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Abstract—The problem considered in this letter is to bound the
performance of estimators of a deterministic parameter which
satisfies given constraints. Specifically, previous work on the
constrained Cramér–Rao bound (CRB) is generalized to include
singular Fisher information matrices and biased estimators. A
necessary and sufficient condition for the existence of a finite CRB
is obtained. A closed form for an estimator achieving the CRB, if
one exists, is also provided, as well as a necessary and sufficient
condition for the existence of such an estimator. It is shown
that biased estimators achieving the CRB can be constructed in
situations for which no unbiased technique exists.

Index Terms—Constrained estimation, Cramér–Rao bound, pa-
rameter estimation.

I. INTRODUCTION

A CENTRAL goal in statistics and signal processing is to
estimate unknown deterministic parameters from random

measurements. The performance of estimators in such a setting
is circumscribed by the well-known Cramér–Rao bound (CRB)
[1]. Specifically, the CRB provides a lower limit on the variance
obtainable by any technique as a function of the Fisher informa-
tion matrix (FIM) and the estimator’s bias gradient.

A variant of the CRB for constrained estimation problems
was developed by Gorman and Hero [2]. They considered the
setting in which the parameter vector belongs to a known set.
When this information is incorporated into the estimator, per-
formance can be improved. As a consequence, the constrained
CRB can be lower than the unconstrained version.

The derivation of Gorman and Hero assumed that the FIM
is positive definite. Stoica and Ng [3] later extended the con-
strained CRB to the case in which the FIM is positive semi-def-
inite, and may thus be singular. In an unconstrained problem,
a singular FIM implies that unbiased estimation of the entire
parameter vector is impossible [4]. However, Stoica and Ng
demonstrated that, in some cases, one can obtain so-called con-
strained unbiased estimators, which are unbiased as long as the
constraints hold.
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The work of Stoica and Ng considers only unbiased estima-
tion. Yet even when unbiased methods do not exist in a particular
setting, biased techniques can still be found. As we will demon-
strate, when the FIM is singular, estimators can be constructed
by introducing a sufficient number of constraints, by specifying
an appropriate bias function, or by a combination thereof.

More specifically, in this letter we generalize the above-men-
tioned bounds and obtain a biased CRB for constrained esti-
mation with a positive semi-definite FIM. When an estimator
achieving the CRB exists, we provide a closed form for it. We
further derive a necessary and sufficient condition for the CRB
to be infinite, indicating that no estimator exists in the given set-
ting.

The following notation is used throughout the letter. Given a
vector function , we denote by the
matrix whose th element is . Also, ,
and are, respectively, the range space, null space, and
Moore–Penrose pseudoinverse of a matrix , and denotes
the orthogonal complement of the subspace . Finally,
indicates that is positive semi-definite.

II. PROBLEM STATEMENT

Let be a measurement vector with pdf , for some
deterministic unknown parameter vector . Suppose
that is differentiable with respect to . The FIM is
then defined as

(1)

where

(2)

We assume throughout that is finite for all .
Suppose that is known to belong to a constraint set

(3)

where is a continuously differentiable function of
with . Note that we are assuming for simplicity that

no inequality constraints are present, as it has been shown that
such constraints have no effect on the CRB [2].

We further assume that the matrix
has full row rank, which is equivalent to requiring that the con-
straints are not redundant. Thus, there exists an
matrix such that

(4)

Intuitively, is the set of feasible directions at , i.e.,
the set of directions in which an infinitesimal change does not
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violate the constraints. For notational simplicity, in the sequel
we will omit the dependence of and on .

Let be an estimator of . We are interested in the
performance of under the assumption that . Specifically,
we derive a lower bound on the covariance matrix

(5)

obtainable by any estimator . The covariance matrix, as well as
the CRB, are a function of ; we are interested in bounding this
matrix for all . To obtain a nontrivial bound, we assume
that the desired bias is specified for ;
the bias for is arbitrary.

Previous work on the constrained estimation setting [2], [3]
assumed that the estimator satisfies the constraint .
However, it turns out that this requirement can be removed
without altering the resulting bound. Furthermore, in some
cases, the CRB can only be achieved by estimators violating
the constraint. In this letter, the term “constrained estimator”
refers to the situation in which the bias is specified only
for , and the performance is evaluated when the true
parameter value belongs to the set . The implications of this
setting are discussed further in the next section.

III. CRAMÉR–RAO BOUND

A. Main Result

With the concepts developed in the previous section, our main
result can be stated as follows.

