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Abstract—The Weiss–Weinstein bound (WWB) provides a lower limit on
the mean-squared error (MSE) achievable by an estimator of an unknown
random parameter. In this correspondence, it is shown that some previ-
ously proposed simplified versions of the bound do not always hold for
constrained parameters, i.e., parameters whose distribution has finite sup-
port. These simplifications can produce results which are no longer lower
bounds on the MSE. Sufficient conditions are provided for the reductions
to be valid.

Index Terms—Bayesian estimation, constrained estimation, performance
bounds, Weiss–Weinstein bound.

I. INTRODUCTION

We consider the problem of estimating a random vector ��� from ob-
servations xxx, where the quality of an estimator ggg(xxx) is measured by its
mean-squared error (MSE)E kggg(xxx)� ���k2 . It is well known that the
posterior mean E f���jxxxg is the technique minimizing the MSE. How-
ever, in many cases, determining the posterior mean is computationally
prohibitive, and various approaches have been developed as alterna-
tives. It is therefore of interest to determine the degradation in accuracy
resulting from the use of suboptimal methods. Unfortunately, compu-
tation of the optimal MSE is itself infeasible in many cases. This has
led to a large body of work seeking to find simple lower bounds for the
minimum MSE in a given estimation problem [1]–[4].

In a landmark paper, Weiss and Weinstein developed a general tech-
nique for deriving lower bounds on the minimum achievable MSE [3].
A noteworthy feature of their method is that it requires almost no reg-
ularity assumptions on the problem setting. The bound was further de-
veloped in [4], and has been used in a variety of practical applications
[5]–[7].

A common setting in which the Weiss–Weinstein bound (WWB) is
often applied concerns constrained parameter sets, i.e., situations in
which the parameter ��� occurs with probability 1 in a subset � of m.
For example, in time-delay estimation, the delay is sometimes assumed
to be uniformly distributed in a given interval [3]. While the WWB
continues to hold in the constrained setting, some of the simplifications
presented in [3] and [4] are not valid in this case.

In this correspondence, we point out the versions of the WWB which
do not necessarily hold for constrained parameter sets. We discuss the
regularity conditions under which these simplified versions are valid,
and conclude with an example in which the simplified version of the
bound yields incorrect (and unreasonable) results.
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II. BACKGROUND AND SUMMARY

We begin by recalling some definitions and results relating to the
WWB [3], [4]. Let ��� and xxx be finite-variance random vectors whose
joint probability density function (pdf) is f(xxx; ���). Suppose that f(xxx; ���)
is nonzero only for values of ��� in a subset � of m, and let �0 be the
set of values of ��� for which f(xxx; ���) is positive almost everywhere (a.e.)
in xxx. We are interested in estimating ��� using a function ggg(xxx) of the
measurements. The error covariance matrix is defined as

RRR E (��� � ggg(xxx))(��� � ggg(xxx))T : (1)

The goal is to find a lower bound on RRR, i.e., a matrix BBB such that
RRR � BBB, where the matrix inequality means that RRR � BBB is positive
semidefinite.

Denote the likelihood ratio by

L(xxx; ���1; ���2)
f(xxx; ���1)

f(xxx; ���2)
(2)

where the function is defined only for values of xxx and ���2 such that
f(xxx; ���2) 6= 0. Let

�(s; hhh) lnE fLs(xxx; ��� + hhh; ���)g (3)

and note that the expectation is calculated only over points (xxx; ���) such
that f(xxx; ���) > 0, i.e., those points for which L(xxx; ���+hhh; ���) is defined.

In the case of a scalar parameter � 2 � � , the error covariance
(1) equals the MSE. The WWB in this setting is given by

MSE �
h2E2fLs(xxx; � + h; �)g

E [Ls(xxx; � + h; �)� L1�s(xxx; � � h; �)]2
(4)

for any h and s such that

0 < E L
s(xxx; � + h; �)� L

1�s(xxx; � � h; �)
2

<1: (5)

If �0 is a connected subset of , then (4) can also be written as [3], [4],
[7]

MSE �
h2e2�(s;h)

e�(2s;h) + e�(2�2s;�h) � 2e�(s;2h)
: (6)

In these cases, calculation of �(s; h) is sufficient for evaluation of the
bound. However, the equivalence between the original bound (4) and
the simplified version (6) does not necessarily hold if �0 is a disjoint
subset of ; specifically, the cross-term 2e�(s;2h) does not always equal
2E Ls(xxx; � + h; �)L1�s(xxx; � � h; �) . As we will see, when �0 is
disjoint, (6) can be larger than the minimum estimation MSE, and may
even be infinite. Thus, care must be used when applying the bound to
disjoint parameter sets �0.

