) but rather only to samples of the

noisy process y(t). In this case, it is not clear a priori whether the optimal sampling and recon-

struction filters coincide or whether they match the Karhunen–Loève expansion of x(t).
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The finite-dimensional analogue of our problem, in which x, y, and w are random vectors

taking values in CM, was treated in [152,153]. The derivation in these works, however, relied on

the low-rank approximation property of the singular-value decomposition (SVD) of a matrix.

The generalization of this concept to infinite-dimensional operators is subtle and will thus be

avoided here. Instead, we provide a conceptually simple (if slightly cumbersome) derivation

of the optimal linear sampling and reconstruction method for noisy signals. As we will see, it

still holds that sn(t) = vn(t) = ψn(t).

8.8.2 Optimal Sampling in Noisy Settings

As explained in Section 8.7, in the absence of discrete-time noise, the MSE is not affected by

modifications of the sampling kernels which leave the set S = span{s1(t), . . . , sN(t)} un-

changed. Thus, without loss of generality, we constrain {sn(t)}N
n=1 to satisfy

〈
sn , σ2

c sm +
∫ T

0
RX(·, τ)sm(τ)dτ

〉
= δm,n (8.69)

for every m, n = 1, . . . , N. This can always be done since the operator RY : L2 → L2 defined by

(RY f )(t) =
∫ T

0 RX(t, τ) f (τ)dτ + σ2
c f (t) is positive definite. This choice is particularly conve-

nient as it results in a set of uncorrelated samples {cn}. Indeed

E{cmc∗n} = E

{(∫ T

0
s∗m(τ)y(τ)dτ

)(∫ T

0
s∗n(η)y(η)dη

)∗}

=
∫∫ T

0
s∗m(τ)E{y(τ)y∗(η)} sn(η)dτdη

=
∫∫ T

0
s∗m(τ)RX(τ, η)sn(η)dτdη

+ E
{
〈sn, w〉 〈sm, w〉∗

}

=
∫∫ T

0
s∗m(τ)R∗

X(η, τ)sn(η)dτdη + σ2
c 〈sn, sm〉

= δm,n. (8.70)

We are now ready to determine the optimal sampling method. We begin by expressing the

MSE (8.8) as

∫ T

0
E
{
|x(t)− x̂(t)|2

}
dt =

∫ T

0
E
{
|x(t)|2

}
dt

− 2
∫ T

0
ℜ{E{x∗(t)x̂(t)}} dt +

∫ T

0
E
{
|x̂(t)|2

}
dt. (8.71)

The first term in this expression does not depend on the choice of {sn(t)}N
n=1 and {vn(t)}N

n=1,

and is therefore irrelevant for our purpose. Substituting (8.66) and (8.65), and using the fact
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that w(t) is uncorrelated with x(t), the second term can be written as

∫ T

0
2ℜ
{

E

{
x∗(t)

N

∑
n=1

cnvn(t)

}}
dt

=
N

∑
n=1

2
∫ T

0
ℜ
{

E

{
x∗(t)

∫ T

0
y(τ)s∗n(τ)dτ

}
vn(t)

}
dt

=
N

∑
n=1

2
∫∫ T

0
ℜ{E{x∗(t)(x(τ) + w(τ))} s∗n(τ)vn(t)} dτdt

=
N

∑
n=1

2
∫∫ T

0
ℜ{s∗n(τ)RX(τ, t)vn(t)} dτdt

=
N

∑
n=1

2ℜ
{〈

vn ,
∫ T

0
RX(·, τ)sn(τ)dτ

〉}
. (8.72)

Similarly, using the fact that {cn}N
n=1 are uncorrelated and have unit variance (see (8.70)), the

last term in (8.71) becomes

∫ T

0
E





∣∣∣∣∣
N

∑
n=1

cnvn(t)

∣∣∣∣∣

2


 dt =

N

∑
m=1

N

∑
n=1

E{c∗mcn} 〈vm, vn〉

=
N

∑
n=1

‖vn‖2. (8.73)

Substituting (8.72) and (8.73) back into (8.71), we conclude that minimization of the MSE is

equivalent to minimization of

N

∑
n=1

(
‖vn‖2 − 2ℜ

{〈
vn,
∫ T

0
RX(·, τ)sn(τ)dτ

〉})
(8.74)

with respect to {sn(t)}N
n=1 and {vn(t)}N

n=1, subject to the set of constraints (8.69).

As a first stage, we minimize (8.74) with respect to the reconstruction functions {vn(t)}N
n=1.

To this end, we note that the nth summand in (8.74) is lower bounded by

‖vn‖2 − 2‖vn‖
∥∥∥∥
∫ T

0
RX(·, τ)sn(τ)dτ

∥∥∥∥

≥ −
∥∥∥∥
∫ T

0
RX(·, τ)sn(τ)dτ

∥∥∥∥
2

, (8.75)

where we used the Cauchy–Schwarz inequality and the fact that minz{z2 − 2bz} = −b2. This

bound is achieved by choosing

vn(t) =
∫ T

0
RX(t, τ)sn(τ)dτ, (8.76)

thus identifying the optimal reconstruction functions.
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Substituting (8.76) into (8.74), our goal becomes to maximize

N

∑
n=1

∥∥∥∥
∫ T

0
RX(·, τ)sn(τ)dτ

∥∥∥∥
2

(8.77)

with respect to the sampling functions {sn(t)}N
n=1. As we show in Appendix 8.B, the maximum

of this expression is achieved by any set of kernels of the form

sn(t) =
N

∑
k=1

Ak,n

(
λk + σ2

c

)− 1
2 ψk(t), (8.78)

where A is a unitary N × N matrix and λk and ψk(t) are the eigenvalues and eigenfunctions of

Rx(t, η) respectively (see (8.68)). In particular, we can choose A = IN , leading to

sn(t) =
1√

λn + σ2
c

ψn(t), n = 1, . . . , N. (8.79)

From (8.76), the optimal reconstruction kernels are given by

vn(t) =
λn√

λn + σ2
c

ψn(t), n = 1, . . . , N. (8.80)

The following theorem summarizes the result.

Theorem 8.4. Let x(t), t ∈ [0, T] be a random process whose autocorrelation function RX(t, η) is

jointly continuous in t and η. Assume that y(t) = x(t) + w(t), where w(t) is a white noise process

uncorrelated with x(t). Then, among all estimates x̂(t) of x(t) having the form

x̂(t) =
N

∑
n=1

vn(t)
∫ T

0
s∗n(τ)y(τ)dt (8.81)

the MSE (8.8) is minimized with {sn(t)}N
n=1 and {vn(t)}N

n=1 of (8.79) and (8.80) respectively. In these

expressions, λn and ψn(t) are the eigenvalues and eigenfunctions of Rx(t, η) respectively (see (8.68)).

Interestingly, the optimal sampling and reconstruction functions in our noisy setting are

similar to those dictated by the KLT. The only difference is that in the present scenario, the nth

sample is shrunk by a factor of λn/(λn + σ2
c ) prior to reconstruction. This ensures that the low-

SNR measurements do not contribute to the recovery as much as their high-SNR counterparts.

From the viewpoint of designing the sampling mechanism, however, this difference is of no

importance.

As stated above, in practice one would generally favor nonlinear processing of the sam-

ples (namely, applying standard nonlinear FRI techniques) rather than a simple element-wise

shrinkage. Thus, the importance of Theorem 8.4 for our purposes is in identifying that the

eigenfunctions of RX(t, τ) remain the optimal sampling kernels even in the noisy setting.
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8.8.3 Example: Sampling in a Subspace

To demonstrate the utility of Theorem 8.4, we now revisit the situation in which x(t) is given by

(8.38) for some set of linearly independent functions {gk(t)}K
k=1 spanning a subspace G ∈ L2.

We assume that the coefficients θ = {a1, . . . , aK}T form a zero-mean random vector and denote

its autocorrelation matrix by Rθ. In this case, the signal’s autocorrelation function is given by

RX(t, η) = E{x(t)x∗(η)}

= E

{
K

∑
k=1

akgk(t)
K

∑
ℓ=1

a∗ℓ g∗k (η)

}

=
K

∑
k=1

K

∑
ℓ=1

gk(t)g∗ℓ (η)(Rθ)k,ℓ. (8.82)

Consequently, the operator RX : L2 → L2 defined by (Rxh)(t) =
∫ T

0
Rx(t, η)h(η)dη can be

expressed as

Rx = GRθG∗, (8.83)

where G is the set transformation (8.2) associated with {gk}K
k=1.

Now, let U be a unitary matrix and let D be a diagonal matrix, such that

UDU∗ = (G∗G)1/2Rθ(G
∗G)1/2. (8.84)

Since the dimension of R(G) is K, the operator RX has at most K nonzero eigenvalues {λk}K
k=1.

Let Ψ denote the set transformation associated with the N eigenfunctions {ψn}N
n=1 correspond-

ing to the N largest eigenvalues, for some N ≤ K. Then, it can be shown that

Ψ = G(G∗G)−1/2U (8.85)

and the corresponding eigenvalues are

λn = Dn,n. (8.86)

To see this, note that according to (8.85), Ψ is an isometry, since

Ψ∗Ψ = U∗(G∗G)−1/2G∗G(G∗G)−1/2U = U∗U = IK. (8.87)

Furthermore, (8.83) and (8.84) imply that RX = ΨDΨ∗. Consequently

RXΨ = ΨDΨ∗Ψ = ΨD, (8.88)

which proves the claim.



212 CHAPTER 8. PERFORMANCE OF FINITE RATE OF INNOVATION SIGNALS

It is important to emphasize that the K functions {ψn(t)}K
n=1 span G. Therefore, if one

is allowed to take N = K samples, then the optimal choice is a set of kernels that span G.

This conclusion is compatible with the CRB analysis of the previous sections. However, the

advantage of the Bayesian viewpoint is that it allows us to identify the optimal sampling space

when less than K samples are allowed. For example, suppose that {gn(t)} are orthonormal, and

the coefficients {an} are uncorrelated. Then the optimal sampling space is the one spanned by

the N functions {gn(t)} corresponding to the N largest-variance coefficients {an}.

A second example demonstrating the derivation of the optimal sampling kernels will be

given in the next section.

8.9 Application: Channel Estimation

In this section, we focus on a specific application of FRI signals, namely, that of estimating a

signal consisting of a number of pulses having unknown positions and amplitudes [34,36,125].

More precisely, we consider periodic signals x(t) of the form (8.16), which were discussed in

Section 8.3.3. These are T-periodic pulse sequences, in which the pulse shape g(t) is known,

but the amplitudes {aℓ} and delays {tℓ} are unknown. After analyzing periodic signals of this

type, we will also compare estimation performance in this case with the semi-periodic family

(8.17), and attempt to explain the empirically observed differences in stability between these

two cases.

By defining the T-periodic function h(t) = ∑n∈Z g(t − nT), we can write x(t) of (8.16) as

x(t) =
L

∑
ℓ=1

aℓh(t − tℓ). (8.89)

Our goal is now to estimate x(t) from samples of the noisy process y(t) of (8.6). As before, we

will assume that only continuous-time noise is present in the system. Since x(t) is T-periodic,

it suffices to recover the signal in the region [0, T]. In particular, we would like to identify the

optimal sampling kernels for this setting, and to compare existing algorithms with the resulting

CRB in order to determine when the optimal estimation performance is achieved.

Let

h̃k =
1

T
〈h, ϕk〉 , k ∈ Z (8.90)

be the Fourier series of h(t), where ϕk(t) = ej2πkt/T . The Fourier series of x(t) is then given by

x̃k ,
1

T
〈x, ϕk〉 = h̃k

L

∑
ℓ=1

aℓe
−j 2π

T ktℓ , k ∈ Z. (8.91)
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Let K = {k ∈ Z : h̃k 6= 0} denote the indices of the nonzero Fourier coefficients of h(t). Sup-

pose for a moment that K is finite. It then follows from (8.91) that x(t) also has a finite number

of nonzero Fourier coefficients. Consequently, the set X of possible signals x(t) is contained in

the finite-dimensional subspace M = span{ϕk}k∈K. Therefore, as explained in Section 8.7.4,

choosing the N = |K| sampling kernels {sn(t) = e−j2πnt/T}n∈K results in a sampled CRB which

is equivalent to the continuous-time bound. This result is compatible with recent work demon-

strating successful performance of FRI recovery algorithms using exponentials as sampling

kernels [125].

Note, however, that this is a “Nyquist-equivalent” sampling scheme, i.e., the number of

samples required N = |K| is potentially much higher than the number of degrees of freedom

2L in the signal x(t) (see Section 8.7.4). This provides a theoretical explanation of the empiri-

cally recognized fact that sampling above the rate of innovation improves the performance of

FRI techniques in the presence of noise [34], a fact which stands in contrast to the noise-free

performance guarantees of many FRI algorithms.

Moreover, if there exists an infinite number of nonzero coefficients h̃k, then in general the

set X will not belong to any finite-dimensional subspace. Consequently, it will not be possible

in this case for an algorithm based on a finite number of samples to achieve the performance

obtainable from the complete signal y(t). This occurs, for example, whenever the pulse g(t) of

(8.16) is time-limited. In such cases, any increase in the sampling rate will potentially continue

to reduce the CRB, although the sampled CRB will converge to the asymptotic value of ρT0
σ2

c

in the limit as the sampling rate increases.

8.9.1 Choosing the Sampling Kernels

An important question in the current setting is how to choose the sampling kernels so as to

achieve the best possible performance under a limited budget of samples. This can be done

via the Bayesian analysis provided in Section 8.8. Assume, for example, that the time delays

{tℓ}L
ℓ=1 are independently drawn from a uniform distribution over the interval [0, T]. Fur-

thermore, suppose that the amplitudes {aℓ}L
ℓ=1 are mutually uncorrelated zero-mean random
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variables which are independent of the time delays and have variance σ2
a . Then,

RX(t, τ) = E{x(t)x∗(τ)}

=
L

∑
k=1

L

∑
ℓ=1

E{aka∗
ℓ} E{h(t − tk)h

∗(τ − tℓ)}

= σ2
a

L

∑
ℓ=1

E{h(t − tℓ)h
∗(τ − tℓ)}

= σ2
a L

1

T

∫ T

0
h(t − tℓ)h

∗(τ − tℓ)dtℓ

= σ2
a L ∑

k∈Z

|h̃k|2ej 2π
T k(t−τ), (8.92)

where we used Parseval’s theorem. It is easily verified that the eigenfunctions of RX(t, τ) are

given by

ψn(t) =
1√
T

ej 2π
T nt, n ∈ Z (8.93)

and the corresponding eigenvalues are

λn = Lσ2
a T|h̃n |2, n ∈ Z. (8.94)

Therefore, the optimal set of N sampling functions is

sn(t) = ej 2π
T pnt, n = 1, . . . , N (8.95)

where pn is the index of the nth largest Fourier coefficient |h̃pn |. The optimal linear recovery of

x(t) from the resulting samples is given by

x̂(t) =
N

∑
n=1

cn
Lσ2

a |h̃pn |2
Lσ2

a T|h̃pn |2 + σ2
c

ej 2π
T pnt. (8.96)

The performance of this estimator is poorer than state-of-the-art techniques, due to the restric-

tion to linear reconstruction schemes. We recall that this technique is intended only for selecting

the sampling kernels.

The above analysis again lends credence to the recently proposed time-delay estimation

technique of Gedalyahu et al. [125], which makes use of complex exponentials as sampling

functions. A disadvantage of this algorithm is that it can only handle a set of exponents with

successive frequencies, while for general pulses, the indices of the N largest Fourier coefficients

may be sporadic. As we will see in Section 8.9.3, this limitation may result in deteriorated

performance of the algorithm in some cases.
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8.9.2 Computing the CRB

Having identified the optimal sampling kernels (8.95), we would now like to compute the

CRB for estimating x(t) from the resulting samples. In order to compare these results with

the continuous-time CRB, we assume that no digital noise is added in the sampling process.

However, the calculations described below can be adapted without difficulty to situations con-

taining both continuous-time and digital noise.

We assume for simplicity that h(t) and {aℓ} are real-valued. Nonetheless, the sampling ker-

nels chosen above are complex-valued, implying that Theorem 8.3 cannot be directly applied.

Yet since h(t) is real-valued, we have |h̃k | = |h̃−k|, and consequently the optimal sampling

kernels consist of complex conjugate pairs e±j2πnt/T. Recall that the sampling kernels can be

changed without affecting the CRB, as long as the subspace they span remains constant. Con-

sequently, the CRB can be computed for the equivalent sampling kernels sin(2πnt/T) and

cos(2πnt/T), which are real and can therefore be used in conjunction with the results of Sec-

tion 8.7. We note that since the transition to these real-valued kernels is unitary, the CRB will

not change even if digital noise is added. To be specific without complicating the notation,

we assume that N is odd and that the DC component is included among the sampling kernels

chosen in (8.95). We can then define the equivalent set of kernels

s̃0(t) = 1,

s̃n(t) = cos(2πpnt/T), n = 1, . . . ,
N − 1

2
,

s̃n+ N+1
2
(t) = sin(2πpnt/T), n = 1, . . . ,

N − 1

2
. (8.97)

We further define the parameter vector

θ = (a1, . . . , aL, t1, . . . , tL)
T (8.98)

whose length is K = 2L.

Theorem 8.3 provides a two-step process for computing the CRB of the signal x(t) from

its samples. First, the FIM J
samp
θ for estimating θ is determined. Second, the formula (8.51) is

applied to compute the CRB. While Theorem 8.3 also provides a means for calculating J
samp
θ ,

it is more convenient in the present setting to derive the FIM directly. This can be done by

calculating the expectations µn of (8.44) and applying (8.52). In our setting, µn = 〈x, s̃n〉 are
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given by

µn =
x̃pn + x̃−pn

2
, n = 0, . . . ,

N − 1

2

µn+ N+1
2

=
x̃pn − x̃−pn

2j
, n = 1, . . . ,

N − 1

2
(8.99)

where {x̃n} are the Fourier coefficients of x(t). These coefficients depend in turn on the param-

eter vector θ, as shown in (8.91). Substituting µn into (8.52) yields a closed-form expression for

J
samp
θ . Since the resulting formula is cumbersome and not very insightful, it is not explicitly

written herein.

To obtain the sampled CRB, our next step is to compute the 2L × 2L matrix

M ,

(
∂hθ

∂θ

)∗ (∂hθ

∂θ

)
. (8.100)

The function hθ : R2L → L2 maps a given parameter vector θ to the resulting signal x(t) as

defined by (8.89). Differentiating this function with respect to θ, we find that the operator

∂hθ/∂θ : R2L → L2 is defined by
(

∂hθ

∂θ

)
v = v1h(t − t1) + · · ·+ vLh(t − tL)

− vL+1a1h′(t − t1)− · · · − v2LaLh′(t − tL) (8.101)

for any vector v ∈ R2L.

One may now compute the ikth element of M as

Mik = e∗i

(
∂hθ

∂θ

)∗ (∂hθ

∂θ

)
ek =

〈
∂hθ

∂θ
ei,

∂hθ

∂θ
ek

〉
. (8.102)

Thus, each element of M is an inner product between two of the terms in (8.101). To calculate

this inner product numerically for a given function h(t), it is more convenient to use Parse-

val’s theorem in order to convert the (continuous-time) inner product to a sum over Fourier

coefficients. For example, in the case 1 ≤ i, k ≤ L, we have

Mik =
∫ T

0
h(t − ti)h

∗(t − tk)dt

= T ∑
n∈Z

h̃ne−j2πtin/Th̃∗nej2πtkn/T

= T ∑
n∈Z

|h̃n|2e−j2π(tk−ti)n/T, 1 ≤ i, k ≤ L. (8.103)

An analogous derivation can be carried out when i or k are in the complementary range L +

1, . . . , 2L.