Theorem 1: Let be a constraint set of the form (3) with a
corresponding matrix of (4). Let be an estimator of whose
bias is given by for all , and define

(6)

Assume that integration with respect to and differentiation
with respect to can be interchanged,1 and suppose that

(7)

Then, the covariance of satisfies

(8)

Equality is achieved in (8) if and only if

(9)

in the mean square sense, for all . Here, is given by
(2). Conversely, if (7) does not hold, then there exists no finite-
variance estimator with the given bias function.

It is illuminating to examine the influence of the constraints
on the bound of Theorem 1. Recall that the CRB is a bound on
the covariance of all estimators having a given bias function, at
each specific point . The bound thus applies even to estimators
which are designed for the specific point , a far more restrictive
assumption than the knowledge that . How, then, can one
expect to obtain a meaningful performance bound by imposing
the constraint set ?

1This condition basically requires that the bounds of ���� ���� do not depend
on ���. Such regularity conditions are assumed in all forms of the CRB.

The answer stems from the fact that the bias is specified in
Theorem 1 only for . For example, consider constrained
unbiased estimators, for which for all ; the
bias when is irrelevant and unspecified. This is a far
larger class of estimators than those which are unbiased for all

. Consequently, the bound (8) is lower than the uncon-
strained CRB. The weakened bias specification is apparent in
Theorem 1 from the fact that the matrix only appears when
multiplied by , which nullifies components in directions vi-
olating the constraints. Indeed, to calculate the bound, only
needs to be specified in directions consistent with . This issue
will be discussed further in a forthcoming paper [5].

Condition (7) succinctly describes the possibilities for esti-
mation under various values of the FIM. If is invertible, then
(7) holds regardless of the constraint set and the bias gradient,
implying that the CRB is always finite. The situation is more
complicated when is singular. In this case, one option is to
choose a matrix whose null space includes ; this im-
plies that the estimator is insensitive to changes in elements of
for which there is no information. Another option is to provide
external constraints for the unmeasurable elements of , thus
changing in such a way as to ensure the validity of (7) for all

. An example comparing these approaches will be presented
in Section IV.

Theorem 1 encompasses several previous results as special
cases. Most famously, when is nonsingular and no constraints
are imposed, we obtain the standard CRB

(10)

Several prior extensions [2]–[4] of (10) are also special cases of
Theorem 1.

B. Proof of Theorem 1

The Proof of Theorem 1 is based on the following lemmas.
Lemma 1: Assuming that integration with respect to and

differentiation with respect to can be interchanged, we have

(11)

for any estimator . Here, is defined by (2), and is given
by (6).

Proof: The proof is an extension of [6, Th. 1] to the case
of a biased estimator. Using (2),

(12)

where we interchanged the order of differentiation and integra-
tion, and used the fact that is a function of but not of .
Noting that the second integral in (12) equals 1, we obtain

(13)

which completes the proof.
The following lemma provides a family of bounds on

for any estimator having a specified bias function. Theorem 1
is obtained by choosing an optimal member from this class.
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Lemma 2: Let be an estimator of , and suppose its
bias is . Under the conditions of Lemma 1, for any
matrix , we have

(14)

Proof of Lemma 2: Let and note that

(15)

Using (1) and Lemma 1, we obtain (14).
We recall the following properties of the pseudoinverse,

which will be required for some further developments.
Lemma 3: Let and be arbitrary matrices and let

. Then

(16)

(17)

(18)

(19)

(20)

Proof: Proofs for (16)–(19) can be found in [7, Th.
1.2.1], while (20) can be demonstrated by showing that

satisfies the Moore–Penrose conditions for
the pseudoinverse of .

We are now ready to prove the main result.
Proof of Theorem 1: Our proof is based on that of Stoica

and Ng [3]. Suppose first that (7) holds, and let

(21)

Applying Lemma 2 and using the Moore–Penrose condition
, we obtain

(22)

It follows from (16) that

(23)

Substituting this into (22) yields (8), as required.
We now show that (9) holds if and only if

(24)

in the mean squared sense, for all . Note first that if
satisfies (9), then the bias of is indeed , since .
Furthermore

(25)

which yields (24). Conversely, suppose that (24) holds, and let
. Using Lemma 1 and (24), it is straightforward

to show that

(26)

Therefore, in the mean
square sense, as required.