In the case of a vector parameter ��� 2 � � m, the WWB on the
error covariance is given by

RRR � HHHGGG
�1
HHH

T
: (7)

Here, HHH = [hhh1; hhh2; . . . ; hhhm] is a matrix consisting of “test vectors”
hhhi 2

m, and GGG is the m�m matrix whose elements are given by

Gij =
E fr(xxx; ���;hhhi; si)r(xxx; ���;hhhj ; sj)g

E fLs (xxx; ��� + hhhi)gE fLs (xxx; ��� + hhhj)g
(8)
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where

r(xxx; ���;hhhi; si) Ls (xxx; ��� + hhhi; ���)� L1�s (xxx; ��� � hhhi; ���): (9)

The bound holds for any fhhhi; sigmi=1 such that GGG is well defined and
invertible.

Weinstein and Weiss [4] suggest that attention be restricted to the
case s1 = � � � = sm = 1=2. In this case, and under the additional
assumption that �0 = m, the bound (8) simplifies to1

Gij = 2
e�(1=2;hhh �hhh ) � e�(1=2;hhh +hhh )

e�(1=2;hhh )e�(1=2;hhh )
: (10)

While this simplification is valid if f(xxx; ���) is positive a.e. (i.e., if �0 =
m), it does not necessarily hold in other cases. Furthermore, when ���

is a scalar, (10) does not necessarily reduce to (6).

III. SCALAR CASE

To demonstrate equivalence between (4) and (6), it is required to
show that

E Ls(xxx; � + h; �)L1�s(xxx; � � h; �)
?
= e�(s;2h): (11)

When �0 is a connected set, this statement can be verified as follows:

E Ls(xxx; � + h; �)L1�s(xxx; � � h; �)

=
fs(xxx; � + h)

fs(xxx; �)

f1�s(xxx; � � h)

f1�s(xxx; �)
f(xxx; �)dxxxd� (12)

= fs(xxx; � + h)f1�s(xxx; � � h)dxxxd� (13)

=
fs(xxx; �0 + 2h)

fs(xxx; �0)
f(xxx; �0)dxxxd�0 (14)

= e�(s;2h) (15)

where we used the change of variables �0 = � � h.
As noted previously, it is implicitly assumed in (11) that the ex-

pectation is calculated only over those values of xxx and � for which
f(xxx; �) > 0, otherwise L(xxx; � + h; �) is undefined. Thus, the integral
(12) is taken only over those values of xxx and � for which f(xxx; �) > 0.
However, after f(xxx; �) is canceled out in (13), this fact is ignored. The
integral (14) is taken over the range f(xxx; �0) > 0, which corresponds
to f(xxx; � + h) > 0. If there exist points (xxx; �) for which f(xxx; �) = 0,
f(xxx; � + h) > 0, and f(xxx; � � h) > 0, then (12) is not taken over
those points, whereas (13) is positive at those points.

If �0 is a connected set (i.e., a finite or infinite interval), then, for
any xxx and � such that f(xxx; � � h) > 0 and f(xxx; � + h) > 0, we also
have f(xxx; �) > 0. In this case, the range of integration in (12) equals
that of (13), so that the simplified version (6) is correct. This occurs,
for instance, in the example given in [3], where �0 is a closed interval.

However, if �0 is disjoint, then (13) can be greater than (12), so
that (6) can be larger than (4), and is not necessarily a lower bound on
the MSE. Indeed, as we will see, in some cases (6) is higher than the
minimum MSE; in other cases, (6) is infinite, as a result of a division
by zero.

IV. VECTOR CASE

When �0 = m, the simplified equation (10) can be derived from
the WWB (8) as follows. Substituting s1 = � � � = sm = 1=2 in (8),

1A slightly different version of this equation appears in [4, eq. (42)], the result
of an obvious typographical error.

the denominator equals that of (10). The numerator consists of a sum
of four expressions of the type

E L1=2(xxx; ��� � hhhi; ���)L
1=2(xxx; ��� � hhhj ; ���) : (16)

These can be simplified by writing

E L1=2(xxx; ��� + hhhi; ���)L
1=2(xxx; ��� + hhhj ; ���)

=
f(xxx; ��� + hhhi)

f(xxx; ���)

f(xxx; ��� + hhhj)

f(xxx; ���)

1=2

f(xxx; ���)dxxxd��� (17)

= (f(xxx; ��� + hhhi)f(xxx; ��� + hhhj))
1=2 dxxxd��� (18)

=
f(xxx; ���0 + hhhi � hhhj)

f(xxx; ���0)

1=2

f(xxx; ���0)dxxxd���0 (19)

= e�(1=2;hh
h �hhh ) (20)

where a change of coordinates ���0 = ���+hhhj was performed. Analogous
results can be obtained for the remaining expressions of the type (16).
Substituting these into (8) yields (10).