Finally, having calculated the matrices J
samp
θ and M, the CRB for sampled measurements is

obtained using (8.51). We are now ready to compare this bound to the performance of practical

estimators in some specific scenarios.
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8.9.3 Effect of the Pulse Shape

In Fig. 8.1, we document several experiments comparing the CRB with the time-delay estima-

tion technique of Gedalyahu et al. [125]. Specifically, we sampled the signal x(t) of (8.16) using

a set of exponential kernels, and used the matrix pencil method [154] to estimate x(t) from the

resulting measurements. Since we are considering only continuous-time noise, applying an in-

vertible linear transformation to the sampling kernels has no effect on our performance bounds

(see Section 8.7). The various kernels suggested in [125] amount to precisely such an invertible

linear transformation, and the same performance bound applies to all of these approaches.

Moreover, under the continuous-time noise model, it can be shown that these techniques also

exhibit the same performance. For the same reason, the performance reported here is also

identical to the method of Vetterli et al. [30].

In our experiments, a signal containing L = 2 pulses was constructed. The delays and

amplitudes of the pulses were chosen randomly and are given by

a1 = 0.3204, t1 = 0.6678,

a2 = 0.6063, t2 = 0.9863. (8.104)

Modifications of these parameters does not appear to significantly affect the reported results,

except when the time delays are close to one another, a situation which will be discussed in

depth in Section 8.9.4. The pulse h(t) consisted of |K| = 401 nonzero Fourier coefficients at

positions K = {−200, . . . , 200}. The CRB is plotted as a function of the number of samples N,

where the sampling kernels are given by sn(t) = ej2πnt/T with n ∈ {−⌊N/2⌋, . . . , ⌊N/2⌋}. This

is done because the matrix pencil method requires the sampling kernels to have contiguous

frequencies.

In Fig. 8.1(a), we chose h̃k = 1 for −200 ≤ k ≤ 200 and h̃k = 0 elsewhere; these are

the low-frequency components of a Dirac delta function. The noise standard deviation was

σc = 10−5. In this case, for a fixed budget of N samples, any choice of N exponentials having

frequencies in the range −200 ≤ k ≤ 200 is optimal according to the criterion of Section 8.8. As

expected, the sampled CRB achieves the continuous-time bound Kσ2
c when N ≥ |K|. However,

the CRB obtained at low sampling rates is higher by several orders of magnitude than the

continuous-time limit. This indicates that the maxim of FRI theory, whereby sampling at the

rate of innovation suffices for reconstruction, may not always hold in the presence of mild

levels of noise. Indeed, if no noise is added in the present setting, then perfect recovery can

be guaranteed using as few as N = 4 samples; yet even in the presence of mild noise, our
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(a) The pulse g(t) is a filtered Dirac with 401 Fourier coefficients.
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(b) The pulse g(t) contains 401 nonzero Fourier coefficients which decrease monotonically with frequency.
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(c) The pulse g(t) is a filtered rect(·) with 401 Fourier coefficients.

Figure 8.1: Comparison of the CRB and the performance of a practical estimator, as a function

of the number of samples.
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bounds demonstrate that performance is quite poor unless the number of samples is increased

substantially. This result may provide an explanation for the previously observed numerical

instability of FRI techniques [30, 34].

As a further observation, we note that in this scenario, existing algorithms come very close

to the CRB. Thus, the previously observed improvements achieved by oversampling are a

result of fundamental limitations of low-rate sampling, rather than drawbacks of the specific

technique used.

The same experiment is repeated in Fig. 8.1(b) with a pulse having Fourier coefficients h̃k =

1/(1 + 0.01k2). Since the Fourier coefficients decrease with |k|, in this case our choice of low-

frequency sampling kernels is optimal. However, the SNR of the measurements cn decreases

with n. As can be seen, this has a negative effect on the performance of the algorithm, which is

not designed for high noise levels. Indeed, including low-SNR measurements causes the MSE

not only to depart from the CRB, but eventually even to increase as more noisy samples are

provided. In other words, one would do better to ignore the high-frequency measurements

than to feed them to the recovery algorithm. Yet information is clearly present in these high-

frequency samples, as indicated by the continual decrease of the CRB with increasing N. Thus,

our analysis indicates that improved estimation techniques should be achievable in this case,

in particular by careful utilization of low-SNR measurements.

The adverse effect of low-SNR measurements is exacerbated if, for a given N, one does not

choose the N largest Fourier coefficients. This is demonstrated in Fig. 8.1(c). Here, the results of

a similar experiment are plotted, in which h̃k = P sinc(nP/T), −200 ≤ k ≤ 200. These are the

401 lowest-frequency Fourier coefficients of a rectangular pulse having width P. In this case,

the Fourier coefficients are no longer monotonically decreasing with |k|. Consequently, the

sampling kernels sn(t) = ej2πnt/T with n ∈ {−⌊N/2⌋, . . . , ⌊N/2⌋} do not correspond to the N

largest Fourier coefficients, and thus are not optimal. In particular, for the chosen parameters,

|h̃25| = |h̃−25| are considerably smaller than the rest of the coefficients. When N ≥ 50, the

corresponding measurements are included, causing the MSE to deteriorate significantly.

8.9.4 Closely-Spaces Pulses

It is well-known that the estimation of pulse positions becomes ill-conditioned when several

of the pulses are located close to one another. Intuitively, this is a consequence of the overlap

between the pulses, which makes it more difficult to identify the precise location of each pulse.

However, our goal is to estimate the signal x(t) itself, rather than the positions of its constituent
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Figure 8.2: Comparison between the CRB and the performance of a practical estimator as a

function of the pulse positions. The signal contains L = 2 pulses, the first of which is located at

t1 = 0.5. The MSE is plotted as a function of the position of the second pulse.

pulses. As we will see, for this purpose the effect of closely-spaced pulses is less clear-cut.

To study the effect of pulse position on the estimation error, we used a setup similar to the

one of Fig. 8.1(b), with the following differences. First, a higher noise level of σc = 10−3 was

chosen. Second, the signal consisted of L = 2 pulses, with the first pulse at position t1 = 0.5.

The position of the second pulse was varied in the range [0.3, 0.7] to demonstrate the effect of

pulse proximity on the performance. The setting was otherwise identical to that of Section 8.9.3.

In particular, recall that T = 1.

The results of this experiment are plotted in Fig. 8.2, which documents both the values of

the sampled CRB and the actual MSE obtained by the estimator of Gedalyahu et al. [125]. The

continuous-time CRB is also plotted, although, as is evident from Theorem 8.2, this bound is a

function only of the number of parameters determining the signal, and is therefore unaffected

by the proximity of the pulses.

Several different effects are visible in Fig. 8.2. First, as the two pulses begin to come closer,

both the CRB and the observed MSE increase by several orders of magnitude; this occurs when

|t1 − t2| is between about 0.15 and 0.03. (Of course, the precise distances at which these effects

occur depend on the pulse width and other parameters of the experiment.) This level of prox-

imity is demonstrated in Fig. 8.3(a). At this stage, the overlap between the pulses is sufficient

to make it more difficult to estimate their positions accurately, but the separation between the

pulses is still large, so that they are not mistaken for a single pulse.

As the pulses draw nearer each other, they begin to resemble a single pulse located at
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Figure 8.3: Demonstration of the different levels of overlap between pulses.

(t1 + t2)/2 (see Fig. 8.3(b)). Depending on the noise level, at some point the estimation al-

gorithm will indeed identify the two pulses as one. Since our goal is to estimate x(t) and not

the pulse positions, such an “error” causes little deterioration in MSE. This is visible in Fig. 8.2

as the region in which the MSE of the practical algorithm ceases to deteriorate and ultimately

decreases.

Interestingly, the CRB does not capture this improvement in performance. This failure is

due to the fact that the CRB applies only to unbiased estimators, while the strategy utilized

in [125] becomes biased for closely-spaced pulses. For an estimator to be unbiased, it is required

that the mean estimate, averaged over noise realizations, will converge to the true value of x(t),

which has a form similar to that of Fig. 8.3(b). The expectation of an estimator reconstructing

a single pulse will not have the form of two closely-spaced pulses; such an estimator is thus

necessarily biased. In other words, the discrepancy observed here results from the fact that in

this case, biased techniques outperform the best unbiased approach.

8.9.5 Non-Periodic and Semi-Periodic Signal Models

As we have seen above, the reconstruction of signals of the form (8.16) in the presence of noise

is often severely hampered when sampled at or slightly above the rate of innovation. Rather

than indicating a lack of appropriate algorithms, in many cases this phenomenon results from

fundamental limits on the ability to recover such signals from noisy measurements. A similar

effect was demonstrated [34] in the non-periodic (or finite) pulse stream model (8.14). In fact, if

one is allowed to sample a non-periodic pulse stream with arbitrary sampling kernels, then by
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Figure 8.4: Comparison between the CRB for a periodic signal (8.16) and a semi-periodic signal

(8.17).

designing kernels having sufficiently large time-domain support, one can capture all or most

of the energy in the signal. This setting then essentially becomes equivalent to a periodic signal

model (8.16) in which the period is larger than the effective support of the pulse stream: One

can imagine that the signal repeats itself beyond the sampled region, as this would not affect

the measurements. Consequently, it is not surprising that the non-periodic model demonstrates

substantial improvement in the presence of oversampling [34].

On the other hand, some types of FRI and union of subspace signals exhibit remarkable

noise resilience, and do not appear to require substantial oversampling in the presence of noise

[36, 126]. As we now show, the CRB can be used to verify that such phenomena arise from a

fundamental difference between families of FRI signals.

As an example, we compare the CRB for reconstructing the periodic signal (8.16) with the

semi-periodic signal (8.17). Recall that in the former case, each period consists of pulses having

unknown amplitudes and time shifts. By contrast, in the latter signal, the time delays are

identical throughout all periods, but the amplitudes can change from one period to the next.

While these are clearly different types of signals, an effort was made to form a fair compari-

son between the reconstruction capabilities in the two cases. To this end, we chose an identical

pulse g(t) in both cases. We selected the signal segment [0, T0], where T0 = 1, and chose the

signal parameters so as to guarantee an identical T0-local rate of innovation. We also used iden-

tical sampling kernels in both settings: specifically, we chose the kernels (8.97) which measure

the N lowest frequency components of the signal.

To simplify the analysis and focus on the fundamental differences between these settings,
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we will assume in this section that the pulses g(t) are compactly supported, and that the time

delays are chosen such that pulses from one period do not overlap with other periods. In other

words, if the support of g(t) is given by [ta, tb], then we require

min
ℓ

{tℓ} > ta and max
ℓ

{tℓ} < T − tb. (8.105)

Specifically, we chose the pulse g(t) used in Fig. 8.1(b), which is compactly supported to a high

approximation.

For the periodic signal, we chose L = 10 pulses with random delays and amplitudes, picked

so as to satisfy the condition (8.105). A period of T = 1 was selected. This implies that the signal

of interest is determined by 2L = 20 parameters (L amplitudes and L time delays).

To construct a semi-periodic signal with the same number of parameters, we chose a period

of T = 1/9 containing L = 2 pulses. The segment [0, T0] then contains precisely M = 9 periods,

for a total of 20 parameters. While it may seem plausible to require the same number of periods

for both signals, this would actually disadvantage the periodic approach, as it would require

the estimation of much more closely-spaced pulses.

The CRB for the periodic signal was computed as explained in Section 8.9.2, and the CRB for

the semi-periodic signal can be calculated in a similar fashion. The results are compared with

the continuous-time CRB in Fig. 8.4. Note that since the number of parameters to be estimated

is identical in both signal models, the continuous-time CRB for the two settings coincides. Con-

sequently, for a large number of measurements, the sampled bounds also converge to the same

values. However, when the number of samples is closer to the rate of innovation, the bound

on the reconstruction error for the semi-periodic signal is much lower than that of the periodic

signal. As mentioned above, this is in agreement with previously reported findings for the two

types of signals [30, 36, 125].

To find an explanation for this difference, it is helpful to recall that both signals can be

described using the union of subspaces viewpoint (see Section 8.3.3). Each of the signals in this

experiment is defined by precisely 20 parameters, which determine the subspace to which the

signal belongs and the position within this subspace. Specifically, the values of the time delays

select the subspace, and the pulse amplitudes define a point within this subspace. Thus, in

the above setting, the periodic signal contains 10 parameters for selecting the subspace and 10

additional parameters determining the position within it; whereas for the semi-periodic signal,

only 2 parameters determine the subspace while the remaining 18 parameters set the location in

the subspace. Evidently, identification of the subspace is challenging, especially in the presence
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of noise, but once the subspace is determined, the remaining parameters can be estimated using

a simple linear operation (a projection onto the chosen subspace). Consequently, if many of

the unknown parameters identify the position within a subspace, estimation can be performed

more accurately. This may provide an explanation for the difference between the two examined

signal models.

As further evidence in support of this explanation, we recall from Section 8.3.3 that the

multiband signal model (8.19) can also be viewed as a union of subspaces. Here, again, the

parameters {ωℓ}L
ℓ=1 determining the subspace (i.e., the utilized frequency bands) are far fewer

than the parameters {aℓ[n]} selecting the point within the subspace (i.e., the content of each

frequency band). In support of the proposed explanation, highly noise resistant algorithms

can be constructed for the recovery of multiband signals [126, 127]. An even more extreme

case is the single subspace setting, exemplified by shift-invariant signals (Section 8.3.1). In this

case, all of the signal parameters are used to determine the position within the one possible

subspace. As we have seen in Section 8.7.3, in this case Nyquist-equivalent sampling at the rate

of innovation achieves the continuous-time CRB.

8.10 Conclusion

In this paper, we studied the inherent limitations in recovering FRI signals from noisy measure-

ments. We derived a continuous-time CRB which provides a lower bound on the achievable

MSE of any unbiased estimation method, regardless of the sampling mechanism. We showed

that the rate of innovation ρT0
is a lower bound on the ratio between the average MSE achiev-

able by any unbiased estimator and the noise variance σ2
c , regardless of the sampling method. This

stands in contrast to the noise-free interpretation of ρT0
as the minimum sampling rate required

for perfect recovery.

We next examined the CRB for estimating an FRI signal from a discrete set of noisy samples.

We showed that the sampled bound is in general higher than the continuous-time CRB, and

approaches it as the sampling rate increases. In general, the rate which is needed in order to

achieve the continuous-time CRB is equal to the rate associated with the smallest subspace

that encompasses all possible signal realizations. In particular, if a signal belongs to a union of

subspaces, then the rate required to achieve the continuous-time bound is that associated with

the sum of the subspaces. In some cases, this rate is finite, but in other cases the sum covers the

entire space L2 and no finite-rate technique achieves the CRB.
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A consequence of these results is that oversampling can generally improve estimation per-

formance. Indeed, our experiments demonstrate that sampling rates much higher than ρT0
are

required in certain settings in order to approach the optimal performance. Furthermore, these

gains can be substantial: In some cases, oversampling can improve the MSE by several orders

of magnitude. We showed that the CRB can be used to determine which estimation problems

require substantial oversampling to achieve stable performance. As a rule of thumb, it appears

that for union of subspace signals, performance is improved at low rates if most of the parame-

ters identify the position within the subspace, rather than the subspace itself. Our analysis can

also be used to identify cases in which no existing algorithm comes close to the CRB, implying

that better approaches can be constructed. In particular, it seems that existing algorithms do

not deal well with measurement sets having a wide dynamic range.

Lastly, we addressed the problem of choosing the sampling kernels. This was done by

adopting a Bayesian framework, so that an optimality criterion can be rigorously defined. Us-

ing a generalization of the KLT, we showed that the optimal kernels are the eigenfunctions of

the autocorrelation function of the signal. In the context of time-delay estimation, these kernels

are exponentials with appropriately chosen frequencies. This choice coincides with recent FRI

techniques [36].

8.A Proof of Theorem 8.1

The following notation will be used within this appendix. Let H1 and H2 be two measurable

Hilbert spaces, and let (Ω, F , P) be a probability space. Consider two random variables u :

Ω → H1 and v : Ω → H2. Then, the notation E{uv∗} will be used to denote the linear operator

H2 → H1 such that, for any h1 ∈ H1 and h2 ∈ H2,

〈h1, E{uv∗} h2〉H1
= E

{
〈h1, u〉H1

〈v, h2〉H2

}
(8.106)

if the expectation exists for all h1 and h2.

We begin by stating two general lemmas which will be of use in the proof of Theorem 8.1.

Lemma 8.5. Let H1 and H2 be two Hilbert spaces, and consider the operators

A : H1 → H1,

B : H2 → H1,

C : H2 → H2. (8.107)
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Suppose C is self-adjoint and invertible. Define the product Hilbert space H1 ×H2 in the usual manner,

and suppose the operator M : H1 ×H2 → H1 ×H2 defined by

M


h1

h2


 =


 Ah1 + Bh2

B∗h1 + Ch2


 (8.108)

is positive semidefinite (psd). Then,

A � BC−1B∗ (8.109)

in the sense that the H1 → H1 operator A − BC−1B∗ is psd.

Proof. Since M is psd, we have for any h1 ∈ H1 and h2 ∈ H2

〈
h1

h2


 , M


h1

h2



〉

H1×H2

≥ 0 (8.110)

which implies

〈h1, Ah1〉H1
+ 2ℜ

[
〈h1, Bh2〉H2

]
+ 〈b, Cb〉H2

≥ 0. (8.111)

Choosing h2 = −C−1B∗h1, we have that 〈h1, Bh2〉H2
= − 〈B∗h1, C−1B∗h1

〉
H1

, which is real since

C−1 is self-adjoint. It follows from (8.111) that

〈h1, Ah1〉H1
−
〈

h1, BC−1B∗h1

〉
H1

≥ 0 (8.112)

which leads to (8.109), as required.

Lemma 8.6. Let H1 and H2 be two Hilbert spaces and let (Ω, F , P) be a probability space. Let u :

Ω → H1 and v : Ω → H2 be random variables, and suppose the expectations E{uu∗}, E{uv∗}, and

E{vv∗} exist as linear operators as defined in (8.106). If E{vv∗} is invertible, then

E{uu∗} � E{uv∗} (E{vv∗})−1 E{vu∗} . (8.113)

Proof. Let us denote A = E{uu∗}, B = E{uv∗}, and C = E{vv∗} and define the linear operator
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M : H1 ×H2 → H1 ×H2 as in (8.108). From (8.106), for any h1 ∈ H1 and h2 ∈ H2 we have

〈
h1

h2


 , M


h1

h2



〉

H1×H2

= 〈h1, Ah1〉H1
+ 2ℜ

[
〈h1, Bh2〉H1

]
+ 〈b, Cb〉H2

= E

{ ∣∣∣〈h1, u〉H1

∣∣∣
2
+ 2ℜ

[
〈h1, u〉H1

〈v, h2〉H2

]

+
∣∣∣〈h2, v〉H2

∣∣∣
2 }

= E

{∣∣∣〈h1, u〉H1
+ 〈v, h2〉H2

∣∣∣
2
}

≥ 0. (8.114)

Thus M is a psd operator. Invoking Lemma 8.5 yields (8.113), as required.

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. Throughout the proof, let θ be a fixed parameter and consider all functions

as implicitly dependent on θ. Define the random variables

u : Ω → H : u(ω) = x̂(y(ω))− hθ, (8.115)

v : Ω → R
K : v(ω) =

∂ log pθ(y(ω))

∂θ
. (8.116)

We then have the linear operators E{vv∗} : RK → RK, E{uu∗} : H → H, and E{uv∗} : RK →
H, which satisfy

E{vv∗} = Jθ, (8.117)

〈
ϕi, E{uu∗} ϕj

〉
= E

{
〈ϕi, u〉

〈
u, ϕj

〉}
, (8.118)

〈
ϕi, E{uv∗} ej

〉
= E

{
〈ϕi, u〉 ∂ log pθ(y)

∂θj

}
, (8.119)

where {ϕn}n∈Z denotes a complete orthonormal basis for H. The operator E{uu∗} can be

thought of as the covariance of x̂, and is well-defined since, by (8.32), x̂ has finite variance.