It remains to show that if

(27)

then no finite variance estimator exists. Suppose that (27)
holds. Since for any matrix , we
have , or equivalently,

. Thus, there exists a vector
for which . Now, let

for some scalar to be defined below.
From Lemma 2,

(28)

The second term in (28) is zero since ,
whereas the first term equals , which is nonzero
since . Thus, by choosing appropriately,

can be shown to be larger than any finite number.
Therefore, there does not exist a finite-variance estimator with
the required bias.

C. Choice of

The bound (8) of Theorem 1 is obtained from the more gen-
eral Lemma 2 by choosing a specific value (21) for the matrix

. We now show that this choice of is optimal, in that it re-
sults in the tightest bound obtainable from Lemma 2. Note that
Lemma 2 provides a matrix inequality, so there does not nec-
essarily exist a single maximum value of the bound (because
the set of matrices is not totally ordered). However, in our case,
such a maximum value does exist and results in the bound of
Theorem 1.

The method of obtaining used in [3] does not seem to
generalize to the case of biased estimators. Instead, let be an
arbitrary vector in and observe that

(29)

is concave in . Therefore, to maximize (29), it suffices to find
a point at which the derivative is zero. Differentiating (29)
with respect to , we obtain [8]

(30)

Thus, if there exists a matrix such that

(31)

then that value of maximizes (29) simultaneously for any
choice of . Note that (31) can be written as a set of vector
equations

(32)

where is the th row of and is the th column of
. Clearly, (32) has a solution if and only if
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. This does indeed occur under the condition
(7) of Theorem 1, and one such solution is given by

(33)

Combining these equations, we obtain that the matrix
chosen in (21) simultaneously maximizes (29) for all values of

. Therefore, the bound of Theorem 1 is the tightest bound ob-
tainable from Lemma 2.

IV. EXAMPLE

As an example of the applicability of Theorem 1, we consider
an underdetermined linear regression setting. Let be
an unknown vector for which measurements are
available. Here, is white Gaussian noise with variance and

is a known matrix with . Since there are fewer
measurements than parameters, unbiased reconstruction of is
clearly impossible without additional assumptions. To see this
formally, note that

(34)

Thus , so that the matrix is singular, and
by Theorem 1, unconstrained unbiased estimation is impossible.
This also follows from earlier results [3], [4].

In order to enable reconstruction of , additional assump-
tions are required. One possibility is to restrict to some subset

, and then seek an unbiased estimator over this set.
An alternative is to choose a reasonable value for , taking
into account the lack of information. As we will see, both ap-
proaches result in the same estimator, but the latter implies op-
timality under wider conditions.

Beginning with the first approach, let us assume that
for a given matrix and an unknown . For
example, can define a smoothness requirement on . We seek
an unbiased estimator for such .

Choosing results in . Thus, it fol-
lows from Theorem 1 that if there exists a constrained unbiased
estimator which achieves the CRB, then must satisfy, for
all

(35)

where we have used (17) in the first transition and (18) in the
second. Since , one may write , for some
vector . Thus

(36)

Suppose that

(37)

In this case, it is readily shown that , and
consequently . Thus

(38)

is the constrained unbiased estimator achieving the CRB. In
other words, has minimum MSE among all estimators which
are unbiased over .

On the other hand, suppose that . This
implies that the constraints on do not sufficiently compensate
for the lack of information in the measurements . Indeed, in
this case we have , and
it follows from Theorem 1 that no unbiased estimator exists.
These conclusions can also be obtained from [3].

Observe that the expectation of is

(39)

If (37) holds, then (39) is the oblique projection of
along onto [7]. Thus, if , then

, so that is indeed unbiased under this
constraint. As a generalization, let us seek an estimator whose
expectation is given by (39), while removing the constraint on

and the assumption (37). If such an estimator existed, then its
bias would be given by

(40)

and therefore the matrix of (6) would equal

(41)

Thus, we now seek an unconstrained but biased estimator. To
find the minimum MSE estimator whose expectation is (39), we
apply (9) of Theorem 1 with and given by (41). This
yields

(42)

where we used (17) and (18) in the second line, and (20) in the
last line.

Thus, of (38) is the approach achieving minimum MSE
among all estimators whose expectation is (39). This implies
that is a useful estimator under a wider range of settings than
suggested by the unbiased approach. Indeed, among estimators
having the required expectation, is optimal even if does
not satisfy the constraint , and, furthermore, its op-
timality is guaranteed even if the intersection between
and is nontrivial.
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