When �0 does not consist of the entire space m, the reasoning
above is not valid. The integration in (17) must be carried out only over
those values of xxx and ��� for which f(xxx; ���) > 0, but this restriction is
dropped in the transition to (18). If there exist values (xxx; ���) such that
f(xxx; ���) = 0, f(xxx; ��� + hhhi) > 0, and f(xxx; ��� + hhhj) > 0, then those
values are included in (18), but not in (17). This will always occur for
some values of hhhi and hhhj , unless f(xxx; ���) > 0 for all ���. Therefore,
the value EfL1=2(xxx; ���0 + hhhi � hhhj ; ���

0)g can, in fact, be larger than
EfL1=2(xxx; ���+hhhi; ���)L

1=2(xxx; ���+hhhj ; ���)g. We conclude that (10) does
not necessarily hold unless �0 includes the entire parameter space m.

V. COUNTEREXAMPLE

We now present an example which illustrates that (6) provides incor-
rect and even impossible results in some cases.

Consider the problem of estimating a scalar � based on a single
measurement x. Suppose that � is uniformly distributed over the set
� = [a; b] [ [�b;�a], where b > a > 0 are given constants. Also
suppose that the distribution of x conditioned on � is Gaussian with
mean � and variance �2. The joint pdf of x and � is thus given by

f(x; �) =
e�(x��) =2�

2(b� a)
p
2��2

1l� (21)

where 1l� is an indicator function, which equals 1 when � 2 � and 0
otherwise.

From (3), it follows that

e�(s;h) =
1

2(b� a)
e�h s(1�s)=2� 1l�1l�+hd� (22)

where �+ h = f�+h : � 2 �g, and the integral equals the length of
the intersection of the sets � and �+ h. On the other hand

~M(s; h) E Ls(x; � + h; �)L1�s(x; � � h; �)

=
1

2(b� a)
e�2s(1�s)h =� 1l�1l�+h1l��hd�: (23)

Thus, contrary to (11), e�(s;2h) does not equal ~M(s; h), since the
latter depends on the length of the intersection of the three sets �,
�+ h, and ��h. Indeed, ~M(s; h) is often substantially smaller than
e�(s;2h), and as a result, use of (6) results in a “lower bound” which
may exceed the true MSE.
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Fig. 1. Plot of the corrected WWB (24), the incorrect version (6), and the actual
MSE, for a scalar estimation setting with a disjoint set �.

This problem is illustrated in Fig. 1, where the incorrect bound (6)
is compared with the original WWB (4), which can be written as

h2e2�(s;h)

e�(2s;h) + e�(2�2s;�h)
� 2 ~M(s; h)

: (24)

The actual MSE obtained by the optimal estimator can be calcu-
lated using Monte Carlo simulations, and is also plotted. In the
figure, values of a = 1=2 and b = 2 were used. The variance �2

was modified to obtain various signal-to-noise ratios (SNRs), where
SNR = Var(�)=�2.

It is evident from Fig. 1 that the value (6) becomes exceedingly high
at low SNR. Indeed, for SNR values below approximately 0 dB, there
always exist values of s and h such that the denominator of (6) is ar-
bitrarily small, and thus the bound tends to infinity. For SNR values
around 2–4 dB, (6) yields finite values which are larger than the actual
MSE obtained by the optimal estimator. The original version (24), by
contrast, closely follows the true MSE value.
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Abstract—This correspondence presents the results of the enumeration
of Costas arrays of order 27: all arrays found, except for one, are accounted
for by the Golomb and Welch construction methods.

Index Terms—Costas arrays, enumeration, Golomb method, order 27,
Welch method.

I. INTRODUCTION

In this brief note we present the results of the enumeration of
Costas arrays of order 27. This result comes approximately 2.5 years
after the last major enumeration project of Costas arrays undertaken,
namely that for order 26, completed independently and by two dif-
ferent groups led by J. K. Beard [1] and S. Rickard [2], respectively.
Our project was run on various supercomputers in Ireland [GridIre-
land1, which actually ran 68.75% of the project, and some clusters in
University College Dublin (Halation2, Meteorite3, Rowan)] and Scot-
land [the University of Edinburgh’s EPCC’s BlueGene4], as well as
on several other private machines. Taking a CPU running at 2.00GHz
as a reference, the project required approximately 25 years of single
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