Indeed, we have

∑
i∈Z

〈ϕi, E{uu∗} ϕi〉 = E
{
‖x̂ − hθ‖2

L2

}
< ∞ (8.120)

so that E{uu∗} is not only well-defined, but a trace class operator. Furthermore, E{vv∗} = Jθ is

well-defined and invertible by Assumption P5. The operator E{uv∗} is thus also well-defined

by virtue of the Cauchy–Schwarz inequality.
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To prove the theorem, we will show that

E{uv∗} =
∂hθ

∂θ
(8.121)

and then obtain the required result by applying Lemma 8.6. To demonstrate (8.121), observe

that

〈
ϕi, E{uv∗} ej

〉
= E

{
〈ϕi, u〉 ∂ log pθ(y)

∂θj

}

=
∫

〈ϕi, x̂(y)− hθ〉
1

p(y; θ)

∂p(y; θ)

∂θj
p(y; θ)Pθ0

(dy)

=
∫

〈ϕi, x̂(y)− hθ〉 lim
∆→0

p(y; θ + ∆e j)− p(y; θ)

∆
Pθ0

(dy). (8.122)

By Assumption P4, for any sufficiently small ∆ > 0 we have

∣∣∣∣〈ϕi, x̂(y)− hθ〉
p(y; θ+ ∆ej)− p(y; θ)

∆

∣∣∣∣

≤ |〈ϕi, x̂(y)− hθ〉| q(y, θ). (8.123)

Let us demonstrate that the right-hand side of (8.123) is absolutely integrable. By the Cauchy–

Schwarz inequality,

(∫
|〈ϕi, x̂(y)− hθ〉| q(y, θ)Pθ0

(dy)

)2

≤
∫

|〈ϕi, x̂(y)− hθ〉|2 Pθ0
(dy) ·

∫
q2(y, θ)Pθ0

(dy). (8.124)

The rightmost integral in (8.124) is finite by virtue of (8.29). As for the remaining integral, we

have

∫
|〈ϕi, x̂(y)− hθ〉|2 Pθ0

(dy)

≤
∫

‖x̂(y)− hθ‖2Pθ0
(dy)

(a)

≤
∫

(‖x̂(y)‖+ ‖hθ‖)2 Pθ0
(dy)

(b)

≤
∫

‖x̂(y)‖2Pθ0(dy) + ‖hθ‖2
∫

Pθ0(dy)

+ 2‖hθ‖
(∫

‖x̂(y)‖2Pθ0
(dy)

)1/2

(c)
< ∞ (8.125)

where we have used the triangle inequality in (a), the Cauchy–Schwarz inequality in (b), and

the assumption (8.32) that x̂ has finite energy in (c). We conclude that (8.123) is bounded by an
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absolutely integrable function, and we can thus apply the dominated convergence theorem to

(8.122), obtaining

〈
ϕi, E{uv∗} ej

〉
=

∂

∂θj

∫
〈ϕi, x̂(y)〉 p(y; θ)Pθ0

(dy)

− 〈ϕi, hθ〉
∂

∂θj

∫
p(y; θ)Pθ0

(dy). (8.126)

The second integral in (8.126) equals 1 and its derivative is therefore 0. Thus we have

〈
ϕi, E{uv∗} ej

〉
=

∂E{〈ϕi, x̂(y)〉}
∂θj

=
∂ 〈ϕi, hθ〉

∂θj
. (8.127)

On the other hand, note that the Fréchet derivative ∂hθ/∂θ of (8.31) coincides with the

Gâteaux derivative of hθ. In other words, for any vector v ∈ RK, we have

∂hθ

∂θ
v = lim

ε→0

hθ+εv − hθ

ε
. (8.128)

It follows that 〈
ϕi,

∂hθ

∂θ
ej

〉
=

∂ 〈ϕi, hθ〉
∂θj

. (8.129)

Since E{uv∗} and (∂hθ/∂θ)∗ are both linear operators, (8.127) and (8.129) imply that the two

operators are equal, demonstrating (8.121). Applying Lemma 8.6 and using the results (8.117)

and (8.121), we have

E{(x̂ − hθ)(x̂ − hθ)
∗} �

(
∂hθ

∂θ

)
J−1

θ

(
∂hθ

∂θ

)∗
. (8.130)

As we have seen, the left-hand side of (8.130) is trace class, and thus so is the right-hand side.

Taking the trace of both sides of the equation, we obtain

E
{‖x̂ − hθ‖2

} ≥ Tr

((
∂hθ

∂θ

)
J−1

θ

(
∂hθ

∂θ

)∗)
(8.131)

which is equivalent to (8.33), as required.

8.B Maximization of (8.77)

The task of maximizing (8.77) is most easily accomplished by optimizing the coordinates of

sn(t) in the orthonormal basis for L2[0, T] generated by the eigenfunctions of RX(t, η). Specifi-

cally, the function sn(t) can be written as

sn(t) =
∞

∑
k=1

αn
k

(
λk + σ2

c

)− 1
2 ψk(t), (8.132)
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with {ψk(t)}∞
k=1 and {λk}∞

k=1 of (8.68). (The coefficients (λk + σ2
c )

−1/2 are inserted since they

simplify the subsequent analysis.) Now, by Mercer’s theorem, RX(t, η) can be expressed as

RX(t, η) =
∞

∑
ℓ=1

λℓψℓ(t)ψ
∗
ℓ (η), (8.133)

where the convergence is absolute and uniform. Therefore

∫ T

0
RX(t, τ)sn(τ)dτ

=
∫ T

0

∞

∑
k=1

αn
k

(
λk + σ2

c

)− 1
2 ψk(τ)

∞

∑
ℓ=1

λℓψℓ(t)ψ
∗
ℓ
(τ)dτ

=
∞

∑
k=1

αn
k

λk

(λk + σ2
c )

1
2

ψk(t), (8.134)

and consequently, by Parseval’s theorem, (8.77) is given by

N

∑
n=1

∫ T

0

∣∣∣∣
∫ T

0
RX(t, τ)sn(τ)dτ

∣∣∣∣
2

dt

=
N

∑
n=1

∫ T

0

∣∣∣∣∣
∞

∑
k=1

αn
k

λk

(λk + σ2
c )

1
2

ψk(t)

∣∣∣∣∣

2

dt

=
N

∑
n=1

∞

∑
k=1

|αn
k |2

λ2
k

λk + σ2
c

. (8.135)

Similarly, using (8.132) and (8.134), we have

∫∫ T

0
s∗m(t)RX(t, τ)sn(τ)dτdt =

∞

∑
k=1

αn
k (α

m
k )

∗ λk

λk + σ2
c

(8.136)

and by (8.132)

σ2
c

∫ T

0
s∗m(t)sn(τ)dt =

∞

∑
k=1

αn
k (α

m
k )

∗ σ2
c

λk + σ2
c

. (8.137)

Combining (8.136) and (8.137), the set of constraints (8.69) is translated to

∞

∑
k=1

αm
k (α

n
k )

∗ = δm,n (8.138)

for every m, n = 1, . . . , N. Consequently, our problem has now been reduced to

max
{αn

k}

N

∑
n=1

∞

∑
k=1

|αn
k |2

λ2
k

λk + σ2
c

s.t.
∞

∑
k=1

αm
k (α

n
k )

∗ = δm,n. (8.139)

We now show that the sequences {αn
k } which solve (8.139) must satisfy αn

k = 0 for every

k > N and n = 1, . . . , N. To see this, assume to the contrary that the nth sequence satisfies
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αn
ℓ
6= 0 for some ℓ > N. We can then replace this sequence by a sequence {α̃n

k }k∈Z satisfying

|α̃n
k |2 =





|αn
k |2 + a2

k 1 ≤ k ≤ N

0 k = ℓ

|αn
k |2 N < k and k 6= ℓ

(8.140)

where ∑
N
k=1 a2

k = |αn
ℓ
|2 (to ensure that ∑k∈Z |α̃n

k |2 = 1). Such a set of coefficients {ak}N
k=1 can

always be found since the N-term truncation of the remaining N − 1 sequences cannot span

CN . With this sequence, the nth summand in the objective of (8.139) becomes

∞

∑
k=1

|α̃n
k |2

λ2
k

λk + σ2
c

=
∞

∑
k=1

|αn
k |2

λ2
k

λk + σ2
c

+

(
N

∑
k=1

a2
k

λ2
k

λk + σ2
c

− |αn
ℓ
|2 λ2

ℓ

λℓ + σ2
c

)

≥
∞

∑
k=1

|αn
k |2

λ2
k

λk + σ2
c

+
λ2
ℓ

λℓ + σ2
c

(
N

∑
k=1

a2
k − |αn

ℓ
|2
)

=
∞

∑
k=1

|αn
k |2

λ2
k

λk + σ2
c

, (8.141)

where we used the fact that λk ≥ λℓ for every k < ℓ and that z2/(a+ z) is a monotone increasing

function of z for all z > 0. This contradicts the optimality of {αn
k}k∈Z. Therefore, the set of

sequences maximizing (8.139) satisfy αn
k = 0 for every k > N and n = 1, . . . , N.

It remains to determine the optimal values of the first N elements of each of the N sequences

{αn
k }k∈Z, n = 1, . . . , N. For this purpose, let A denote the N × N matrix whose entries are

Ak,n = αn
k and let Λ be a diagonal matrix with Λk,k = λ2

k/(λk + σ2
c ). Then, the constraint (8.138)

can be written as A∗A = IN , which is equivalent to AA∗ = IN . Now, the objective in (8.139)

can be expressed as

N

∑
n=1

∞

∑
k=1

|αn
k |2

λ2
k

λk + σ2
c

= Tr{A∗
ΛA}

= Tr{AA∗
Λ}

= Tr{Λ}, (8.142)

which is independent of A. Therefore, we conclude that any set of orthonormal sequences

{αn
k }k∈Z, n = 1, . . . , N, whose elements vanish for every k > N is optimal.
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Chapter 9

The Optimal-Bias Bound

This chapter is a reprint of the paper:

• Z. Ben-Haim and Y. C. Eldar, “A lower bound on the Bayesian MSE based on the optimal

bias function,” IEEE Trans. Inform. Theory, vol. 55, no. 11, Nov. 2009, pp. 5179–5196.

9.1 Introduction

The goal of estimation theory is to infer the value of an unknown parameter based on observa-

tions. A common approach to this problem is the Bayesian framework, in which the estimate is

constructed by combining the measurements with prior information about the parameter [3].

In this setting, the parameter θ is random, and its distribution describes the a priori knowledge

of the unknown value. In addition, measurements x are obtained, whose conditional distribu-

tion, given θ, provides further information about the parameter. The objective is to construct

an estimator θ̂, which is a function of the measurements, so that θ̂ is close to θ in some sense.

A common measure of the quality of an estimator is its mean-squared error (MSE), given by

E{‖θ − θ̂‖2}.

It is well-known that the posterior mean E{θ|x} is the technique minimizing the MSE. Thus,

from a theoretical perspective, there is no difficulty in finding the minimum MSE (MMSE) es-

timator in any given problem. In practice, however, the complexity of computing the posterior

mean is often prohibitive. As a result, various alternatives, such as the maximum a posteriori

(MAP) technique, have been developed [16]. The purpose of such methods is to approach the

performance of the MMSE estimator with a computationally efficient algorithm.

An important goal is to quantify the performance degradation resulting from the use of
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these suboptimal techniques. One way to do this is to compare the MSE of the method used in

practice with the MMSE. Unfortunately, computation of the MMSE is itself infeasible in many

cases. This has led to a large body of work seeking to find simple lower bounds on the MMSE

in various estimation problems [39, 59–61, 65–68, 155, 156].

Generally speaking, previous bounds can be divided into two categories. The Weiss–

Weinstein family is based on a covariance inequality and includes the Bayesian Cramér–Rao

bound [59], the Bobrovski–Zakai bound [155], and the Weiss–Weinstein bound [60, 61]. The

Ziv–Zakai family of bounds is based on comparing the estimation problem to a related detec-

tion scenario. This family includes the Ziv–Zakai bound [65] and its improvements, notably the

Bellini–Tartara bound [67], the Chazan–Zakai–Ziv bound [66], and the generalization of Bell et

al. [68]. Recently, Renaux et al. have combined both approaches [156].

The accuracy of the bounds described above is usually tested numerically in particular

estimation settings. Few of the previous results provide any sort of analytical proof of accuracy,

even under asymptotic conditions. Bellini and Tartara [67] briefly discuss performance of their

bound at high signal-to-noise ratio (SNR), and Bell et al. [68] prove that their bound converges

to the true value at low SNR for a particular family of Gaussian-like probability distributions.

To the best of our knowledge, there are no other results concerning the asymptotic performance

of Bayesian bounds.

A different estimation setting arises when one considers θ as a deterministic unknown pa-

rameter. In this case, too, a common goal is to construct an estimator having low MSE. How-

ever, the term MSE has a very different meaning in the deterministic setting, since in this case,

the expectation is taken only over the random variable x. One elementary difference with far-

reaching implications is that in the Bayesian case, the MSE is a single real number, whereas the

deterministic MSE is a function of the unknown parameter θ [6, 44, 157].

Many lower bounds have been developed for the deterministic setting, as well. These

include classical results such as the Cramér–Rao [45, 48], Hammersley–Chapman–Robbins

[50, 51], Bhattacharya [54], and Barankin [53] bounds, as well as more recent results [99, 100,

158–161]. By far the simplest and most commonly used of these approaches is the Cramér–Rao

bound (CRB). Like most other deterministic bounds, the CRB deals explicitly with unbiased

estimators, or, equivalently, with estimators having a specific, pre-specified bias function. Two

exceptions are the uniform CRB [158, 159] and the minimax linear-bias bound [160, 161]. The

CRB is known to be asymptotically tight in many cases, even though many later bounds are

sharper than it [44, 134, 159].



9.1. INTRODUCTION 237

Although the deterministic and Bayesian settings stem from different points of view, there

exist insightful relations between the two approaches. The basis for this connection is the fact

that by adding a prior distribution for θ, any deterministic problem can be transformed to

a corresponding Bayesian setting. Several theorems relate the performance of corresponding

Bayesian and deterministic scenarios [6]. As a consequence, numerous bounds have both a

deterministic and a Bayesian version [59, 60, 156, 162].

The simplicity and asymptotic tightness of the deterministic CRB motivate its use in prob-

lems in which θ is random. Such an application was described by Young and Westerberg [39],

who considered the case of a scalar θ constrained to the interval [θ0, θ1]. They used the prior

distribution of θ to determine the optimal bias function for use in the biased CRB, and thus

obtained a Bayesian bound. It should be noted that this result differs from the Bayesian CRB

of Van Trees [59]; the two bounds are compared in Section 9.2.3. We refer to the result of Young

and Westerberg as the optimal-bias bound (OBB), since it is based on choosing the bias function

which optimizes the CRB using the given prior distribution.

This paper provides an extension and a deeper analysis of the OBB. Specifically, we general-

ize the bound to an arbitrary n-dimensional estimation setting [163]. The bound is determined

by finding the solution to a certain partial differential equation. Using tools from functional

analysis, we demonstrate that a unique solution exists for this differential equation. Under

suitable symmetry conditions, it is shown that the method can be reduced to the solution of an

ordinary differential equation and, in some cases, presented in closed form.

The mathematical tools employed in this paper are also used for characterizing the per-

formance of the OBB. Specifically, it is demonstrated analytically that the proposed bound is

asymptotically tight for both high and low SNR values. Furthermore, the OBB is compared

with several other bounds; in the examples considered, the OBB is both simpler computation-

ally and more accurate than all relevant alternatives.

The remainder of this paper is organized as follows. In Section 9.2, we derive the OBB

for a vector parameter. Section 9.3 discusses some mathematical concepts required to ensure

the existence of the OBB. In Section 9.4, a practical technique for calculating the bound is

developed using variational calculus. In Section 9.5, we demonstrate some properties of the

OBB, including its asymptotic tightness. Finally, in Section 9.6, we compare the performance of

the bound with that of other relevant techniques.
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9.2 The Optimal-Bias Bound

In this section, we derive the OBB for the general vector case. To this end, we first examine

the relation between the Bayesian and deterministic estimation settings (Section 9.2.1). Next,

we focus on the deterministic case and review the basic properties of the CRB (Section 9.2.2).

Finally, the OBB is derived from the CRB (Section 9.2.3).

The focus of this paper is the Bayesian estimation problem, but the bound we propose stems

from the theory of deterministic estimation. To avoid confusion, we will indicate that a partic-

ular quantity refers to the deterministic setting by appending the symbol ; θ to it. For example,

the notation E{·} denotes expectation over both θ and x, i.e., expectation in the Bayesian sense,

while expectation solely over x (in the deterministic setting) is denoted by E{·; θ}. The notation

E{· | θ} indicates Bayesian expectation conditioned on θ.

Some further notation used throughout the paper is as follows. Lowercase boldface letters

signify vectors and uppercase boldface letters indicate matrices. The ith component of a vector

v is denoted vi, while v(1), v(2), . . . signifies a sequence of vectors. The derivative ∂ f /∂v of a

function f (v) is a vector function whose ith element is ∂ f /∂vi . Similarly, given a vector function

b(θ), the derivative ∂b/∂θ is defined as the matrix function whose (i, j)th entry is ∂bi/∂θj. The

squared Euclidean norm vTv of a vector v is denoted ‖v‖2, while the squared Frobenius norm

Tr(MMT) of a matrix M is denoted ‖M‖2
F. In Section 9.3, we will also define some functional

norms, which will be of use later in the paper.

9.2.1 The Bayesian–Deterministic Connection

We now review a fundamental relation between the Bayesian and deterministic estimation

settings. Let θ be an unknown random vector in Rn and let x be a measurement vector. The

joint probability density function (pdf) of θ and x is px,θ(x, θ) = px|θ(x|θ)pθ(θ), where pθ is the

prior distribution of θ and px|θ is the conditional distribution of x given θ. For later use, define

the set Θ of feasible parameter values by

Θ = {θ ∈ R
n : pθ(θ) > 0}. (9.1)

Suppose θ̂ = θ̂(x) is an estimator of θ. Its (Bayesian) MSE is given by

MSE = E
{
‖θ̂− θ‖2

}
=
∫

‖θ̂− θ‖2 px,θ(x, θ)dxdθ. (9.2)
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By the law of total expectation, we have

MSE =
∫ (∫

‖θ̂− θ‖2 px|θ(x|θ)dx

)
pθ(θ)dθ

= E
{

E
{
‖θ̂− θ‖2

∣∣∣θ
}}

. (9.3)

Now consider a deterministic estimation setting, i.e., suppose θ is a deterministic unknown

which is to be estimated from random measurements x. Let the distribution px;θ of x (as a

function of θ) be given by px;θ(x; θ) = px|θ(x|θ), i.e., the distribution of x in the deterministic

case equals the conditional distribution in the corresponding Bayesian problem.

The estimator θ̂ defined above is simply a function of the measurements, and can therefore

be applied in the deterministic case as well. Its deterministic MSE is given by

E
{
‖θ̂− θ‖2; θ

}
=
∫

‖θ̂− θ‖2 px;θ(x; θ)dx (9.4)

Since px;θ(x; θ) = px|θ(x|θ), we have

E
{
‖θ̂− θ‖2; θ

}
= E

{
‖θ̂− θ‖2

∣∣∣θ
}

. (9.5)

Combining this fact with (9.3), we find that the Bayesian MSE equals the expectation of the

MSE of the corresponding deterministic problem, i.e.

E
{‖θ̂− θ‖2

}
= E

{
E
{‖θ̂− θ‖2; θ

}}
. (9.6)

This relation will be used to construct the OBB in Section 9.2.3.

9.2.2 The Deterministic Cramér–Rao Bound

Before developing the OBB, we review some basic results in the deterministic estimation set-

ting. Suppose θ is a deterministic parameter vector and let x be a measurement vector having

pdf px;θ(x; θ). Denote by Θ ⊆ Rn the set of all possible values of θ. We assume for technical

reasons that Θ is an open set.1

Let θ̂ be an estimator of θ from the measurements x. We require the following regularity

conditions to ensure that the CRB holds [69, §3.1.3].

1This is required in order to ensure that one can discuss differentiability of px;θ with respect to θ at any point

θ ∈ Θ. In the Bayesian setting to which we will return in Section 9.2.3, Θ is defined by (9.1); in this case, adding a

boundary to Θ essentially leaves the setting unchanged, as long as the prior probability for θ to be on the boundary

of Θ is zero. Therefore, this requirement is of little practical relevance.
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1. px;θ(x; θ) is continuously differentiable with respect to θ. This condition is required to

ensure the existence of the Fisher information.

2. The Fisher information matrix J(θ), defined by

[J(θ)]ij = E

{
∂ log px;θ

∂θi

∂ log px;θ

∂θj
; θ

}
(9.7)

is bounded and positive definite for all θ ∈ Θ. This ensures that the measurements

contain data about the unknown parameter.

3. Exchanging the integral and derivative in the equation

∫
t(x)

∂

∂θi
px;θ(x; θ)dx =

∂

∂θi

∫
t(x)px;θ(x; θ)dx (9.8)

is justified for any measurable function t(x), in the sense that, if one side exists, then the

other exists and the two sides are equal. A sufficient condition for this to hold is that the

support of px;θ does not depend on θ.

4. All estimators θ̂ are Borel measurable functions which satisfy

∥∥∥∥
∂px;θ

∂θ
θ̂

T
∥∥∥∥

F

≤ g(x) for all θ (9.9)

for some integrable function g(x). This technical requirement is needed in order to ex-

clude certain pathological estimators whose statistical behavior is insufficiently smooth

to allow the application of the CRB.

The bias of an estimator θ̂ is defined as

b(θ) = E
{

θ̂; θ
}
− θ. (9.10)

Under the above assumptions, it can be shown that the bias of any estimator is continuously

differentiable [39, Lemma 2]. Furthermore, under these assumptions, the CRB holds, and thus,

for any estimator having bias b(θ), we have

E
{
‖θ− θ̂‖2; θ

}
≥ CRB[b, θ]

, Tr

[(
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
]
+ ‖b(θ)‖2. (9.11)

A more common form of the CRB is obtained by restricting attention to unbiased estimators

(i.e., techniques for which b(θ) = 0). Under the unbiasedness assumption, the bound simplifies

to MSE ≥ Tr(J−1(θ)). However, in the sequel we will make use of the general form (9.11).
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9.2.3 A Bayesian Bound from the CRB

The OBB of Young and Westerberg [39] is based on applying the Bayesian–deterministic con-

nection described in Section 9.2.1 to the deterministic CRB (9.11). Specifically, returning now to

the Bayesian setting, one can combine (9.6) and (9.11) to obtain that, for any estimator θ̂ with

bias function b(θ),

E
{
‖θ− θ̂‖2

}
≥ Z[b] ,

∫

Θ
CRB[b, θ] pθ(dθ) (9.12)

where the expectation is now performed over both θ and x. Note that (9.12) describes the

Bayesian MSE as a function of a deterministic property (the bias) of θ̂. Since any estimator has

some bias function, and since all bias functions are continuously differentiable in our setting,

minimizing Z[b] over all continuously differentiable functions b yields a lower bound on the

MSE of any Bayesian estimator. Thus, under the regularity conditions of Section 9.2.2, a lower

bound on the Bayesian MSE is given by

s = inf
b∈C1

∫

Θ

[
‖b(θ)‖2+

Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)]

pθ(dθ) (9.13)

where C1 is the space of continuously differentiable functions f : Θ → Rn.

Note that the OBB differs from the Bayesian CRB of Van Trees [59]. Van Trees’ result is

based on applying the Cauchy–Schwarz inequality to the joint pdf px,θ, whereas the determin-

istic CRB is based on applying a similar procedure to px;θ. As a consequence, the regularity

conditions required for the Bayesian CRB are stricter, requiring that px,θ be twice differentiable

with respect to θ. By contrast, the OBB requires differentiability only of the conditional pdf px|θ.

An example in which this difference is important is the case in which the prior distribution pθ

is discontinuous, e.g., when pθ is uniform. The performance of the OBB in this setting will be

examined in Section 9.6.

In the next section, we will see that it is advantageous to perform the minimization (9.13)

over a somewhat modified class of functions. This will allow us to prove the unique existence

of a solution to the optimization problem, a result which will be of use when examining the

properties of the bound later in the paper.
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Figure 9.1: A sequence of continuous functions for which both |b(θ)|2 and |1 + b′(θ)|2 tend to

zero for almost every value of θ.

9.3 Mathematical Safeguards

In the previous section, we saw that a lower bound on the MMSE can be obtained by solving the

minimization problem (9.13). However, at this point, we have no guarantee that the solution

s of (9.13) is anywhere near the true value of the MMSE. Indeed, at first sight, it may appear

that s = 0 for any estimation setting. To see this, note that Z[b] is a sum of two components, a

bias gradient part and a squared bias part. Both parts are nonnegative, but the former is zero

when the bias gradient is −I, while the latter is zero when the bias is zero. No differentiable

function b satisfies these two constraints simultaneously for all θ, since if the squared bias is

everywhere zero, then the bias gradient is also zero. However, it is possible to construct a

sequence of functions b(i) for which both the bias gradient and the squared bias norm tend to

zero for almost every value of θ. An example of such a sequence in a one-dimensional setting

is plotted in Fig. 9.1. Here, a sequence b(i) of smooth, periodic functions is presented. The

function period tends to zero, and the percentage of the cycle in which the derivative equals

−1 increases as i increases. Thus, the pointwise limit of the function sequence is zero almost

everywhere, and the pointwise limit of the derivative is −1 almost everywhere.

In the specific case shown in Fig. 9.1, it can be shown that the value of Z[b(i)] does not tend

to zero; in fact, Z[b(i)] tends to infinity in this situation. However, our example illustrates that

care must be taken when applying concepts from finite-dimensional optimization problems to
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variational calculus.

The purpose of this section is to show that s > 0, so that the bound is meaningful, for any

problem setting satisfying the regularity conditions of Section 9.2.2. (This question was not

addressed by Young and Westerberg [39].) While doing so, we develop some abstract concepts

which will also be used when analyzing the asymptotic properties of the OBB in Section 9.5.

As often happens with variational problems, it turns out that the minimum of (9.13) is not

necessarily achieved by any continuously differentiable function. In order to guarantee an

achievable minimum, one must instead minimize (9.13) over a slightly modified space, which

is defined below. As explained in Section 9.2.2, all bias functions are continuously differen-

tiable, so that the minimizing function ultimately obtained, if it is not differentiable, will not

be the bias of any estimator. However, as we will see, the minimum value of our new opti-

mization problem is identical to the infimum of (9.13). Furthermore, this approach allows us to

demonstrate several important theoretical properties of the OBB.

Let L2 be the space of pθ-measurable functions b : Θ → Rn such that

∫

Θ
‖b(θ)‖2 pθ(dθ) < ∞. (9.14)

Define the associated inner product

〈
b(1), b(2)

〉
L2

,
n

∑
i=1

∫

Θ
b
(1)
i (θ)b

(2)
i (θ)pθ(dθ) (9.15)

and the corresponding norm ‖b‖2
L2 , 〈b, b〉L2 . Any function b ∈ L2 has a derivative in the dis-

tributional sense, but this derivative might not be a function. For example, discontinuous func-

tions have distributional derivatives which contain a Dirac delta. If, for every i, the distribu-

tional derivative ∂bi/∂θ of b is a function in L2, then b is said to be weakly differentiable [164],

and its weak derivative is the matrix function ∂b/∂θ. Roughly speaking, a function is weakly

differentiable if it is continuous and its derivative exists almost everywhere.

The space of all weakly differentiable functions in L2 is called the first-order Sobolev space

[164], and is denoted H1. Define an inner product on H1 as

〈
b(1), b(2)

〉
H1

,
〈

b(1), b(2)
〉

L2
+

n

∑
j=1

〈
∂b

(1)
j

∂θ
,

∂b
(2)
j

∂θ

〉

L2

. (9.16)

The associated norm is ‖b‖2
H1 , 〈b, b〉H1 . An important property which will be used exten-

sively in our analysis is that H1 is a Hilbert space.

Note that since Θ is an open set, not all functions in C1 are in H1. For example, in the case

Θ = Rn, the function b(θ) = k, for some nonzero constant k, is continuously differentiable
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but not integrable. Thus b is in C1 but not in H1, nor even in L2. However, any measurable

function which is not in H1 has ‖b‖H1 = ∞, meaning that either b or ∂b/∂θ has infinite L2 norm.

Consequently, either the bias norm part or the bias gradient part of Z[b] is infinite. It follows

that performing the minimization (9.13) over C1 ∩ H1, rather than over C1, does not change the

minimum value. On the other hand, C1 ∩ H1 is dense in H1, and Z[b] is continuous, so that

minimizing (9.13) over H1 rather than C1 ∩ H1 also does not alter the minimum. Consequently,

we will henceforth consider the problem

s = inf
b∈H1

Z[b]. (9.17)

The advantage of including weakly differentiable functions in the minimization is that a

unique minimizer can now be guaranteed, as demonstrated by the following result.

Proposition 9.1. Consider the problem

b̄ = arg min
b∈H1

Z[b] (9.18)

where Z[b] is given by (9.12) and J(θ) is positive definite and bounded with probability 1. This problem

is well-defined, i.e., there exists a unique b̄ ∈ H1 which minimizes Z[b]. Furthermore, the minimum

value s = Z[b̄] is finite and nonzero.

Proving the unique existence of a minimizer for (9.17) is a technical exercise in functional

analysis which can be found in Appendix 9.B. However, once the existence of such a minimizer

is demonstrated, it is not difficult to see that 0 < s < ∞. To see that s < ∞, we must find a

function b for which Z[b] < ∞. One such function is b = 0, for which Z[b] is finite since J(θ) is

bounded. Now suppose by contradiction that s = 0, which implies that there exists a function

b̄ ∈ H1 such that Z[b̄] = 0. Therefore, both the bias gradient and the squared bias parts of

Z[b̄] are zero. In particular, since the squared bias part equals zero, we have ‖b̄‖L2 = 0. Hence,

b̄ = 0, because L2 is a normed space. But then, by the definition (9.12) of Z[·],

Z[b̄] =
∫

Θ
Tr(J−1(θ))pθ(dθ) (9.19)

which is positive; this is a contradiction.

Note that functions in H1 are defined up to changes on a set having zero measure. In

particular, the fact that b(0) is unique does not preclude functions which are identical to b(0)

almost everywhere (which obviously have the same value Z[b]).

Summarizing the discussion of the last two sections, we have the following theorem.
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Theorem 9.2. Let θ be an unknown random vector with pdf pθ(θ) > 0 over the open set Θ ⊆ Rn, and

let x be a measurement vector whose pdf, conditioned on θ, is given by px|θ(x|θ). Assume the regularity

conditions of Section 9.2.2 hold. Then, for any estimator θ̂,

E
{
‖θ− θ̂‖2

}
≥ min

b∈H1

∫

Θ
CRB[b, θ]pθ(θ)dθ. (9.20)

The minimum in (9.20) is nonzero and finite. Furthermore, this minimum is achieved by a function

b̄ ∈ H1, which is unique up to changes having zero probability.

Two remarks are in order concerning Theorem 9.2. First, the function b solving (9.20) might

not be the bias of any estimator; indeed, under our assumptions, all bias functions are con-

tinuously differentiable, whereas b need only be weakly differentiable. Nevertheless, (9.20) is

still a lower bound on the MMSE. Another important observation is that Theorem 9.2 arises

from the deterministic CRB; hence, there are no requirements on the prior distribution pθ(θ). In

particular, pθ(θ) can be discontinuous or have bounded support. By contrast, many previous

Bayesian bounds do not apply in such circumstances.

9.4 Calculating the Bound

In finite-dimensional convex optimization problems, the requirement of a vanishing first

derivative results in a set of equations, whose solution is the global minimum. Analogously,

in the case of convex functional optimization problems such as (9.20), the optimum is given by

the solution of a set of differential equations. The following theorem, whose proof can be found

in Appendix 9.C, specifies the differential equation relevant to our optimization problem.

In this section and in the remainder of the paper, we will consider the case in which the set

Θ = {θ : pθ(θ) > 0} is bounded. From a practical point of view, even when Θ consists of the

entire set Rn, it can be approximated by a bounded set containing only those values of θ for

which pθ(θ) > ǫ.

Theorem 9.3. Under the conditions of Theorem 9.2, suppose Θ is a bounded subset of Rn with a smooth

boundary Λ. Then, the optimal b(θ) of (9.20) is given by the solution to the system of partial differential

equations

pθ(θ)bi(θ) = pθ(θ)∑
j,k

∂2bi

∂θj∂θk
(J−1)jk

+∑
j,k

(
δik +

∂bi

∂θk

)(
(J−1)jk

∂pθ

∂θj
+ pθ(θ)

∂(J−1)jk

∂θj

)
(9.21)
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for i = 1, . . . n, within the range θ ∈ Θ, which satisfies the Neumann boundary condition

(
I +

∂b

∂θ

)
J−1ν(θ) = 0 (9.22)

for all points θ ∈ Λ. Here, ν(θ) is a normal to the boundary at θ. All derivatives in this system of

equations are to be interpreted in the weak sense.

Note that Theorem 9.2 guarantees the existence of a unique solution in H1 to the differential

equation (9.21) with the boundary conditions (9.22).

The bound of Young and Westerberg [39] is a special case of Theorem 9.3, and is given here

for completeness.

Corollary 9.4. Under the settings of Theorem 9.2, suppose Θ = (θ0, θ1) is a bounded interval in R.

Then, the bias function b(θ) minimizing (9.20) is a solution to the second-order ordinary differential

equation

J(θ)b(θ) = b′′(θ) + (1 + b′(θ))
(

d log pθ

dθ
− d log J

dθ

)
(9.23)

within the range θ ∈ Θ, subject to the boundary conditions b′(θ0) = b′(θ1) = −1.

Theorem 9.3 can be solved numerically, thus obtaining a bound for any problem satisfying

the regularity conditions. However, directly solving (9.21) becomes increasingly complex as the

dimension of the problem increases. Instead, in many cases, symmetry relations in the problem

can be used to simplify the solution. As an example, the following spherically symmetric case

can be reduced to a one-dimensional setting equivalent to that of Corollary 9.4. The proof of

this theorem can be found in Appendix 9.D.

Theorem 9.5. Under the setting of Theorem 9.2, suppose that Θ = {θ : ‖θ‖ < r} is a sphere centered

on the origin, pθ(θ) = q(‖θ‖) is spherically symmetric, and J(θ) = J(‖θ‖)I, where J : R → R is a

scalar function. Then, the optimal-bias bound (9.20) is given by

E
{‖θ− θ̂‖2

} ≥ 2πn/2

Γ(n/2)

∫ r

0

[
b2(ρ) +

(1 + b′(ρ))2

J(ρ)

+
n − 1

J(ρ)

(
1 +

b(ρ)

ρ

)2
]

q(ρ)ρn−1dρ. (9.24)

Here, Γ(·) is the Gamma function, and b(ρ) is a solution to the ODE

J(θ)b(θ) = b′′(θ) + (n − 1)

(
b′(θ)

θ
− b(θ)

θ2

)

+ (1 + b′(θ))
(

d log q

dθ
− d log J

dθ

)
(9.25)
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subject to the boundary conditions b(0) = 0, b′(r) = −1. The bias function for which the bound is

achieved is given by

b(θ) = b(‖θ‖) θ

‖θ‖ . (9.26)

In this theorem, the requirement J(θ) = J(‖θ‖)I indicates that the Fisher information ma-

trix is diagonal and that its components are spherically symmetric. Parameters having a diago-

nal matrix J are sometimes referred to as orthogonal. The simplest case of orthogonality occurs

when, to each parameter θi, there corresponds a measurement xi, in such a way that the ran-

dom variables xi|θ are independent. Other orthogonal scenarios can often be constructed by

an appropriate parametrization [165].

The requirement that J have spherically symmetric components occurs, for example, in

location problems, i.e., situations in which the measurements have the form x = θ+ w, where

w is additive noise which is independent of θ. Indeed, under such conditions, J is constant

in θ [69, §3.1.3]. If, in addition, the noise components are independent, then this setting also

satisfies the orthogonality requirement, and thus application of Theorem 9.5 is appropriate.

Note that this estimation problem is not separable, since the components of θ are correlated;

thus, the MMSE in this situation is lower than the sum of the components’ MMSE. An example

of such a setting is presented in Section 9.6.

9.5 Properties

In this section, we examine several properties of the OBB. We first demonstrate that the optimal

bias function has zero mean, a property which also characterizes the bias function of the MMSE

estimator. Next, we prove that, under very general conditions, the resulting bound is tight at

both low and high SNR values. This is an important result, since a desirable property of a

Bayesian bound is that it provides an accurate estimate of the ambiguity region between high

and low SNR [68]. Reliable estimation at the two extremes increases the likelihood that the

transition between these two regimes will be correctly identified.

9.5.1 Optimal Bias Has Zero Mean

In any Bayesian estimation problem, the bias of the MMSE estimator θ̂opt = E{θ|x} has zero

mean:

E
{

θ̂opt

}
= E{E{θ|x}} = E{θ} (9.27)
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so that

E
{

b(θ̂opt)
}
= E{E{θ|x} − θ} = 0. (9.28)

Thus, it is interesting to ask whether the optimal bias which minimizes (9.20) also has zero

mean. This is indeed the case, as shown by the following theorem.

Theorem 9.6. Let b(θ) be the solution to (9.20). Then,

E{b(θ)} = 0. (9.29)

Proof. Assume by contradiction that b(θ) has nonzero mean E{b(θ)} = µ 6= 0. Define b0(θ) ,

b(θ)− µ. From (9.11), we then have

CRB[b0, θ]− CRB[b, θ] = ‖b0(θ)‖2 − ‖b(θ)‖2

= ‖µ‖2 − 2µTb(θ). (9.30)

Using the functional Z[·] defined in (9.12), we obtain

Z[b0]− Z[b] = E
{
‖µ‖2 − 2µTb(θ)

}

= ‖µ‖2 − 2µTE{b(θ)}

= −‖µ‖2
< 0. (9.31)

Thus Z[b0] < Z[b], contradicting the fact that b(θ) minimizes (9.20).

9.5.2 Tightness at Low SNR

Bell et al. [68] examined the performance of the extended Ziv–Zakai bound at low SNR and

demonstrated that, for a particular family of distributions, the extended Ziv–Zakai bound

achieves the MSE of the optimal estimator as the SNR tends to 0. We now examine the low-

SNR performance of the OBB, and demonstrate tightness for a much wider range of problem

settings.

Bell et al. did not define the general meaning of a low SNR value, and only stated that “[a]s

observation time and/or SNR become very small, the observations become useless . . . [and]

the minimum MSE estimator converges to the a priori mean.” This statement clearly does not

apply to all estimation problems, since it is not always clear what parameter corresponds to the

observation time or the SNR. We propose to define the zero SNR case more generally as any

situation in which J(θ) = 0 with probability 1. This definition implies that the measurements

do not contain information about the unknown parameter, which is the usual informal meaning
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of zero SNR. In the case J(θ) = 0, it can be shown that the MMSE estimator is the prior mean,

so that our definition implies the statement of Bell et al.

The OBB is inapplicable when J(θ) = 0, since the CRB is based on the assumption that J(θ)

is positive definite. To avoid this singularity, we consider a sequence of estimation settings

which converge to zero SNR. More specifically, we require all eigenvalues of J(θ) to decrease

monotonically to zero for pθ-almost all θ. The following theorem, the proof of which can be

found in Appendix 9.E, demonstrates the tightness of the OBB in this low-SNR setting.

Theorem 9.7. Let θ be a random vector whose pdf pθ(θ) is nonzero over an open set Θ ⊆ Rn.

Let x(1), x(2), . . . be a sequence of observation vectors having finite Fisher information matrices

J(1)(θ), J(2)(θ), . . ., respectively. Suppose that, for all N, the matrix J(N)(θ) is positive definite for

pθ-almost all θ, and that all eigenvalues of J(N)(θ) decrease monotonically to zero as N → ∞ for

pθ-almost all θ. Let βN denote the optimal-bias bound for estimating θ from x(N). Then,

lim
N→∞

βN = E
{
‖θ− E{θ}‖2

}
. (9.32)

9.5.3 Tightness at High SNR

We now examine the performance of the OBB for high SNR values. To formally define the

high SNR regime, we consider a sequence of measurements x(1), x(2), . . . of a single parameter

vector θ. It is assumed that, when conditioned on θ, all measurements x(i) are identically and

independently distributed (IID). Furthermore, we assume that the Fisher information matrix

of a single observation J(θ) is well-defined, positive definite and finite for pθ-almost all θ. We

consider the problem of estimating θ from the set of measurements {x(1), . . . , x(N)}, for a given

value of N. The high SNR regime is obtained when N is large.

When N tends to infinity, the MSE of the optimal estimator tends to zero. An important

question, however, concerns the rate of convergence of the minimum MSE. More precisely,

given the optimal estimator θ̂
(N)

of θ from {x(1), . . . , x(N)}, one would like to determine the

asymptotic distribution of
√

N(θ̂
(N)− θ), conditioned on θ. A fundamental result of asymptotic

estimation theory can be loosely stated as follows [134, §III.3], [6, §6.8]. Under some fairly mild

regularity conditions, the asymptotic distribution of
√

N(θ̂
(N) − θ), conditioned on θ, does not

depend on the prior distribution pθ; rather,
√

N(θ̂
(N) − θ) | θ converges in distribution to a

Gaussian random vector with mean zero and covariance J−1(θ). It follows that

lim
N→∞

NE
{
‖θ̂

(N) − θ‖2
}
= E

{
Tr[J−1(θ)]

}
. (9.33)
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Since the minimum MSE tends to zero at high SNR, any lower bound on the minimum MSE

must also tend to zero as N → ∞. However, one would further expect a good lower bound to

follow the behavior of (9.33). In other words, if βN represents the lower bound for estimating

θ from {x(1), . . . , x(N)}, a desirable property is NβN → E
{

Tr[J−1(θ)]
}

. The following theorem,

whose proof is found in Appendix 9.E, demonstrates that this is indeed the case for the OBB.

Except for a very brief treatment by Bellini and Tartara [67], no previous Bayesian bound

has shown such a result. Although it appears that the Ziv–Zakai and Weiss–Weinstein bounds

may also satisfy this property, this has not been proven formally. It is also known that the

Bayesian CRB is not asymptotically tight in this sense [166, Eqs. (37)–(39)].

Theorem 9.8. Let θ be a random vector whose pdf pθ(θ) is nonzero over an open set Θ ⊆ Rn. Let

x(1), x(2), . . . be a sequence of measurement vectors, such that x(1)|θ, x(2)|θ, . . . are IID. Let J(θ) be the

Fisher information matrix for estimating θ from x(1), and suppose J(θ) is finite and positive definite for

pθ-almost all θ. Let βN be the optimal-bias bound (9.20) for estimating θ from the observation sequence

{x(1), . . . , x(N)}. Then,

lim
N→∞

NβN = E
{

Tr(J−1(θ))
}

. (9.34)

Note that for Theorem 9.8 to hold, we require only that J(θ) be finite and positive definite.

By contrast, the various theorems guaranteeing asymptotic efficiency of Bayesian estimators all

require substantially stronger regularity conditions [134, §III.3], [6, §6.8]. One reason for this is

that asymptotic efficiency describes the behavior of θ̂ conditioned on each possible value of θ,

and is thus a stronger result than the asymptotic Bayesian MSE of (9.33).

9.6 Example: Uniform Prior

The original bound of Young and Westerberg [39] predates most Bayesian bounds, and, sur-

prisingly, it has never been cited by or compared with later results. In this section, we measure

the performance of the original bound and of its extension to the vector case against that of

various other techniques. We consider the case in which θ is uniformly distributed over an

n-dimensional open ball Θ = {θ : ‖θ‖ < r} ⊆ Rn, so that

pθ(θ) =
1

Vn(r)
1Θ (9.35)

where 1S equals 1 when θ ∈ S and 0 otherwise, and

Vn(r) =
πn/2rn−1

Γ(1 + n/2)
(9.36)
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is the volume of an n-ball of radius r [167]. We further assume that

x = θ+ w (9.37)

where w is zero-mean Gaussian noise, independent of θ, having covariance σ2 I. We are inter-

ested in lower bounds on the MSE achievable by an estimator of θ from x.

We begin by developing the OBB for this setting, as well as some alternative bounds. We

then compare the different approaches in a one-dimensional and a three-dimensional setting.

The Fisher information matrix for the given estimation problem is given by J(θ) = σ−2 I,

so that the conditions of Theorem 9.5 hold. It follows that the optimal bias function is given by

b(θ) = b(‖θ‖)θ/‖θ‖, where b(·) is a solution to the differential equation

b

σ2
= b′′ + (n − 1)

(
b′

θ
− b

θ2

)
(9.38)

with boundary conditions b(0) = 0, b′(r) = −1. The general solution to this differential equa-

tion is given by

b(θ) = C1θ1−n/2 In/2

(
θ

σ

)
+ C2θ1−n/2Kn/2

(
θ

σ

)
(9.39)

where Iα(z) and Kα(z) are the modified Bessel functions of the first and second types, respec-

tively [131]. Since Kα(z) is singular at the origin, the requirement b(0) = 0 leads to C2 = 0.

Differentiating (9.39) with respect to θ, we obtain

b′(θ) = C1θ−n/2

(
In/2

(
θ

σ

)
+

θ

σ
I1+n/2

(
θ

σ

))
(9.40)

so that the requirement b′(r) = −1 leads to

C1 = − rn/2

In/2(r/σ) + r/σI1+n/2(r/σ)
. (9.41)

Substituting this value of b(·) into (9.24) yields the OBB, which can be computed by evaluating

a single one-dimensional integral. Alternatively, in the one-dimensional case, the integral can

be computed analytically, as will be shown below.

Despite the widespread use of finite-support prior distributions [60,65], the regularity con-

ditions of many bounds are violated by such prior pdf functions. Indeed, the Bayesian CRB of

Van Trees [59], the Bobrovski–Zakai bound [155], and the Bayesian Abel bound [156] all assume

that pθ(θ) has infinite support, and thus cannot be applied in this scenario.

Techniques from the Ziv–Zakai family are applicable to constrained problems. An extension

of the Ziv–Zakai bound for vector parameter estimation was developed by Bell et al. [68]. From
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[68, Property 4], the MSE of the ith component of θ is bounded by

E
{
(θi − θ̂i)

2
}
≥
∫ ∞

0
V

{
max

δ:eT
i δ=h

A(δ)Pmin(δ)

}
h dh (9.42)

where ei is a unit vector in the direction of the ith component, V{·} is the valley-filling function

defined by

V{ f (h)} = max
η≥0

f (h + η), (9.43)

A(δ) ,
∫

Rn
min (pθ(θ), pθ(θ+ δ)) dθ, (9.44)

and Pmin(δ) is the minimum probability of error for the problem of testing hypothesis H0 : θ =

θ0 vs. H1 : θ = θ0 + δ. In the current setting, Pmin(δ) is given by Pmin(δ) = Q(‖δ‖/2σ), where

Q(z) = (2π)−1/2
∫ ∞

z
e−t2/2dt is the tail function of the normal distribution. Also, we have

A(δ) =
VC

n (r, ‖δ‖)
Vn(r)

(9.45)

where

VC
n (r, h) =

∫

Rn
1Θ1Θ+he1

dθ (9.46)

and Θ + he1 = {θ + he1 : θ ∈ Θ}. Thus, VC
n (r, h) is the volume of the intersection of two

n-balls whose centers are at a distance of h units from one another. Substituting these results

into (9.42), we have

E
{
(θi − θ̂i)

2
}

≥
∫ ∞

0
V

{
max

δ:eT
i δ=h

VC
n (r, ‖δ‖)

Vn(r)
Q

(‖δ‖
2σ

)}
h dh. (9.47)

Note that both VC
n (r, ‖δ‖) and Q(‖δ‖/2σ) decrease with ‖δ‖. Therefore, the maximum in

(9.47) is obtained for δ = hei. Also, since the argument of V{·} is monotonically decreasing,

the valley-filling function has no effect and can be removed. Finally, since VC
n (r, h) = 0 for

h > 2r, the integration can be limited to the range [0, 2r]. Thus, the extended Ziv–Zakai bound

is given by

E
{
‖θ− θ̂‖2

}
≥
∫ 2r

0
n

VC
n (r, h)

Vn(r)
Q

(
h

2σ

)
h dh. (9.48)

We now compute the Weiss–Weinstein bound for the setting at hand. This bound is given

by

E
{‖θ− θ̂‖2

} ≥ Tr(HG−1HT) (9.49)
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Figure 9.2: Comparison of the MSE bounds and the minimum achievable MSE in a one-

dimensional setting for which θ ∼ U[−r, r] and x|θ ∼ N(θ, σ2).

where H = [h1, . . . , hm] is a matrix containing an arbitrary number m of test vectors and G is a

matrix whose elements are given by

Gij =
E
{

r(x, θ; hi, si)r(x, θ; hj, sj)
}

E{Lsi(x; θ+ hi, θ)} E
{

Ls j(x; θ+ hj, θ)
} (9.50)

in which

r(x, θ; hi, si) , Lsi(x; θ+ hi, θ)− L1−si(x; θ− hi, θ) (9.51)

and

L(x; θ1, θ2) ,
pθ(θ1)px|θ(x|θ1)

pθ(θ2)px|θ(x|θ2)
. (9.52)

The vectors h1, . . . , hm and the scalars s1, . . . , sm are arbitrary, and can be optimized to maximize

the bound (9.49). To avoid a multidimensional nonconvex optimization problem, we restrict

attention to m = n, hi = hei, and si = 1/2, as suggested by [60]. This results in a dependency

on a single scalar parameter h.

Under these conditions, Gij can be written as

Gij =
1

M(hi)M(hj)

[
M̃(hi − hj,−hj) + M̃(hi − hj, hi)

− M̃(hi + hj, hj)− M̃(hi + hj, hi)
]

(9.53)

where

M(h) , E
{

L1/2(x; θ+ h, θ)
}

(9.54)
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and

M̃(h1, h2) , E
{

L1/2(x; θ+ h1, θ)1Θ+h2

}
. (9.55)

Note that we have used the corrected version of the Weiss–Weinstein bound [168]. Substituting

the probability distribution of x and θ into the definitions of M(h) and M̃(h1, h2), we have

M(h) = E
{

e−‖θ+h−x‖2/4σ2
e‖θ−x‖2/4σ21Θ+h

}

=
VC

n (r, ‖h‖)
Vn(r)

e−‖h‖2/8σ2
(9.56)

and, similarly,

M̃(h1, h2) =
e−‖h1‖2/8σ2

Vn(r)

∫ 1Θ1Θ+h1
1Θ+h2

dθ. (9.57)

Thus, M(h) is a function only of ‖h‖, and M̃(h1, h2) is a function only of ‖h1‖, ‖h2‖, and

‖h1 − h2‖. Since hi = hei, it follows that, for i 6= j, the numerator of (9.53) vanishes. Thus, G is

a diagonal matrix, whose diagonal elements equal

Gii = 2
M̃(0, he1)− M̃(2he1, he1)

M2(he1)
. (9.58)

The Weiss–Weinstein bound is given by substituting this result into (9.49) and maximizing over

h, i.e.,

E
{
‖θ− θ̂‖2

}
≥ max

h∈[0,2r]

nh2 M2(he1)

2[M̃(0, he1)− M̃(2he1, he1)]
. (9.59)

The value of h yielding the tightest bound can be determined by performing a grid search.

To compare the OBB with the alternative approaches developed above, we first consider

the one-dimensional case in which θ is uniformly distributed in the range Θ = (−r, r). Let

x = θ + w be a single noisy observation, where w is zero-mean Gaussian noise, independent of

θ, with variance σ2. We wish to bound the MSE of an estimator of θ from x.

The optimal bias function is given by (9.39). Using the fact that I1/2(t) =
√

2/π sinh(t)/
√

t,

we obtain

b(θ) = −σ
sinh(θ/σ)

cosh(r/σ)
(9.60)

which also follows [39] from Corollary 9.4. Substituting this expression into (9.20), we have

that, for any estimator θ̂,

E
{
(θ − θ̂)2

}
≥ σ2

(
1 − tanh(r/σ)

r/σ

)
. (9.61)

Apart from the reduction in computational complexity, the simplicity of (9.61) also empha-

sizes several features of the estimation problem. First, the dependence of the problem on the
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dimensionless quantity r/σ, rather than on r and σ separately, is clear. This is to be expected,

as a change in units of measurement would multiply both r and σ by a constant. Second, the

asymptotic properties demonstrated in Theorems 9.7 and 9.8 can be easily verified. For r ≫ σ,

the bound converges to the noise variance σ2, corresponding to an uninformative prior whose

optimal estimator is θ̂ = x; whereas, for σ ≫ r, a Taylor expansion of tanh(z)/z immediately

shows that the bound converges to r2/3, corresponding to the case of uninformative measure-

ments, where the optimal estimator is θ̂ = 0. Thus, the bound (9.61) is tight both for very low

and for very high SNR, as expected.

In the one-dimensional case, we have V1(r) = 2r and VC
1 (r, h) = max(2r − h, 0), so that the

extended Ziv–Zakai bound (9.48) and the Weiss–Weinstein bound (9.59) can also be simplified

somewhat. In particular, the extended Ziv–Zakai bound (9.48) can be written as

E
{
‖θ− θ̂‖2

}
≥
∫ 2r

0

(
1 − h

2r

)
hQ

(
h

2σ

)
dh. (9.62)

Using integration by parts, (9.62) becomes

E
{
‖θ− θ̂‖2

}
≥ 2r2

3
Q
( r

σ

)

+ σ2

[
Γ3/2

(
r2

2σ2

)
− 8

3
√

2π

σ

r
Γ2

(
r2

2σ2

)]
(9.63)

where Γa(z) = (1/Γ(a))
∫ z

0
e−tta−1dt is the incomplete Gamma function. Like the expression

(9.61) for the OBB, this bound can be shown to converge to the noise variance σ2 when r ≫ σ

and to the prior variance r2/3 when σ ≫ r. However, while the convergence of the OBB to these

asymptotic values has been demonstrated in general in Theorems 9.7 and 9.8, the asymptotic

tightness of the Ziv–Zakai bound in the general case remains an open question.

The Weiss–Weinstein bound (9.59) can likewise be simplified further in the one-dimensional

case, yielding

E
{
‖θ− θ̂‖2

}

≥ max
h∈[0,2r]

h2e−h2/4σ2
(

1 − h
2r

)2

2
(

1 − h
2r − max

(
0, 1 − h

r

)
e−h2/2σ2

) . (9.64)

However, calculating this bound still requires a numerical search for the optimal value of h.

These bounds are compared with the exact value of the MMSE in Fig. 9.2. In this figure, the

SNR is defined as

SNR(dB) = 10 log10

(
Var(θ)

Var(w)

)
= 10 log10

(
r2

3σ2

)
. (9.65)
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Figure 9.3: Comparison of the MSE bounds and the minimum achievable MSE in a three-

dimensional setting for which θ is uniformly distributed over a ball of radius r and x|θ ∼
N(θ, σ2 I).

The MMSE was computed by Monte Carlo approximation of the error of the optimal estimator

E{θ|x}, which was itself computed by numerical integration. Fig. 9.2(a) plots the MMSE and

the values obtained by the aforementioned bounds, while Fig. 9.2(b) plots the ratio between

each of the bounds and the actual MMSE in order to emphasize the difference in accuracy

between the various bounds. As can be seen from this figure, the OBB is closer to the true MSE

than all other bounds, for all tested SNR values.

The improvements provided by the OBB continue to hold in higher dimensions as well, al-

though in this case it is not possible to provide a closed form for any of the bounds. For exam-

ple, Fig. 9.3 compares the aforementioned bounds with the true MMSE in the three-dimensional

case. In this case the SNR is given by

SNR(dB) = 10 log10

(
Var(θ)

Var(w)

)
= 10 log10

(
r2

5σ2

)
. (9.66)

Here, computation of the minimum MSE requires multi-dimensional numerical integration,

and is by far more computationally complex than the calculation of the bounds. Again, it is

evident from this figure that the OBB is a very tight bound in all ranges of operation, and is

considerably closer to the true value than either of the alternative approaches.
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9.7 Conclusion

Although often considered distinct settings, there are insightful connections between the

Bayesian and deterministic estimation problems. One such relation is the use of the determin-

istic CRB in a Bayesian problem. The application of this deterministic bound to the problem

of estimating the minimum Bayesian MSE results in a Bayesian bound which is provably tight

at both high and low SNR values. Numerical simulation of the location estimation problem

demonstrates that the technique is both simpler and tighter than alternative approaches.
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9.A Some Technical Lemmas

The proof of several theorems in the paper relies on the following technical results.

Lemma 9.9. Consider the minimization problems

Mℓ = inf
b∈S

Zℓ[b], ℓ = 1, 2, 3 (9.67)

where J(θ) is positive definite and bounded a.e. (pθ),

Z1[b] ,
∫

Θ
‖b(θ)‖2 pθ(dθ)

Z2[b] ,
∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ)

Z3[b] , Z1[b] + Z2[b] (9.68)

and S ⊂ H1 is convex, closed, and bounded under the H1 norm (9.16). Then, for each ℓ, there exists a

function b(0) ∈ S such that Z[b(0)] = Mℓ. If ℓ = 1 or ℓ = 3, then the minimizer of (9.67) is unique.

Note that Z3[b] equals Z[b] of (9.12); the notation Z3[b] is introduced for simplicity. Also

note that under mild regularity assumptions on J(θ), uniqueness can be demonstrated for ℓ = 2

as well, but this is not necessary for our purposes.
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Proof. The space H1 is a Cartesian product of n Sobolev spaces H1(Θ), each of which is a sepa-

rable Hilbert space [169, §3.7.1]. Therefore, H1 is also a separable Hilbert space. It follows from

the Banach–Alaoglu theorem [170, §3.17] that all bounded sequences in H1 have weakly con-

vergent subsequences [164, §2.18]. Recall that a sequence f (1), f (2), . . . ∈ H1 is said to converge

weakly to f (0) ∈ H1 (denoted f (i) ⇀ f (0)) if

L[ f (j)] → L[ f (0)] (9.69)

for all continuous linear functionals L[·] [164, §2.9].

Given a particular value ℓ ∈ {1, 2, 3}, let b(i) be a sequence of functions in S such that

Zℓ[b
(i)] → Mℓ. This is a bounded sequence since S is bounded, and therefore there exists a

subsequence b(ik) which converges weakly to some b
(ℓ)
opt ∈ H1. Furthermore, since S is closed,2

we have b
(ℓ)
opt ∈ S. We will now show that Zℓ[b

(ℓ)
opt] = Mℓ.

To this end, it suffices to show that Zℓ[·] is weakly lower semicontinuous, i.e., for any se-

quence f (i) ∈ H1 which converges weakly to f (0) ∈ H1, we must show that

Zℓ[ f
(0)] ≤ lim inf

i→∞
Zℓ[ f

(i)]. (9.70)

Consider a weakly convergent sequence f (j)
⇀ f (0). Then, (9.69) holds for any continuous

linear functional L[·]. Specifically, choose the continuous linear functional

L1[ f ] =
∫

Θ
f (0)(θ) f (θ)pθ(dθ). (9.71)

We then have

Z1[ f
(0)] = L1[ f

(0)]

= lim
j→∞

L1[ f
(j)]

= lim
j→∞

∫

Θ

n

∑
i=1

f
(0)
i (θ) f

(j)
i (θ)pθ(dθ)

≤ lim inf
j→∞

√∫

Θ
‖ f (0)(θ)‖2 pθ(dθ) ·

∫

Θ
‖ f (j)(θ)‖2 pθ(dθ)

=

√
Z1[ f

(0)] lim inf
j→∞

√
Z1[ f

(j)] (9.72)

where we have used the Cauchy–Schwarz inequality. It follows that

√
Z1[ f

(0)] ≤ lim inf
j→∞

√
Z1[ f

(j)] (9.73)

2In fact, we require that S be “weakly closed” in the sense that weakly convergent sequences in S converge to an

element in S. However, since S is convex, this notion is equivalent to the ordinary definition of closure [170, §3.13].
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and therefore Z1[ f
(0)] ≤ lim infj→∞ Z1[ f

(j)], so that Z1[·] is weakly lower semicontinuous.

Similarly, consider the continuous linear functional

L2[ f ] =
∫

Θ
Tr

((
I +

∂ f (0)

∂θ

)
J−1(θ)

(
I +

∂ f

∂θ

)T
)

pθ(dθ) (9.74)

for which we have

Z2[ f
(0)] = L2[ f

(0)]

= lim
j→∞

L2[ f
(j)]

= lim
j→∞

∫

Θ
Tr



(

I +
∂ f (0)

∂θ

)
J−1(θ)

·
(

I +
∂ f (j)

∂θ

)T

pθ(dθ). (9.75)

Note that, for any positive definite matrix W , Tr(AWBT) is an inner product of the two matrices

A and B. Therefore, by the Cauchy–Schwarz inequality,

Tr(AW BT) ≤
√

Tr(AW AT)Tr(BW BT). (9.76)

Applying this to (9.75), we have

Z2[ f
(0)] ≤ lim inf

j→∞

∫

Θ

√√√√√Tr



(

I +
∂ f (0)

∂θ

)
J−1(θ)

(
I +

∂ f (0)

∂θ

)T



·

√√√√√Tr



(

I +
∂ f (j)

∂θ

)
J−1(θ)

(
I +

∂ f (j)

∂θ

)T

pθ(dθ). (9.77)

Once again using the Cauchy–Schwarz inequality results in

Z2[ f
(0)] ≤ lim inf

j→∞

√
Z2[ f

(0)]Z2[ f
(j)] (9.78)

and therefore Z2[ f
(0)] ≤ lim infj→∞ Z2[ f

(j)], so that Z2[·] is weakly lower semicontinuous. Since

Z3[ f ] = Z1[ f ] + Z2[ f ], it follows that Z3[·] is also weakly lower semicontinuous.

Now recall that b(ik) ⇀ b
(ℓ)
opt and Zℓ[b

(ik)] → Mℓ. By the definition (9.70) of lower semicon-

tinuity, it follows that

Zℓ[b
(ℓ)
opt] ≤ lim inf

k→∞
Zℓ[b

(ik)] = Mℓ (9.79)
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and since Mℓ is the infimum of Zℓ[b], we obtain Z[b
(ℓ)
opt] = M. Thus b

(ℓ)
opt is a minimizer of (9.67).

It remains to show that for ℓ ∈ {1, 3}, the minimizer of (9.67) is unique. To this end, we first

show that Z1[·] is strictly convex. Let b(0), b(1) ∈ S be two essentially different functions, i.e.,

pθ

({
θ ∈ Θ : b(0)(θ) 6= b(1)(θ)

})
> 0. (9.80)

Let b(2)(θ) = λb(0)(θ) + (1 − λ)b(1)(θ) for some 0 < λ < 1, so that b(2) ∈ S by convexity. We

then have

Z1[b
(2)] =

∫

Q

∥∥∥λb(0)(θ) + (1 − λ)b(1)(θ)
∥∥∥

2
pθ(dθ)

+
∫

Θ\Q

∥∥∥λb(0)(θ) + (1 − λ)b(1)(θ)
∥∥∥

2
pθ(dθ)

<

∫

Q

[
λ‖b(0)(θ)‖2 + (1 − λ)‖b(1)(θ)‖2

]
pθ(θ)

+
∫

Θ\Q

[
λ‖b(0)(θ)‖2 + (1 − λ)‖b(1)(θ)‖2

]
pθ(θ)

= λZ1[b
(0)] + (1 − λ)Z2[b

(1)] (9.81)

where the inequality follows from strict convexity of the squared Euclidean norm ‖x‖2. Thus

Z1[·] is strictly convex, and hence has a unique minimum.

Note that Z3[b] = Z1[b] + Z2[b]. Since Z1[·] is strictly convex and Z2[·] is convex, it follows

that Z3[·] is strictly convex, and thus also has a unique minimum. This completes the proof.

The following lemma can be thought of as a triangle inequality for a normed space of matrix

functions over Θ.

Lemma 9.10. Let pθ be a probability measure over Θ, and let M : Θ → Rn×n be a matrix function.

Suppose ∫

Θ
‖I + M(θ)‖2

F pθ(dθ) ≤ α (9.82)

for some constant α. It follows that
∫

Θ
‖M(θ)‖2

F pθ(dθ) ≤ (
√

α +
√

n)2. (9.83)

Proof. By the triangle inequality,

‖M(θ)‖F = ‖M(θ) + I − I‖F ≤ ‖M(θ) + I‖F + ‖I‖F. (9.84)

Since ‖I‖2
F = n, we have

∫

Θ
‖M(θ)‖2

F pθ(dθ)

≤
∫

Θ

[
‖I + M(θ)‖2

F + n + 2
√

n ‖I + M(θ)‖F

]
pθ(dθ). (9.85)
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Using the fact that

∫

Θ
‖I + M(θ)‖F pθ(dθ) ≤

√∫

Θ
‖I + M(θ)‖2

F pθ(dθ) (9.86)

and combining with (9.82), it follows that

∫

Θ
‖M(θ)‖2

F pθ(dθ) ≤ α + n + 2
√

nα (9.87)

which completes the proof.

9.B Proof of Proposition 9.1

The following proof of Proposition 9.1 makes use of the results developed in Appendix 9.A.

Proof of Proposition 9.1. Recall that Z3[b] of (9.68) equals Z[b]. Thus, we would like to apply

Lemma 9.9 (with ℓ = 3) to prove the unique existence of a minimizer of (9.17). However,

Lemma 9.9 requires that the minimization be performed over a closed, bounded, and convex set

S, whereas (9.17) is performed over the unbounded set H1. To resolve this issue, we must show

that the minimization (9.17) can be reformulated as a minimization over a closed, bounded,

and convex set S.

To this end, note that

Z[0] =
∫

Θ
Tr(J−1(θ))pθ(dθ) , U (9.88)

and therefore M ≤ U < ∞. Thus, it suffices to perform the minimization (9.17) over those

functions for which Z[b] ≤ U. We now show that this can be achieved by minimizing over a

closed, bounded, and convex set S. First, note that Z[b] ≥ ‖b‖2
L2 , so that one may choose to

minimize (9.17) only over functions b for which

‖b‖2
L2 ≤ U. (9.89)

Similarly, we have

Z[b] ≥
∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ) (9.90)

so that it suffices to minimize (9.17) over functions b for which

∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ) ≤ U. (9.91)



262 CHAPTER 9. THE OPTIMAL-BIAS BOUND

Note that J(θ) is bounded a.e., and therefore λmin(J−1) ≥ 1/K a.e., for some constant K. It

follows that

Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

≥ 1

K

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

a.e.(pθ). (9.92)

Combining with (9.91) yields

∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ KU. (9.93)

From Lemma 9.10, we then have

∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤
(√

n +
√

KU
)2

. (9.94)

From (9.89) and (9.94) it follows that the minimization (9.17) can be limited to the closed,

bounded, convex set

S =

{
b ∈ H1 : ‖b‖2

H1 ≤ U +
(√

KU +
√

n
)2
}

. (9.95)

Applying Lemma 9.9 proves the unique existence of a minimizer of (9.17). The proof that

0 < s < ∞ appears immediately after the statement of Proposition 9.1.

9.C Proof of Theorem 9.3

The following is the proof of Theorem 9.3 concerning the calculation of the OBB.

Proof of Theorem 9.3. Consider the more general problem of minimizing the functional

Z[b] =
∫

Θ
F[b, θ]dθ (9.96)

where F[b, θ] is smooth and convex in b : Θ → Rn, and Θ ⊂ Rn is a bounded set with a smooth

boundary Λ. Then, Z[b] is also smooth and convex in b, so that b is a global minimum of Z[b] if

and only if the differential δZ[h] equals zero at b for all admissible functions h : Θ → Rn [171].

By a standard technique [171, §35], it can be shown that

δZ[h] = ǫ ∑
i

∫

Θ

(
∂F

∂bi
− ∑

j

∂

∂θj

∂F

∂b
(j)
i

)
hi(θ)dθ

+ ǫ ∑
i

∫

Λ

(
∂F

∂b
(1)
i

, . . . ,
∂F

∂b
(n)
i

)T

ν(θ) hi(θ) dσ (9.97)
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where ǫ is an infinitesimal quantity, b
(j)
i = ∂bi/∂θj, and ν(θ) is an outward-pointing normal at

the boundary point θ ∈ Λ. We now seek conditions for which δZ[h] = 0 for all h(θ). Consider

first functions h(θ) which equal zero on the boundary Λ. In this case, the second integral

vanishes, and we obtain the Euler–Lagrange equations

∀i,
∂F

∂bi
− ∑

j

∂

∂θj

∂F

∂b
(j)
i

= 0. (9.98)

Substituting this result back into (9.97), and again using the fact that δZ[h] = 0 for all h, we

obtain the boundary condition

∀i, ∀θ ∈ Λ,

(
∂F

∂b
(1)
i

, . . . ,
∂F

∂b
(n)
i

)T

ν(θ) = 0. (9.99)

Plugging F[b, θ] = CRB[b, θ]pθ(θ) into (9.98) and (9.99) provides the required result.

9.D Proof of Theorem 9.5

Before proving Theorem 9.5, we provide the following two lemmas, which demonstrate some

symmetry properties of the CRB.

Lemma 9.11. Under the conditions of Theorem 9.5, the functional Z[b] of (9.12) is rotation and reflec-

tion invariant, i.e., Z[b] = Z[Ub] for any unitary matrix U.

Proof. We first demonstrate that Z[b] is rotation invariant. From the definitions of Z[b] and

CRB[b, θ], we have

Z[b] =
∫

Θ
Tr

[(
I +

∂b

∂θ

)(
I +

∂b

∂θ

)T
]

q(‖θ‖)
J(‖θ‖) dθ

+
∫

Θ
‖b(θ)‖2q(‖θ‖)dθ. (9.100)

The second integral is clearly rotation invariant, since a rotation of b does not alter its norm. It

remains to show that the first integral, which we denote by I1[b], does not change when b is

rotated. To this end, we begin by considering a rotation about the first two coordinates, such

that b is transformed to b̃ , Rφb, where the rotation matrix Rφ is defined such that

Rφb = (b1 cos φ + b2 sin φ,

− b1 sin φ + b2 cos φ, b3, . . . , bn)
T. (9.101)
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We must thus show that I1[b] = I1[b̃]. Let us perform the change of variables θ 7→ θ̃, where

θ̃ = R(−φ)θ. Rewriting the trace in (9.100) as a sum, we have

I1[b̃] =
∫

Θ
∑
i,j

(
δij +

∂b̃i

∂θj

)2
q(‖θ̃‖)
J(‖θ̃‖) dθ̃ (9.102)

where we have used the facts that ‖θ‖ = ‖θ̃‖ and that Θ does not change under the change of

variables.

We now demonstrate some properties of the transformation of b and θ. First, we have, for

any j,

(
∂b̃1

∂θj

)2

+

(
∂b̃2

∂θj

)2

=

(
∂b1

∂θj
cos φ +

∂b2

∂θj
sin φ

)2

+

(
−∂b1

∂θj
sin φ +

∂b2

∂θj
cos φ

)2

=

(
∂b1

∂θj

)2

+

(
∂b2

∂θj

)2

. (9.103)

Also, for any i,

(
∂bi

∂θ̃1

)2

+

(
∂bi

∂θ̃2

)2

=

(
∂bi

∂θ1

∂θ1

∂θ̃1

+
∂bi

∂θ2

∂θ2

∂θ̃1

)2

+

(
∂bi

∂θ1

∂θ1

∂θ̃2

+
∂bi

∂θ2

∂θ2

∂θ̃2

)2

=

(
∂bi

∂θ1

)2

+

(
∂bi

∂θ2

)2

(9.104)

where we used the fact that θ = Rφθ̃. Third, we have

∂b̃1

∂θ1
=

∂b1

∂θ̃1

cos2 φ +
∂b1

∂θ̃2

sin φ cos φ

+
∂b2

∂θ̃1

sin φ cos φ +
∂b2

∂θ̃2

sin2 φ,

∂b̃2

∂θ2
=

∂b1

∂θ̃1

sin2 φ − ∂b1

∂θ̃2

sin φ cos φ

− ∂b2

∂θ̃1

sin φ cos φ +
∂b2

∂θ̃2

cos2 φ, (9.105)

so that
∂b̃1

∂θ1
+

∂b̃2

∂θ2
=

∂b1

∂θ̃1

+
∂b2

∂θ̃2

. (9.106)

We now show that

∑
i,j

(
δij +

∂b̃i

∂θj

)2

= ∑
i,j

(
δij +

∂bi

∂θ̃j

)2

. (9.107)
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For terms with i, j ≥ 3, we have bi = b̃i and θj = θ̃j, so that replacing b̃ with b and θ with θ̃ does

not change the result. The terms with i = 1, 2 and j ≥ 3 do not change because of (9.103), while

the terms with i ≥ 3 and j = 1, 2 do not change because of (9.104). It remains to show that the

terms i, j = 1, 2 do not modify the sum. To this end, we write out these four terms as

(
1 +

∂b̃1

∂θ1

)2

+

(
1 +

∂b̃2

∂θ2

)2

+

(
∂b̃1

∂θ2

)2

+

(
∂b̃2

∂θ1

)2

= 2 + 2
∂b̃1

∂θ1
+ 2

∂b̃2

∂θ2

+

(
∂b̃1

∂θ1

)2

+

(
∂b̃1

∂θ2

)2

+

(
∂b̃2

∂θ1

)2

+

(
∂b̃2

∂θ2

)2

= 2 + 2
∂b1

∂θ̃1

+ 2
∂b2

∂θ̃2

+

(
∂b1

∂θ̃1

)2

+

(
∂b1

∂θ̃2

)2

+

(
∂b2

∂θ̃1

)2

+

(
∂b2

∂θ̃2

)2

=

(
1 +

∂b1

∂θ̃1

)2

+

(
1 +

∂b2

∂θ̃2

)2

+

(
∂b1

∂θ̃2

)2

+

(
∂b2

∂θ̃1

)2

(9.108)

where, in the second transition, we have used (9.103), (9.104), and (9.106). It follows that I1[b̃]

of (9.102) is equal to I1[b], and hence Z[b] = Z[b̃]. The result similarly holds for rotations

about any other two coordinates. Since any rotation can be decomposed into a sequence of

two-coordinate rotations, we conclude that Z[b] is rotation invariant.

Next, we prove that Z[b] is invariant to reflections through hyperplanes containing the

origin. Since Z[b] is invariant to rotations, it suffices to choose a single hyperplane, say {θ :

θ1 = 0}. Let

b̃ , (−b1(θ), b2(θ), . . . , bn(θ))
T (9.109)

be the reflection of b, and consider the corresponding change of variables

θ̃ , (−θ1, θ2, . . . , θn)
T. (9.110)

By the symmetry assumptions, pθ and J are unaffected by the change of variables; furthermore,

∂b̃/∂θ̃ = ∂b/∂θ. It follows that CRB[b̃, θ̃] = CRB[b, θ], and therefore Z[b] = Z[b̃].

Lemma 9.12. Suppose b(θ) is radial and rotation invariant, i.e., b(θ) = t(‖θ‖2)θ for some function

t ∈ H1. Also suppose that J(θ) = J(‖θ‖)I, where J(·) is a scalar function. Then, CRB[b, θ] of (9.11)

is rotation invariant in θ, i.e., CRB[b, Rθ] = CRB[b, θ] for any rotation matrix R.

Proof. We will show that CRB[b, θ] depends on θ only through ‖θ‖2, and is therefore rotation
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invariant. For the given value of b(θ) and J(θ), we have

CRB[b, θ]

= ‖b(θ)‖2 + Tr

[(
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
]

= t2‖θ‖2 +
1

J(‖θ‖) Tr

[(
I +

∂tθ

∂θ

)(
I +

∂tθ

∂θ

)T
]

(9.111)

where, for notational convenience, we have omitted the dependence of t on ‖θ‖2. It remains to

show that the trace in the above expression is a function of θ only through ‖θ‖2. To this end,

we note that

∂bi

∂θj
= tδij + t′θi

∂‖θ‖2

∂θj
= tδij + 2t′θiθj (9.112)

where δij is the Kronecker delta. It follows that

(
δij +

∂bi

∂θj

)2

= (1 + t)2δij + 4(1 + t)t′θiθjδij + 4t′2θ2
i θ2

j . (9.113)

Therefore

Tr

[(
I +

∂b

∂θ

)(
I +

∂b

∂θ

)T
]
= ∑

i,j

(
δij +

∂bi

∂θj

)2

= n(1 + t)2 + 4t′2 ∑
i,j

θ2
i θ2

j + 4(1 + t)t′ ∑
i

θ2
i

= n(1 + t)2 + 4t′2‖θ‖4 + 4(1 + t)t′‖θ‖2. (9.114)

Thus, CRB[b, θ] depends on θ only through ‖θ‖2, completing the proof.

Proof of Theorem 9.5. We have seen in Theorem 9.3 that the solution of (9.20) is unique. Now

suppose that the optimum b is not rotation invariant, i.e., there exists a rotation matrix R such

that Rb(θ) is not identical to b(θ). By Lemma 9.11, Rb(θ) is also optimal, which is a contradic-

tion.

Furthermore, suppose that b is not radial, i.e., for some value of θ, b(θ) contains a compo-

nent perpendicular to the vector θ. Consider a hyperplane passing through the origin, whose

normal is the aforementioned perpendicular component. By Lemma 9.11, The reflection of b

through this hyperplane is also an optimal solution of (9.20), which is again a contradiction.

Therefore, the optimum b is spherically symmetric and radial, so that it can be written as

b(θ) = b(‖θ‖) θ

‖θ‖ (9.115)
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where b(·) is a scalar function.

To determine the value of b(·), it suffices to analyze the differential equation (9.21) along

a straight line from the origin to the boundary. We choose a line along the θ1 axis, and begin

by calculating the derivatives of b1(θ), q(‖θ‖), and J(‖θ‖) along this axis. The derivative of

q(‖θ‖) is given by
∂q

∂θj
= q′(ρ)

θj

ρ
(9.116)

where we have denoted ρ = ‖θ‖, so that ρ is weakly differentiable and

∂ρ

∂θj
=

θj

ρ
. (9.117)

Along the θ1 axis, we have θ1 = ρ while θ2 = · · · = θn = 0, so that

∂q

∂θj

∣∣∣∣
θ=ρe1

= q′(ρ)δj1. (9.118)

Similarly, since J(θ) = J(ρ)I,

∂(J−1)jk

∂θj
= − J′(ρ)

J2(ρ)

θj

ρ
δjk (9.119)

so that along the θ1 axis

∂(J−1)jk

∂θj

∣∣∣∣∣
θ=ρe1

= − J′(ρ)
J2(ρ)

δjkδj1. (9.120)

From (9.115), we have
∂bi

∂θj
= b′(ρ)

θiθj

ρ2
+

b(ρ)

ρ

(
δij −

θiθj

ρ2

)
. (9.121)

Thus, on the θ1 axis, we have

∂b1

∂θj

∣∣∣∣
θ=ρe1

= b′(ρ)δj1. (9.122)

The second derivative of bi(θ) can be shown to equal

∂2bi

∂θj∂θk
= b′′(ρ)

θiθjθk

ρ3

+

(
b′(ρ)

ρ
− b(ρ)

ρ2

)(
θi

ρ
δjk +

θj

ρ
δik +

θk

ρ
δij − 3

θiθjθk

ρ3

)
. (9.123)

Therefore, on the θ1 axis

∂2b1

∂θ2
1

∣∣∣∣
θ=ρe1

= b′′(ρ)

∂2b1

∂θ2
j

∣∣∣∣∣
θ=ρe1

=
b′(ρ)

ρ
− b(ρ)

ρ2
(j 6= 1)

∂2b1

∂θj∂θk

∣∣∣∣
θ=ρe1

= 0 (j, k 6= 1). (9.124)
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Substituting these derivatives into (9.21), we obtain

q(ρ)b(ρ) =
q(ρ)

J(ρ)

(
b′′(ρ) + (n − 1)

b′(ρ)
ρ

− (n − 1)
b(ρ)

ρ2

)

+ (1 + b′(ρ))
(

q′(ρ)
J(ρ)

− q(ρ)
J′(ρ)
J2(ρ)

)
(9.125)

which is equivalent to (9.25).

To obtain the boundary conditions, observe that Lemma 9.11 implies b(0) = 0, whence

we conclude that b(0) = 0. Next, evaluate the boundary condition (9.22) at boundary point

θ = re1, where the surface normal ν(θ) equals e1, so that

1 + b′(ρ) = 1 +
∂b1

∂θ1
= 0, θ = re1 (9.126)

which is equivalent to the boundary condition b′(r) = −1.

To find the OBB (9.24), we must now calculate Z[b] for the obtained bias function (9.115).

To this end, note that, by Lemma 9.12, CRB[b, θ] is rotation invariant in θ for the required b(θ).

Thus, the integrand CRB[b, θ]q(‖θ‖) is constant on any (n − 1)-sphere centered on the origin,

so that

Z[b] =
∫ r

0
CRB[b, ρe1]q(ρ)Sn(ρ)dρ (9.127)

where

Sn(ρ) =
2πn/2

Γ(n/2)
ρn−1 (9.128)

is the hypersurface area of an (n − 1)-sphere of radius ρ [167]. It thus suffices to calculate the

value of CRB[b, θ] at points along the θ1 axis. From (9.121), it follows that

∂b

∂θ

∣∣∣∣
θ=ρe1

= diag

(
b′(ρ),

b(ρ)

ρ
, . . . ,

b(ρ)

ρ

)
. (9.129)

Substituting this into the definition of CRB[b, θ], we obtain

CRB[b, ρe1]

= b2(ρ) +
1

J(ρ)
(1 + b′(ρ))2 +

n − 1

J(ρ)

(
1 +

b(ρ)

ρ

)2

. (9.130)

Combining (9.130) with (9.127) yields (9.24), as required.

9.E Proofs of Asymptotic Properties

Theorems 9.7 and 9.8 demonstrate asymptotic tightness of the OBB. The proofs of these two

theorems follow.
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Proof of Theorem 9.7. We begin the proof by studying a certain optimization problem, whose

relevance will be demonstrated shortly. Let t ≥ 0 be a constant and consider the problem

u(t) = inf
b∈H1

∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ)

s.t.
∫

Θ
‖b(θ)‖2 pθ(dθ) ≤ t. (9.131)

Notice that u(t) ≤ n for all t, since an objective having a value of n is achieved by the function

b(θ) = 0. Thus, it suffices to perform the minimization (9.131) over functions b ∈ H1 satisfying

∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ n. (9.132)

It follows from Lemma 9.10 that such functions also satisfy

∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ (2
√

n)2 = 4n. (9.133)

Therefore, (9.131) is equivalent to the minimization

u(t) = inf
b∈St

∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) (9.134)

where

St =

{
b ∈ H1 :

∫

Θ
‖b(θ)‖2 pθ(dθ) ≤ t,

∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ 4n

}
. (9.135)

The set St is convex, closed, and bounded in H1. Applying Lemma 9.9 (with ℓ = 2) implies that

there exists a function bopt ∈ St which minimizes (9.134), and hence also minimizes (9.131).

Note that the objective in (9.131) is zero if and only if

∂bopt

∂θ
= −I a.e. (pθ). (9.136)

The only functions in H1 satisfying this requirement are the functions

b(θ) = k − θ a.e. (pθ) (9.137)

for some constant k ∈ Rn. Let µ , E{θ} and define

v , E
{‖θ− E{θ} ‖2

}
. (9.138)
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For functions of the form (9.137), the constraint of (9.131) is given by

∫

Θ
‖k − θ‖2pθ(dθ) =

∫

Θ
‖k − µ + µ − θ‖2 pθ(dθ)

= ‖k − µ‖2 + v

≥ v. (9.139)

In (9.139), equality is obtained if and only if k = µ. Therefore, if t < v, no functions satisfying

(9.136) are feasible, and thus

u(t) = 0 if t ≥ v,

u(t) > 0 if t < v. (9.140)

We now return to the setting of Theorem 9.7. We must show that βN → v as N → ∞. We de-

note functions corresponding to the problem of estimating θ from x(N) with a superscript (N).

Thus, for example, Z(N)[b] denotes the functional Z[b] of (9.12) for the problem corresponding

to the measurement vector x(N).

Since all eigenvalues of J(N)(θ) decrease monotonically with N for pθ-almost all θ, we have

CRB(N)[b, θ] ≤ CRB(N+1)[b, θ] (9.141)

for any b ∈ H1, for pθ-almost all θ, and for all N. Therefore

Z(N)[b] ≤ Z(N+1)[b]. (9.142)

for any b ∈ H1 and for all N. It follows that for all N

βN = min
b∈H1

Z(N)[b] ≤ min
b∈H1

Z(N+1)[b] = βN+1 (9.143)

so that βN is a non-decreasing sequence. Furthermore, note that

Z(N)[µ − θ] = v for all N (9.144)

where v is given by (9.138). Therefore, βN ≤ v for all N. Thus βN converges to some value q,

and we have

βN ≤ q ≤ v for all N. (9.145)

To prove the theorem, it remains to show that q = v.

Let b(N) be the minimizer of (9.17) when θ is estimated from x(N); this minimizer exists by

virtue of Proposition 9.1. We then have

βN = Z(N)[b(N)] ≤ q (9.146)
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and therefore
∫

Θ
‖b(N)(θ)‖2 pθ(dθ) ≤ q. (9.147)

It follows that b(N) satisfies the constraint of the optimization problem (9.131) with t = q. As a

consequence, we have

∫

Θ

∥∥∥∥∥I +
∂b(N)

∂θ

∥∥∥∥∥

2

F

pθ(dθ) ≥ u(q). (9.148)

Define

λN , ess sup
θ∈Θ

λmax(J(N)(θ)) (9.149)

and note that λN > 0 for all N, since J(N)(θ) is positive definite. Thus

Z(N)[b(N)] ≥
∫

Θ
Tr



(

I +
∂b(N)

∂θ

)(
J(N)(θ)

)−1

·
(

I +
∂b(N)

∂θ

)T

pθ(dθ)

≥ 1

λN

∫

Θ

∥∥∥∥∥I +
∂b(N)

∂θ

∥∥∥∥∥

2

F

pθ(dθ)

≥ u(q)

λN
. (9.150)

Assume by contradiction that q < v. From (9.140), it then follows that u(q) > 0. Since all

eigenvalues of J(N)(θ) decrease to zero, we have λN → 0, and thus

βN ≥ u(q)

λN
→ ∞. (9.151)

This contradicts the fact (9.145) that βN ≤ v. We conclude that q = v, as required.

Proof of Theorem 9.8. The proof is analogous to that of Theorem 9.7. We begin by considering

the optimization problem

inf
b∈H1

∫

Θ
‖b(θ)‖2 pθ(dθ)

s.t.
∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ) ≤ t (9.152)

for some constant t ≥ 0. Denote the minimum value of (9.152) by w(t). Let µ = E{θ} and note

that b(θ) = µ − θ satisfies the constraint in (9.152) for any t ≥ 0, and has an objective equal to
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v of (9.138). Thus, to determine w(t), it suffices to minimize (9.152) over the set

St =

{
b ∈ H1 :

∫

Θ
‖b(θ)‖2 pθ(dθ) ≤ v,

∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ) ≤ t

}
.

Define

λ , ess sup
θ∈Θ

λmax(J(θ)). (9.153)

Since J(θ) is positive definite almost everywhere, we have λ > 0. For any b ∈ St, we have

1

λ

∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ t (9.154)

and therefore, by Lemma 9.10,

∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤
(√

tλ +
√

n
)2

. (9.155)

Hence, for any b ∈ St,

‖b‖2
H1 =

∫

Θ
‖b(θ)‖2 pθ(dθ) +

∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ)

≤ v +
(√

tλ +
√

n
)2

. (9.156)

Thus St is bounded for all t. It is straightforward to show that St is also closed and convex.

Therefore, employing Lemma 9.9 (with ℓ = 1) ensures that there exists a (unique) bopt ∈ St

minimizing (9.152).

Note that the objective in (9.152) is 0 if and only if bopt(θ) = 0 almost everywhere. So, if

0 ∈ St, we have w(t) = 0, and otherwise w(t) > 0. Let us define

s , E
{

Tr(J−1(θ))
}

(9.157)

and note that 0 ∈ St if and only if t ≥ s. Thus

w(t) = 0 for t ≥ s

w(t) > 0 otherwise. (9.158)

Let us now return to the setting of Theorem 9.8. For simplicity, we denote functions cor-

responding to the problem of estimating θ from {x(1), . . . , x(N)} with a superscript (N). For

example, from the additive property of the Fisher information [16, §3.4], we have

J(N)(θ) = NJ(θ). (9.159)



9.E. PROOFS OF ASYMPTOTIC PROPERTIES 273

It follows that

(N + 1)CRB(N+1)[b, θ] ≥ NCRB(N)[b, θ] (9.160)

for all b ∈ H1, all θ ∈ Θ, and all N. Therefore

(N + 1)Z(N+1)[b] ≥ NZ(N)[b] (9.161)

for all b ∈ H1, and hence

(N + 1)βN+1 = min
b∈H1

(
(N + 1)Z(N+1)[b]

)

≥ min
b∈H1

(
NZ(N)[b]

)

= NβN . (9.162)

Thus {NβN} is a non-decreasing sequence. Furthermore, we have

NZ(N)[0] = s (9.163)

so that NβN ≤ s for all N. It follows that {NβN} is non-decreasing and bounded, and therefore

converges to some value r such that

NβN ≤ r ≤ s for all N. (9.164)

To prove the theorem, we must show that r = s.

Let b(N) ∈ H1 denote the minimizer of (9.17) when θ is estimated from {x(1), . . . , x(N)} (the

existence of b(N) is guaranteed by Proposition 9.1). We then have NβN = NZ(N)[b(N)] ≤ r, so

that
∫

Θ
Tr



(

I +
∂b(N)

∂θ

)
J−1(θ)

(
I +

∂b(N)

∂θ

)T

 pθ(dθ) ≤ r. (9.165)

Thus, b(N) satisfies the constraint of (9.152) with t = r. As a consequence, we have
∫

Θ
‖b(N)(θ)‖2 pθ(dθ) ≥ w(r) (9.166)

and therefore

NβN = NZ(N)[b(N)]

≥ N
∫

Θ
‖b(N)(θ)‖2 pθ(dθ)

≥ Nw(r). (9.167)

Now suppose by contradiction that r < s. It follows from (9.158) that w(r) > 0. Hence, by

(9.167), NβN → ∞, which contradicts the fact that NβN is bounded. We conclude that r = s, as

required.
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Chapter 10

A Comment on the

Weiss–Weinstein Bound

This chapter is a reprint of the paper:

• Z. Ben-Haim and Y. C. Eldar, “A comment on the use of the Weiss-Weinstein bound for

constrained parameter sets,” IEEE Trans. Inform. Theory, vol. 54, no. 10, October 2008, pp.

4682-4684.

10.1 Introduction

We consider the problem of estimating a random vector θ from observations x, where the qual-

ity of an estimator g(x) is measured by its mean-squared error (MSE) E
{
‖g(x)− θ‖2

}
. It is

well-known that the posterior mean E{θ|x} is the technique minimizing the MSE. However,

in many cases, determining the posterior mean is computationally prohibitive, and various

approaches have been developed as alternatives. It is therefore of interest to determine the

degradation in accuracy resulting from the use of suboptimal methods. Unfortunately, com-

putation of the optimal MSE is itself infeasible in many cases. This has led to a large body of

work seeking to find simple lower bounds for the minimum MSE in a given estimation prob-

lem [59–61, 65].

In a landmark paper, Weiss and Weinstein developed a general technique for deriving lower

bounds on the minimum achievable MSE [61]. A noteworthy feature of their method is that it

requires almost no regularity assumptions on the problem setting. The bound was further

developed in [60], and has been used in a variety of practical applications [172–174].
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A common setting in which the Weiss–Weinstein bound (WWB) is often applied concerns

constrained parameter sets, i.e., situations in which the parameter θ occurs with probability 1

in a subset Θ of Rm. For example, in time-delay estimation, the delay is sometimes assumed

to be uniformly distributed in a given interval [61]. While the WWB continues to hold in the

constrained setting, some of the simplifications presented in [61] and [60] are not valid in this

case.

In this correspondence, we point out the versions of the WWB which do not necessarily

hold for constrained parameter sets. We discuss the regularity conditions under which these

simplified versions are valid, and conclude with an example in which the simplified version of

the bound yields incorrect (and unreasonable) results.

10.2 Background and Summary

We begin by recalling some definitions and results relating to the WWB [60, 61]. Let θ and

x be finite-variance random vectors whose joint probability density function (pdf) is f (x, θ).

Suppose that f (x, θ) is nonzero only for values of θ in a subset Θ of Rm, and let Θ′ be the set

of values of θ for which f (x, θ) is positive a.e. in x. We are interested in estimating θ using a

function g(x) of the measurements. The error covariance matrix is defined as

R , E
{
(θ− g(x))(θ− g(x))T

}
. (10.1)

The goal is to find a lower bound on R, i.e., a matrix B such that R ≥ B, where the matrix

inequality means that R −B is positive semidefinite.

Denote the likelihood ratio by

L(x; θ1, θ2) ,
f (x, θ1)

f (x, θ2)
, (10.2)

where the function is defined only for values of x and θ2 such that f (x, θ2) 6= 0. Let

µ(s, h) , ln E{Ls(x; θ+ h, θ)} (10.3)

and note that the expectation is calculated only over points (x, θ) such that f (x, θ) > 0, i.e.,

those points for which L(x; θ+ h, θ) is defined.

In the case of a scalar parameter θ ∈ Θ ⊆ R, the error covariance (10.1) equals the MSE. The

WWB in this setting is given by

MSE ≥ h2E2{Ls(x; θ + h, θ)}
E
{
[Ls(x; θ + h, θ)− L1−s(x; θ − h, θ)]

2
} (10.4)
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for any h and s such that

0 < E

{[
Ls(x; θ + h, θ)− L1−s(x; θ − h, θ)

]2
}

< ∞. (10.5)

If Θ′ is a connected subset of R, then (10.4) can also be written as [60, 61, 174]

MSE ≥ h2e2µ(s,h)

eµ(2s,h) + eµ(2−2s,−h) − 2eµ(s,2h)
. (10.6)

In these cases, calculation of µ(s, h) is sufficient for evaluation of the bound. However, the

equivalence between the original bound (10.4) and the simplified version (10.6) does not nec-

essarily hold if Θ′ is a disjoint subset of R; specifically, the cross-term 2eµ(s,2h) does not always

equal 2E
{

Ls(x; θ + h, θ)L1−s(x; θ − h, θ)
}

. As we will see, when Θ′ is disjoint, (10.6) can be

larger than the minimum estimation MSE, and may even be infinite. Thus, care must be used

when applying the bound to disjoint parameter sets Θ′.

In the case of a vector parameter θ ∈ Θ ⊆ Rm, the WWB on the error covariance is given by

R ≥ HG−1HT. (10.7)

Here, H = [h1, h2, . . . , hm] is a matrix consisting of “test vectors” hi ∈ Rm, and G is the m × m

matrix whose elements are given by

Gij =
E
{

r(x, θ; hi, si)r(x, θ; hj, sj)
}

E{Lsi(x; θ+ hi)} E
{

Ls j(x; θ+ hj)
} (10.8)

where

r(x, θ; hi, si) , Lsi(x; θ+ hi, θ)− L1−si(x; θ− hi, θ). (10.9)

The bound holds for any {hi, si}m
i=1 such that G is well-defined and invertible.

Weinstein and Weiss [60] suggest that attention be restricted to the case s1 = · · · = sm =

1/2. In this case, and under the additional assumption that Θ′ = Rm, the bound (10.8) simpli-

fies to1

Gij = 2
eµ(1/2,hi−hj) − eµ(1/2,hi+hj)

eµ(1/2,hi)eµ(1/2,hj)
. (10.10)

While this simplification is valid if f (x, θ) is positive almost everywhere (i.e., if Θ′ = Rm),

it does not necessarily hold in other cases. Furthermore, when θ is a scalar, (10.10) does not

necessarily reduce to (10.6).

1A slightly different version of this equation appears in [60, eq. (42)], the result of an obvious typographical error.
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10.3 Scalar Case

To demonstrate equivalence between (10.4) and (10.6), it is required to show that

E
{

Ls(x; θ + h, θ)L1−s(x; θ − h, θ)
}

?
= eµ(s,2h). (10.11)

When Θ′ is a connected set, this statement can be verified as follows.

E
{

Ls(x; θ + h, θ)L1−s(x; θ − h, θ)
}

=
∫

f s(x, θ + h)

f s(x, θ)

f 1−s(x, θ − h)

f 1−s(x, θ)
f (x, θ)dx dθ (10.12)

=
∫

f s(x, θ + h) f 1−s(x, θ − h) dx dθ (10.13)

=
∫

f s(x, θ′ + 2h)

f s(x, θ′)
f (x, θ′) dx dθ′ (10.14)

= eµ(s,2h) (10.15)

where we used the change of variables θ′ = θ − h.

As noted previously, it is implicitly assumed in (10.11) that the expectation is calculated

only over those values of x and θ for which f (x, θ) > 0, otherwise L(x; θ + h, θ) is undefined.

Thus, the integral (10.12) is taken only over those values of x and θ for which f (x, θ) > 0.

However, after f (x, θ) is canceled out in (10.13), this fact is ignored. The integral (10.14) is

taken over the range f (x, θ′) > 0, which corresponds to f (x, θ + h) > 0. If there exist points

(x, θ) for which f (x, θ) = 0, f (x, θ + h) > 0, and f (x, θ − h) > 0, then (10.12) is not taken over

those points, whereas (10.13) is positive at those points.

If Θ′ is a connected set (i.e., a finite or infinite interval), then, for any x and θ such that

f (x, θ − h) > 0 and f (x, θ + h) > 0, we also have f (x, θ) > 0. In this case, the range of

integration in (10.12) equals that of (10.13), so that the simplified version (10.6) is correct. This

occurs, for instance, in the example given in [61], where Θ′ is a closed interval.

However, if Θ′ is disjoint, then (10.13) can be greater than (10.12), so that (10.6) can be larger

than (10.4), and is not necessarily a lower bound on the MSE. Indeed, as we will see, in some

cases (10.6) is higher than the minimum MSE; in other cases, (10.6) is infinite, as a result of a

division by zero.

10.4 Vector Case

When Θ′ = Rm, the simplified equation (10.10) can be derived from the WWB (10.8) as fol-

lows. Substituting s1 = · · · = sm = 1/2 in (10.8), the denominator equals that of (10.10). The
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Figure 10.1: Plot of the corrected WWB (10.24), the incorrect version (10.6), and the actual MSE,

for a scalar estimation setting with a disjoint set Θ.

numerator consists of a sum of four expressions of the type

E
{

L1/2(x; θ± hi, θ)L1/2(x; θ± hj, θ)
}

. (10.16)

These can be simplified by writing

E
{

L1/2(x; θ+ hi, θ)L1/2(x; θ+ hj, θ)
}

=
∫ (

f (x, θ+ hi)

f (x, θ)

f (x, θ+ hj)

f (x, θ)

)1/2

f (x, θ)dx dθ (10.17)

=
∫ (

f (x, θ+ hi) f (x, θ+ hj)
)1/2

dx dθ (10.18)

=
∫ ( f (x, θ′ + hi − hj)

f (x, θ′)

)1/2

f (x, θ′)dx dθ′ (10.19)

= eµ(1/2,hi−hj) (10.20)

where a change of coordinates θ′ = θ+ hj was performed. Analogous results can be obtained

for the remaining expressions of the type (10.16). Substituting these into (10.8) yields (10.10).

When Θ′ does not consist of the entire space Rm, the reasoning above is not valid. The

integration in (10.17) must be carried out only over those values of x and θ for which f (x, θ) >

0, but this restriction is dropped in the transition to (10.18). If there exist values (x, θ) such that

f (x, θ) = 0, f (x, θ + hi) > 0, and f (x, θ + hj) > 0, then those values are included in (10.18),
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but not in (10.17). This will always occur for some values of hi and hj, unless f (x, θ) > 0 for

all θ. Therefore, the value E{L1/2(x; θ′ + hi − hj, θ′)} can, in fact, be larger than E{L1/2(x; θ+

hi, θ)L1/2(x; θ+ hj, θ)}. We conclude that (10.10) does not necessarily hold unless Θ′ includes

the entire parameter space Rm.

10.5 Counterexample

We now present an example which illustrates that (10.6) provides incorrect and even impossible

results in some cases.

Consider the problem of estimating a scalar θ based on a single measurement x. Suppose

that θ is uniformly distributed over the set Θ = [a, b] ∪ [−b,−a], where b > a > 0 are given

constants. Also suppose that the distribution of x conditioned on θ is Gaussian with mean θ

and variance σ2. The joint pdf of x and θ is thus given by

f (x, θ) =
e−(x−θ)2/2σ2

2(b − a)
√

2πσ2
1Θ (10.21)

where 1Θ is an indicator function, which equals 1 when θ ∈ Θ and 0 otherwise.

From (10.3),

eµ(s,h) =
1

2(b − a)
e−h2s(1−s)/2σ2

∫ 1Θ1Θ+hdθ (10.22)

where Θ + h = {θ + h : θ ∈ Θ}, and the integral equals the length of the intersection of the sets

Θ and Θ + h. On the other hand,

M̃(s, h) , E
{

Ls(x; θ + h, θ)L1−s(x; θ − h, θ)
}

=
1

2(b − a)
e−2s(1−s)h2/σ2

∫ 1Θ1Θ+h1Θ−hdθ. (10.23)

Thus, contrary to (10.11), eµ(s,2h) does not equal M̃(s, h), since the latter depends on the

length of the intersection of the three sets Θ, Θ + h, and Θ − h. Indeed, M̃(s, h) is often sub-

stantially smaller than eµ(s,2h), and as a result, use of (10.6) results in a “lower bound” which

may exceed the true MSE.

This problem is illustrated in Fig. 10.1, where the incorrect bound (10.6) is compared with

the original Weiss–Weinstein bound (10.4), which can be written as

h2e2µ(s,h)

eµ(2s,h) + eµ(2−2s,−h) − 2M̃(s, h)
. (10.24)
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The actual MSE obtained by the optimal estimator can be calculated using Monte Carlo simu-

lations, and is also plotted. In the figure, values of a = 1/2 and b = 2 were used. The variance

σ2 was modified to obtain various signal-to-noise ratios (SNRs), where SNR = Var(θ)/σ2.

It is evident from Fig. 10.1 that the value (10.6) becomes exceedingly high at low SNR.

Indeed, for SNR values below approximately 0 dB, there always exist values of s and h such

that the denominator of (10.6) is arbitrarily small, and thus the bound tends to infinity. For SNR

values around 2–4 dB, (10.6) yields finite values which are larger than the actual MSE obtained

by the optimal estimator. The original version (10.24), by contrast, closely follows the true MSE

value.
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Chapter 11

Conclusion

The central goal of this thesis is to quantify the performance achieved by practical techniques in

structured estimation problems, and to determine whether and to what extent current estima-

tion capabilities are close to the theoretical optimum. This goal is attained by the combined use

of lower bounds and performance guarantees, with the former providing a limit on the feasible

achievements in a given scenario, and the latter determining whether actual techniques come

close to this performance.

Several structured estimation settings were considered in the course of our analysis. First,

we examined the setting of sparsely representable signals, wherein the parameter vector is a

linear combination of a small number of atoms from a large dictionary. A lower bound for

this setting was derived in Chapter 4 by developing a version of the constrained CRB for non-

differentiable constraints. This bound was shown to equal the oracle error for almost all param-

eter values, a fact which gives further credibility to the oracle as a benchmark against which

practical estimators can be compared. Such a comparison was performed in Chapter 6, where

we demonstrated that several common methods do indeed come within a nearly constant fac-

tor of the oracle, thus providing performance guarantees for sparse estimators. Our approach

provided tighter bounds than those previously available for ℓ1 relaxation techniques, as well as

the first frequentist performance guarantees for greedy sparse estimation methods. Neverthe-

less, there is still some gap between these upper and lower bounds, and empirical observations

suggest that both can still be improved somewhat.

Bounds and guarantees were also developed for the related model of block sparsity (Chap-

ter 7). In this setting, it was again shown that the CRB coincides with the oracle error for nearly

all parameter values. Moreover, performance guarantees for greedy block sparse estimators
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were derived and shown to be close to the CRB or oracle bound. Performance guarantees for

ℓ1 relaxation techniques in the frequentist block sparse setting have not been demonstrated,

and their existence remains an open question. Comparing the guarantees for scalar and block

sparsity, we demonstrated that the block model is particularly advantageous when the coher-

ence between atoms within a single block is low; indeed, highly correlated blocks may cause

the performance of block sparse algorithms to fall below standard sparsity approaches. This

example illustrates the power of performance guarantees in pinpointing the pros and cons of

estimation models.

We next investigated the finite rate of innovation (FRI) model (see Chapter 8). In this setting,

one seeks to estimate a continuous-time signal from low-rate samples. This analysis necessi-

tated an extension of the CRB for the estimation of parameters in arbitrary Hilbert spaces, such

as the space of finite-energy continuous-time functions. We applied this extended CRB to the

FRI setting in two ways. First, a bound was obtained for the ultimate performance achiev-

able in the absence of any restrictions on the allowed sampling technique or rate. Next, a lower

bound was derived for a given sampling scheme. Comparing these two bounds with the actual

performance achieved by practical estimators can identify both situations in which the estima-

tor fails to utilize all of the information present in the given samples, and cases in which the

available information is fully exploited, but better performance could have been achieved by

sampling at a higher rate. Examples of state-of-the-art algorithms with both types of failures

were identified. Thus, unlike the sparse setting, in the FRI case there are clearly situations in

which existing algorithms can be improved considerably.

Interestingly, our analysis helps explain the apparent discrepancy between the successful

performance of low-rate FRI techniques in the absence of noise and the empirically observed

difficulty in achieving similar results when even low levels of noise are introduced. Indeed,

we showed that while some models are amenable to accurate estimation from low-rate noisy

samples, other models are necessitate sampling at the Nyquist rate for optimal recovery. Specif-

ically, in the context of the common union of subspaces structure, high sampling rates tend to

be necessary, unless the number of parameters determining the subspace under consideration

is small relative to the dimension of the subspaces involved.

Finally, we examined performance bounds for Bayesian models in Chapters 9 and 10. In

this context, we analyzed the optimal bias bound, a technique utilizing the biased CRB for

obtaining performance bounds in the Bayesian setting. We extended this bound to general

vector parameters and demonstrated that the bound is tight at both low and high SNR values,
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a result which has not been demonstrated, to the best of our knowledge, for any other bound.

We also numerically compared this result with other Bayesian bounds, and showed that it tends

to be tighter than both the Ziv–Zakai and Weiss–Weinstein techniques.
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מצב דומה מתרחש גם כאשר אנו עוברים למודל מעט יותר מסתבר ש. אלגוריתמים פשוטים למדי

, במודל זה ההנחה היא כי מספר מועט של אטומים מייצגים את הסיגנל. מורכב של דלילות בבלוקים

חסמים תחתונים ועליונים תחת . יינים דומיםמופיעים בקבוצות בעלות מאפאטומים אלה , ויתר על כן

אלגוריתמים , משמע, וגם כאן אנו מראים כי החסמים קרובים זה לזה, 7מודל זה מוצגים בפרק 

  .פרקטיים יכולים להגיע לביצועים המתקרבים לאופטימום

לשם כך אנו מפתחים שני סוגי .  תחת רעשFRI אנו חוקרים את הביצועים של אותות 8בפרק 

וחסם שמתאר את הביצועים , שאינו רגיש למערכת הדגימה של האות, חסם יסודי: ם תחתוניםחסמי

השוואת החסמים האלה עם הביצועים של אלגוריתמים . שניתן להשיג באמצעות מערכת דגימה נתונה

האם משערך נתון מנצל באופן מלא את המידע , ראשית: פרקטיים מאפשרת לענות על שתי שאלות

האם ניתן להשיג ביצועים טובים עוד יותר על ידי שדרוג , שנית? ידי מערכת הדגימההניתן לו על 

ומציגים כללי , אנו מראים כי התשובות לשתי השאלות משתנות בהתאם לאופי הבעיה? החומרה

, אצבע לזיהוי מצבים שבהם אלגוריתמים קיימים אינם מנצלים באופן מיטבי את המידע הנתון להם

  .יפורוניתנים לפיכך לש

שבהם האות המשוערך , החלק השני של העבודה עוסק בחסמי ביצועים בעולם הבייסיאני

משערך התוחלת המותנית משיג את , במצב הבייסיאני, כידוע. פריורי ידועה-הוא בעל התפלגות א

סיבוכיות החישוב של התוחלת , אך במקרים רבים. השגיאה הריבועית הנמוכה ביותר האפשרית

כגון משערך ההסתברות , אופטימליים-ולכן מקובל להשתמש במשערכים תת, ההמותנית גבוה

, במצב זה יש עניין לבדוק מהם הביצועים האופטימליים האפשריים). MAP(הפוסטריורית המירבית 

גם חישוב השגיאה של משערך , ואולם.  מתקרב אליהםMAP-כדי שיהיה ניתן לדעת האם משערך ה

 ענף מחקר המנסה לקרב את התפתחכתוצאה מכך .  קשה חישוביתהתוחלת המותנית עלול להיות

  .השגיאה האופטימלית באמצעות חסמים קלים לחישוב

אנו מציגים את חסם , 9בפרק , ראשית. במסגרת תחום מחקר זה אנו נתאר שתי תוצאות

אנו . לא זכה להתייחסותו כמעט  אך,1971זהו חסם שפותח לראשונה בשנת . ההטיה האופטימלית

 SNR- נמוך והן בSNR-וכן מוכיחים כי הוא הדוק הן ב, רחיבים את החסם למקרים כלליים יותרמ

-  אנו סוקרים את חסם וייס10בפרק , בנוסף. תוצאה שלא הודגמה עבור חסמים אחרים, גבוה

ומראים כי צורת ההצגה הנפוצה שלו אינה מדויקת במצבים ,  המוכר)Weiss-Weinstein (ויינשטיין

פריורי של האות מוגבלת לקבוצה חסומה בתוך מרחב - בפרט כאשר תמך ההסתברות א,מסוימים

אנו מציעים תיקון לחסם ומדגימים מצבים שבהם הגרסה המקורית מספקת . האותות האפשריים

  .תוצאות שגויות



או שהוא , הדבר יכול להצביע על חוסר דיוק באחד החסמים, כאשר ישנו פער בין החסמים. פרקטי

נוכל , מתוך ניתוח של המצבים בהם פערים כאלה נוצרים. עשוי להיות תוצאה של פגם באלגוריתם

  .ים בהן ניתן לשפר הן את המשערך והן את החסםלדלות רמזים לגבי הדרכ

. ר מספר מודלים פרקטיים וניישם את החסמים התיאורטיים בהןנחקו, במהלך העבודה  

וכן הרחבה של מודל הדלילות , המודלים בהם נתרכז יכללו את הייצוגים הדלילים שהוזכרו לעיל

 במודל של אותות בעלי קצב חידוש סופי כמו כן נתעניין). block sparsity(למצב של דלילות בבלוקים 

)finite rate of innovation או FRI .( מעניין לציין כי רבים מהמודלים האלה מגדירים מבנה המהווה

מבנה זה יספק אינטואיציה . איחוד של תתי מרחבים בתוך מרחב גדול יותר של אותות אפשריים

  .בבניית החסמים, במקרים רבים, גיאומטרית ויסייע

, זה עתה מציג את המודלים הפרקטיים שהוזכרו 1פרק . המבנה של עבודה זו הוא כדלקמן  

 סוקר את יסודות התחום התיאורטי 2פרק , אחריו. וסוקר בקצרה את הספרות הענפה העוסקת בהם

ובמיוחד הגרסאות , חסמים אלה. בשערוך דטרמיניסטי והן בשערוך בייסיאניהן , של חסמי ביצועים

  .יהוו את הבסיס התיאורטי לפיתוחים שבכל העבודה, )Cramér-Rao(ראו -השונות של חסם קרמר

המתייחסים בהתאמה לשערוך דטרמיניסטי עם , יתרת העבודה מחולקת לשני חלקים  

ההנחה היא כי לא ידועה , בחלק הראשון והארוך יותר, כך. ולשערוך ביסייאני, אילוצים מבניים

אך ידוע כי הוא משתייך לקבוצה נתונה המגדירה את מבנה , פריורי של הסיגנל המשוערך-הסתברות א

ראו למצב שבו מטריצת -אשר מתאר הרחבה של חסם קרמר, 3החלק מתחיל בפרק . הסיגנל הצפוי

  . בבעיות שערוך יתירוֹת, למשל, מתעוררמצב זה . האינפורמציה של פישר היא סינגולרית

חסם . ראו עבור בעיות שערוך דלילות ויתירות- מציג פיתוח של חסם קרמר4פרק , בהמשך

עם שגיאת , כמעט בכל מקום, מכיוון שהוא מתלכד, ראו המתקבל כאן מפתיע במקצת-קרמר

אלגוריתמי שערוך עם תוצאה זו נותנת משנה תוקף לנוהג הקיים של השוואת ביצועים של . האורקל

 כאשר המרביתראו מושג על ידי משערך הנראות - מכיוון שידוע שחסם קרמר,למשל, זאת. האורקל

ולכן לפחות במצב זה ניתן להגיע לביצועים קרובים לאלה של , הוא גבוה) SNR(יחס האות לרעש 

  .האורקל

ניתן לשפר את במקרים רבים ,  גבוהSNR-ראו הדוק כאשר ה-על אף היותו של חסם קרמר

 לבעיות Hammersley-Chapman-Robbinsבו מוצג חסם , 5זו מטרתו של פרק .  נמוךSNR-החסם ב

אך במצבים מסוימים ניתן עדיין להשיג ביטוי , חסם זה הוא מורכב יותר אנליטית. שערוך דלילות

  . נמוכים יותרSNRוללמוד ממנו על הביצועים של משערכים בתחומי , סגור עבורו

 אנו עוברים לחקר הבטחות ביצועים בבעיית 6בפרק ,  פיתוח החסמים התחתוניםלאחר

וקיימים מספר אלגוריתמים עבורם ניתן , נושא זה נחקר רבות בשנים האחרונות. הייצוגים הדלילים

תרומתנו בפרק זה היא במציאת .  ביצועים עליונים תחת תנאים סטטיסטיים מתאימיםלספק חסמי

. אשר ניתנים לחישוב באופן יעיל, וססות על מדדים פשוטים כגון הקוהרנטיותהבטחות ביצועים המב

  .מאלה של חסמים קודמים הדוקות יותר המתקבלותבמקרים רבים הבטחות הביצועים 

 מראה כי 5- ו4 עם החסמים התחתונים של פרקים 6השילוב של הבטחות הביצועים של פרק 

ולעיתים אף בעזרת , בעזרת משערכים קיימים, םניתן להגיע קרוב למדי לביצועים אופטימליי



  קצירת
תופעות נוחים מתמטית המתארים במדויק  מודלים מציאתאתגר מרכזי בכל תחומי ההנדסה הוא 

נזקפות לזכות רבות מבין ההצלחות החשובות בתחום עיבוד האותות בעשורים האחרונים . פיסיקליות

סית לכך הינה דוגמה קלא.  לתאר סוג מסוים של סיגנליםחדשות שהיטיבות ו מתמטיי טכניקותפיתוח

ששיפרה באופן משמעותי את היכולת לנתח ולעבד אותות בעלי תופעות , )wavelets(תורת הגלונים 

, )overcomplete ( ויתירים)sparse (דוגמה נוספת היא המודל של ייצוגים דלילים. טרנזיינטיות

ותות רבים מודל זה מבוסס על האבחנה לפיה א. שזכתה להתעניינות מחקרית רבה בעשור האחרון

  . מתוך מילון מתאים"אטומים"ארי של מספר קטן של יק כצירוף לינניתנים לייצוג מדוי

, בעבודה זו. אותות באופן דליל ניתן למידול מתמטי בדרכים שונותשל  כמו הייצוגרעיון   

 והגישה של הוספת אילוצים מבניים )Bayesian (השיטה הבייסיאנית: נתרכז בשתי שיטות מידול

פריורי על הסיגנל -המודל מקבל ייצוג מתמטי כהתפלגות א, בעולם הבייסיאני. ך דטרמיניסטיבשערו

פריורי גבוהה יותר לאותות דלילים מאשר לאותות -ניתן לייחס הסתברות א, לדוגמה, כך; המשוערך

ההנחה היא כי הסיגנל , בבעיות שערוך דטרמיניסטיות, לעומת זאת. שאינם ניתנים לייצוג דליל

, בשערוך מסוג זה ניתן להכניס מודל על ידי הוספת אילוץ. פריורי-ערך אינו כולל הסתברות אהמשו

להניח כי , למשל, כך נוכל. ידוע שייך לקבוצה מוגדרת מראש של ערכים אפשריים- לפיו הסיגנל הלא

. וזאת מבלי להקצות הסתברות לאיברי הקבוצה, שייך לקבוצת האותות בעלי ייצוגים דליליםהסיגנל 

אימה יותר כאשר אין אנו מעוניינים לספק אמירות מדויקות לגבי הגישה הדטרמיניסטית מת, לפיכך

  .פריורי של הופעת סיגנלים שונים-הסבירות א

. ניתן להשיג תחת מודלים מבניים מסוגים שוניםשמטרת עבודה זו היא לנתח את הביצועים   

וזאת הן בעולם הבייסיאני והן בעולם , רועשותאנו נתרכז בבעיות שערוך אותות מתוך מדידות , בפרט

שיתאימו למגוון , כלליים- לשם כך יהיה עלינו לפתח כלים תיאורטיים. השערוך הדטרמיניסטי

שהם , כגון אותות דלילים, ניישם את הכלים האלה במספר מודלים ספציפיים, לאחר מכן. מודלים

  . בעלי עניין עכשווי בקרב קהילת עיבוד האותות

נפתח שני סוגים משלימים של , לאפיין את הביצועים האפשריים של אלגוריתמי שערוךכדי   

, אותם ניתן להשיגהמגדירים מהם הביצועים הטובים ביותר , חסמים תחתונים: חסמי ביצועים

המספקים רמת ביצועים נתונה ומבטיחים שאלגוריתם , )או הבטחות ביצועים(וחסמים עליונים 

ולעיתים , החסמים התחתונים מכַמְתים את קושי הבעיה. גרוע ממנהמסוים לעולם לא יהיה 

לעיתים ניתן להשוות בצורה . מאפשרים לזהות כיצד ניתן לשנות את המודל על מנת להקל על השערוך

במקרים רבים מרחב , אולם. ישירה את החסם התחתון לביצועים בפועל של אלגוריתם ספציפי

. ן יהיה למדוד אמפירית את הביצועים של אלגוריתם בכל מצבהסיגנלים האפשריים רחב מכדי שנית

אשר מבטיח כי ביצועי המשערך לעולם לא יהיו גרועים יותר , כאן נכנס תפקידו של החסם העליון

  .מגודל נתון וקל לחישוב

מצב זה : היינו רוצים לגלות כי החסם התחתון והחסם העליון קרובים זה לזה, אליתיאיד  

להשיג אותם בעזרת אלגוריתם ) כמעט(צועים האופטימליים ידועים וכי ניתן מעיד על כך שהבי
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